1
|
Tramontina R, Scopel E, Cardoso VGK, Martins M, da Silva MF, Flaibam B, Salvador MJ, Goldbeck R, Damasio A, Squina FM. Hydroxycinnamic Acid Extraction from Multiple Lignocellulosic Sources: Correlations with Substrate Composition and Taxonomy for Flavoring and Antioxidant Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28048-28059. [PMID: 39632368 DOI: 10.1021/acs.jafc.4c08540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The extraction of hydroxycinnamic acids (HCADs) is a strategy for lignocellulosic biomass valorization due to their high value-added nature and the possibility of application as flavoring and antioxidants. This study proposes correlations between the composition and taxonomy of 28 globally available agro-industrial feedstocks with the production of HCADs using chemometric tools. Principal component analysis indicated strong correlations between ferulic acid release and hemicellulose type and content, especially in grass biomasses. Conversely, p-coumaric acid release was mainly correlated with cellulose content across diverse taxonomic origins. Among the evaluated agro-industrial feedstocks, corn-based biomasses were identified as prime sources of ferulic acid after mild alkaline treatment, releasing up to 10.5 g kg-1 and producing hydrolysates with an antioxidant capacity up to 3.3 mmol Trolox equivalents g-1. Notably, sugar cane bagasse was the best source of p-coumaric acid, yielding 4.8 g kg-1. Corn hydrolysates were successfully converted into 4-vinylguaiacol using a genetically modified Saccharomyces cerevisiae strain, achieving high yields of 0.75 g L-1. This work enhances our understanding of HCAD sources and biomass valorization strategies, demonstrating potential applications in the food and cosmetics sectors.
Collapse
Affiliation(s)
- Robson Tramontina
- Laboratório de Ciências Moleculares, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil
| | - Eupidio Scopel
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | | | - Manoela Martins
- Escola de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Marcos Fellipe da Silva
- Escola de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | - Bárbara Flaibam
- Escola de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | | | - Rosana Goldbeck
- Escola de Engenharia de Alimentos, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-862, Brazil
| | | | - Fabio Marcio Squina
- Laboratório de Ciências Moleculares, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo 18023-000, Brazil
| |
Collapse
|
2
|
Martins M, dos Santos AM, Costa C, Canner SW, Chungyoun M, Gray JJ, Skaf MS, Ostermeier M, Goldbeck R. Thermostability Enhancement of GH 62 α-l-Arabinofuranosidase by Directed Evolution and Rational Design. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4225-4236. [PMID: 38354215 PMCID: PMC11995439 DOI: 10.1021/acs.jafc.3c08019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
GH 62 arabinofuranosidases are known for their excellent specificity for arabinoxylan of agroindustrial residues and their synergism with endoxylanases and other hemicellulases. However, the low thermostability of some GH enzymes hampers potential industrial applications. Protein engineering research highly desires mutations that can enhance thermostability. Therefore, we employed directed evolution using one round of error-prone PCR and site-saturation mutagenesis for thermostability enhancement of GH 62 arabinofuranosidase from Aspergillus fumigatus. Single mutants with enhanced thermostability showed significant ΔΔG changes (<-2.5 kcal/mol) and improvements in perplexity scores from evolutionary scale modeling inverse folding. The best mutant, G205K, increased the melting temperature by 5 °C and the energy of denaturation by 41.3%. We discussed the functional mechanisms for improved stability. Analyzing the adjustments in α-helices, β-sheets, and loops resulting from point mutations, we have obtained significant knowledge regarding the potential impacts on protein stability, folding, and overall structural integrity.
Collapse
Affiliation(s)
- Manoela Martins
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland, 21218, USA
- Department of Food Engineering, State University of Campinas, Monteiro Lobato, 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil
| | - Alberto M. dos Santos
- Department of Chemistry, State University of Campinas, 336, R. Josué de Castro, 126 - Cidade Universitária, Campinas, São Paulo, 13083-861, Brazil
| | - Clauber Costa
- Department of Chemistry, State University of Campinas, 336, R. Josué de Castro, 126 - Cidade Universitária, Campinas, São Paulo, 13083-861, Brazil
| | - Samuel W. Canner
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland, 21218, USA
| | - Michael Chungyoun
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland, 21218, USA
| | - Jeffrey J. Gray
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland, 21218, USA
| | - Munir S. Skaf
- Department of Chemistry, State University of Campinas, 336, R. Josué de Castro, 126 - Cidade Universitária, Campinas, São Paulo, 13083-861, Brazil
| | - Marc Ostermeier
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, Maryland, 21218, USA
| | - Rosana Goldbeck
- Department of Food Engineering, State University of Campinas, Monteiro Lobato, 80, Cidade Universitária, Campinas, São Paulo, 13083-862, Brazil
| |
Collapse
|
3
|
Zhu L, Tang W, Ma C, He YC. Efficient co-production of reducing sugars and xylooligosaccharides via clean hydrothermal pretreatment of rape straw. BIORESOURCE TECHNOLOGY 2023; 388:129727. [PMID: 37683707 DOI: 10.1016/j.biortech.2023.129727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/19/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Hydrothermal treatment was applied to pretreat rape straw for the efficient co-production of reducing sugars and xylooligosaccharides. It was observed that hydrothermal treatment using water as solvent and catalyst destructed the compact structure of rape straw and increased its enzymatic digestion efficiency from 24.6% to 92.0%. Xylooligosaccharide (3.3 g/L) was acquired after the treatment under 200 °C for 60 min (severity factor Log Ro = 4.7). With increasing pretreatment intensity from 3.1 to 5.4, the hemicellulose removal increased from 14.4% to 100%, and the delignification was raised from 12% to 44%. Various characterization proved that the surface morphology of treated material showed a porous shape, while the cellulose accessibility, lignin surface area and lignin hydrophobicity were greatly improved. Consequently, hydrothermal pretreatment played a vital role in the sustainable transformation of biomass to valuable biobased compounds, and had a wide range of application prospects in lignocellulosic biorefining.
Collapse
Affiliation(s)
- Lili Zhu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
4
|
Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ. Expression and Characterization of Two α-l-Arabinofuranosidases from Talaromyces amestolkiae: Role of These Enzymes in Biomass Valorization. Int J Mol Sci 2023; 24:11997. [PMID: 37569374 PMCID: PMC10418624 DOI: 10.3390/ijms241511997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
α-l-arabinofuranosidases are glycosyl hydrolases that catalyze the break between α-l-arabinofuranosyl substituents or between α-l-arabinofuranosides and xylose from xylan or xylooligosaccharide backbones. While they belong to several glycosyl hydrolase (GH) families, there are only 24 characterized GH62 arabinofuranosidases, making them a small and underrepresented group, with many of their features remaining unknown. Aside from their applications in the food industry, arabinofuranosidases can also aid in the processing of complex lignocellulosic materials, where cellulose, hemicelluloses, and lignin are closely linked. These materials can be fully converted into sugar monomers to produce secondary products like second-generation bioethanol. Alternatively, they can be partially hydrolyzed to release xylooligosaccharides, which have prebiotic properties. While endoxylanases and β-xylosidases are also necessary to fully break down the xylose backbone from xylan, these enzymes are limited when it comes to branched polysaccharides. In this article, two new GH62 α-l-arabinofuranosidases from Talaromyces amestolkiae (named ARA1 and ARA-2) have been heterologously expressed and characterized. ARA-1 is more sensitive to changes in pH and temperature, whereas ARA-2 is a robust enzyme with wide pH and temperature tolerance. Both enzymes preferentially act on arabinoxylan over arabinan, although ARA-1 has twice the catalytic efficiency of ARA-2 on this substrate. The production of xylooligosaccharides from arabinoxylan catalyzed by a T. amestolkiae endoxylanase was significantly increased upon pretreatment of the polysaccharide with ARA-1 or ARA-2, with the highest synergism values reported to date. Finally, both enzymes (ARA-1 or ARA-2 and endoxylanase) were successfully applied to enhance saccharification by combining them with a β-xylosidase already characterized from the same fungus.
Collapse
Affiliation(s)
- Juan A. Méndez-Líter
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| | - Laura I. de Eugenio
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Alicia Prieto
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| | - María Jesús Martínez
- Department of Microbial & Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), C/Ramiro de Maeztu 9, 28040 Madrid, Spain; (J.A.M.-L.); (L.I.d.E.)
| |
Collapse
|
5
|
Tramontina R, Ciancaglini I, Roman EKB, Chacón MG, Corrêa TLR, Dixon N, Bugg TDH, Squina FM. Sustainable biosynthetic pathways to value-added bioproducts from hydroxycinnamic acids. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12571-8. [PMID: 37212882 DOI: 10.1007/s00253-023-12571-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
The biorefinery concept, in which biomass is utilized for the production of fuels and chemicals, emerges as an eco-friendly, cost-effective, and renewable alternative to petrochemical-based production. The hydroxycinnamic acid fraction of lignocellulosic biomass represents an untapped source of aromatic molecules that can be converted to numerous high-value products with industrial applications, including in the flavor and fragrance sector and pharmaceuticals. This review describes several biochemical pathways useful in the development of a biorefinery concept based on the biocatalytic conversion of the hydroxycinnamic acids ferulic, caffeic, and p-coumaric acid into high-value molecules. KEY POINTS: • The phenylpropanoids bioconversion pathways in the context of biorefineries • Description of pathways from hydroxycinnamic acids to high-value compounds • Metabolic engineering and synthetic biology advance hydroxycinnamic acid-based biorefineries.
Collapse
Affiliation(s)
- Robson Tramontina
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Programa de Processos Tecnológicos E Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Iara Ciancaglini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ellen K B Roman
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Micaela G Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Thamy L R Corrêa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos E Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
6
|
Martins M, Silva MF, Dinamarco TM, Goldbeck R. Novel bi-functional thermostable chimeric enzyme for feasible xylo-oligosaccharides production from agro-industrial wastes. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|