1
|
Wang S, Zhou H, Mao J, Zhang Y, Qi Y, Pang M, Jin X, Zhang J, Luo L, You J. Precision nanomedicine for pneumonocyte-targeting: Emerging strategies and clinical prospects in refractory pulmonary disease therapy. Biomaterials 2025; 323:123420. [PMID: 40424832 DOI: 10.1016/j.biomaterials.2025.123420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 05/11/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Refractory pulmonary diseases, including chronic obstructive pulmonary disease (COPD) and tuberculosis (TB), pose a critical global health challenge due to the limitations of conventional therapies in advanced stages, such as poor drug penetration, systemic side effects, and inability to eradicate pathogens in protected microenvironments. While the lung's complex structure is essential for respiratory function, it also facilitates persistent damage from environmental and infectious agents. Nanomedicine provides a transformative approach by utilizing customizable carriers (e.g., ligand-gated targeting, stimuli-responsive payload release) to bypass physiological barriers through both passive mechanisms such as enhanced vascular permeability and active-targeting. Such platforms achieve hierarchical drug deposition-from organ-level accumulation to pneumonocyte-targeting-thereby addressing the spatial heterogeneity of therapy-resistant lesions. Besides, A unique advantage of nanomedicine lies in its intrinsic interactions with lung immune cells (e.g., macrophages), allowing dual-functional systems that not only deliver therapeutics to disease sites but also modulate local immune responses-such as reducing inflammation in COPD or enhancing bacterial clearance in TB. This targeted approach improves treatment efficacy while minimizing systemic toxicity. Furthermore, nanomedicine ensures the stability of encapsulated drugs, particularly nucleic acid therapeutics (siRNA, mRNA), which are crucial for treating genetic defect-related pulmonary diseases. Building on the relationship between malignant pulmonary conditions and lung cells, this review summarizes nanoplatform-based strategies for precise targeting and examines ongoing clinical trials. By bridging the gap between preclinical research and clinical application, this review aims to guide the development of novel therapeutic approaches and accelerate the clinical translation of nanomedicines for refractory pulmonary diseases.
Collapse
Affiliation(s)
- Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Huanli Zhou
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yitao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Yuxin Qi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Mei Pang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Xizhi Jin
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
2
|
Liu H, Li Y, Wang Y, Zhang L, Liang X, Gao C, Yang Y. Red blood cells-derived components as biomimetic functional materials: Matching versatile delivery strategies based on structure and function. Bioact Mater 2025; 47:481-501. [PMID: 40034412 PMCID: PMC11872572 DOI: 10.1016/j.bioactmat.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
Red blood cells (RBCs), often referred to as "intelligent delivery systems", can serve as biological or hybrid drug carriers due to their inherent advantages and characteristics. This innovative approach has the potential to enhance biocompatibility, pharmacokinetics, and provide targeting properties for drugs. By leveraging the unique structure and contents of RBCs, drug-loading pathways can be meticulously designed to align with these distinctive features. This review article primarily discusses the drug delivery strategies and their applications that are informed by the structural and functional properties of the main components of RBCs, including living RBCs, membranes, hollow RBCs, and hemoglobin. Overall, this review article would assist efforts to make better decisions on optimization and rational utilization of RBCs derivatives-based drug delivery strategies for the future direction in clinical translation.
Collapse
Affiliation(s)
- Hangbing Liu
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Yi Li
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| | - Yuli Wang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| | - Liying Zhang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Xiaoqing Liang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| | - Chunsheng Gao
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| | - Yang Yang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| |
Collapse
|
3
|
Berikkhanova K, Taigulov E, Bokebaev Z, Kusainov A, Tanysheva G, Yedrissov A, Seredin G, Baltabayeva T, Zhumadilov Z. Drug-loaded erythrocytes: Modern approaches for advanced drug delivery for clinical use. Heliyon 2024; 10:e23451. [PMID: 38192824 PMCID: PMC10772586 DOI: 10.1016/j.heliyon.2023.e23451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Scientific organizations worldwide are striving to create drug delivery systems that provide a high local concentration of a drug in pathological tissue without side effects on healthy organs in the body. Important physiological properties of red blood cells (RBCs), such as frequent renewal ability, good oxygen carrying ability, unique shape and membrane flexibility, allow them to be used as natural carriers of drugs in the body. Erythrocyte carriers derived from autologous blood are even more promising drug delivery systems due to their immunogenic compatibility, safety, natural uniqueness, simple preparation, biodegradability and convenience of use in clinical practice. This review is focused on the achievements in the clinical application of targeted drug delivery systems based on osmotic methods of loading RBCs, with an emphasis on advancements in their industrial production. This article describes the basic methods used for encapsulating drugs into erythrocytes, key strategic approaches to the clinical use of drug-loaded erythrocytes obtained by hypotonic hemolysis. Moreover, clinical trials of erythrocyte carriers for the targeted delivery are discussed. This article explores the recent advancements and engineering approaches employed in the encapsulation of erythrocytes through hypotonic hemolysis methods, as well as the most promising inventions in this field. There is currently a shortage of reviews focused on the automation of drug loading into RBCs; therefore, our work fills this gap. Finally, further prospects for the development of engineering and technological solutions for the automatic production of drug-loaded RBCs were studied. Automated devices have the potential to provide the widespread production of RBC-encapsulated therapeutic drugs and optimize the process of targeted drug delivery in the body. Furthermore, they can expedite the widespread introduction of this innovative treatment method into clinical practice, thereby significantly expanding the effectiveness of treatment in both surgery and all areas of medicine.
Collapse
Affiliation(s)
- Kulzhan Berikkhanova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| | - Erlan Taigulov
- University Medical Center, Nazarbayev University, Astana, 010000, Kazakhstan
- Astana Medical University, Astana, 010000, Kazakhstan
| | - Zhanybek Bokebaev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
- Astana Medical University, Astana, 010000, Kazakhstan
| | - Aidar Kusainov
- Semey State Medical University, Semey, 071400, Kazakhstan
| | | | - Azamat Yedrissov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| | - German Seredin
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| | - Tolkyn Baltabayeva
- Scientific-Production Center of Transfusiology, Astana, 010000, Kazakhstan
| | - Zhaxybay Zhumadilov
- Departament of Surgery, School of Medicine, Nazarbayev University, Kabanbay Batyr 53, Astana, 010000, Kazakhstan
| |
Collapse
|
4
|
Udofa E, Zhao Z. In situ cellular hitchhiking of nanoparticles for drug delivery. Adv Drug Deliv Rev 2024; 204:115143. [PMID: 38008185 PMCID: PMC10841869 DOI: 10.1016/j.addr.2023.115143] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Since the inception of the concept of "magic bullet", nanoparticles have evolved to be one of the most effective carriers in drug delivery. Nanoparticles improve the therapeutic efficacy of drugs offering benefits to treating various diseases. Unlike free drugs which freely diffuse and distribute through the body, nanoparticles protect the body from the drug by reducing non-specific interactions while also improving the drug's pharmacokinetics. Despite acquiring some FDA approvals, further clinical application of nanoparticles is majorly hindered by its limited ability to overcome biological barriers resulting in uncontrolled biodistribution and high clearance. The use of cell-inspired systems has emerged as a promising approach to overcome this challenge as cells are biocompatible and have improved access to tissues and organs. One of such is the hitchhiking of nanoparticles to circulating cells such that they are recognized as 'self' components evading clearance and resulting in site-specific drug delivery. In this review, we discuss the concept of nanoparticle cellular hitchhiking, highlighting its advantages, the principles governing the process and the challenges currently limiting its clinical translation. We also discuss in situ hitchhiking as a tool for overcoming these challenges and the considerations to be taken to guide research efforts in advancing this promising technology.
Collapse
Affiliation(s)
- Edidiong Udofa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA; Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Xia D, Li J, Feng L, Gao Z, Liu J, Wang X, Hu Y. Advances in Targeting Drug Biological Carriers for Enhancing Tumor Therapy Efficacy. Macromol Biosci 2023; 23:e2300178. [PMID: 37466216 DOI: 10.1002/mabi.202300178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Chemotherapy drugs continue to be the main component of oncology treatment research and have been proven to be the main treatment modality in tumor therapy. However, the poor delivery efficiency of cancer therapeutic drugs and their potential off-target toxicity significantly limit their effectiveness and extensive application. The recent integration of biological carriers and functional agents is expected to camouflage synthetic biomimetic nanoparticles for targeted delivery. The promising candidates, including but not limited to red blood cells and their membranes, platelets, tumor cell membrane, bacteria, immune cell membrane, and hybrid membrane are typical representatives of biological carriers because of their excellent biocompatibility and biodegradability. Biological carriers are widely used to deliver chemotherapy drugs to improve the effectiveness of drug delivery and therapeutic efficacy in vivo, and tremendous progress is made in this field. This review summarizes recent developments in biological vectors as targeted drug delivery systems based on microenvironmental stimuli-responsive release, thus highlighting the potential applications of target drug biological carriers. The review also discusses the possibility of clinical translation, as well as the exploitation trend of these target drug biological carriers.
Collapse
Affiliation(s)
- Donglin Xia
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Jia Li
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Lingzi Feng
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Ziqing Gao
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, P.R. China
| | - Jun Liu
- Department of Laboratory Medicine, Wuxi No. 5 People's Hospital Affiliated Jiangnan University, Wuxi, Jiangsu, 214005, P.R. China
| | - Xiangqian Wang
- Department of Radiotherapy, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, Jiangsu, 226361, P.R. China
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P.R. China
| |
Collapse
|
6
|
Nguyen PHD, Jayasinghe MK, Le AH, Peng B, Le MTN. Advances in Drug Delivery Systems Based on Red Blood Cells and Their Membrane-Derived Nanoparticles. ACS NANO 2023; 17:5187-5210. [PMID: 36896898 DOI: 10.1021/acsnano.2c11965] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Red blood cells (RBCs) and RBC membrane-derived nanoparticles have been historically developed as bioinspired drug delivery systems to combat the issues of premature clearance, toxicity, and immunogenicity of synthetic nanocarriers. RBC-based delivery systems possess characteristics including biocompatibility, biodegradability, and long circulation time, which make them suited for systemic administration. Therefore, they have been employed in designing optimal drug formulations in various preclinical models and clinical trials to treat a wide range of diseases. In this review, we provide an overview of the biology, synthesis, and characterization of drug delivery systems based on RBCs and their membrane including whole RBCs, RBC membrane-camouflaged nanoparticles, RBC-derived extracellular vesicles, and RBC hitchhiking. We also highlight conventional and latest engineering strategies, along with various therapeutic modalities, for enhanced precision and effectiveness of drug delivery. Additionally, we focus on the current state of RBC-based therapeutic applications and their clinical translation as drug carriers, as well as discussing opportunities and challenges associated with these systems.
Collapse
Affiliation(s)
- Phuong Hoang Diem Nguyen
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Migara Kavishka Jayasinghe
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Anh Hong Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Boya Peng
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Minh T N Le
- Department of Pharmacology, and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Department of Surgery, Immunology Programme, Cancer Programme and Nanomedicine Translational Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
7
|
Li M, Qin Z, Yu Q, Huang Z, Cheng J, Zhong L, Liu Y, Xie J, Li Y, Chen J, Zhan R, Su Z. Anti-Inflammatory Activation of Phellodendri Chinensis Cortex is Mediated by Berberine Erythrocytes Self-Assembly Targeted Delivery System. Drug Des Devel Ther 2022; 16:4365-4383. [PMID: 36583113 PMCID: PMC9793729 DOI: 10.2147/dddt.s385301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Berberine (BBR) is the primary active component of Phellodendri Chinensis Cortex (PCC), which has been traditionally used to treat inflammatory diseases. However, the discrepancy between its low bioavailability and significant therapeutic effect remains obscure. The purpose of this study was to explore the previously unsolved enigma of the low bioavailability of BBR and its appreciable anti-inflammatory effect to reveal the action mechanism of BBR and PCC. Methods The quantitative analysis of BBR and its metabolite oxyberberine (OBB) in blood and tissues was performed using high-performance liquid chromatography to investigate the conversion and distribution of BBR/OBB mediated by erythrocytes. Routine blood tests and immunohistochemical staining were used to explore the potential relationship between the amounts of monocyte/macrophage and the drug concentration in erythrocytes and tissues (liver, heart, spleen, lung, kidney, intestine, muscle, brain and pancreas). To comparatively explore the anti-inflammatory effects of BBR and OBB, the acetic acid-induced vascular permeability mice model and lipopolysaccharide-induced RAW 264.7 macrophages were employed. Results Nearly 92% of BBR existed in the erythrocytes in rats. The partition coefficient of BBR between plasma and erythrocytes (Kp/b) decreased with time. OBB was found to be the oxidative metabolite of BBR in erythrocytes. Proportion of BBR/OBB in erythrocytes changed from 9.38% to 16.30% and from 13.50% to 46.24%, respectively. There was a significant relationship between the BBR/OBB concentration in blood and monocyte depletion after a single administration of BBR. BBR/OBB was transported via erythrocytes to various tissues (liver, kidney, spleen, lung, and heart, etc), with the liver achieving the highest concentration. OBB exhibited similar anti-inflammatory effect in vitro and in vivo as BBR with much smaller dosage. Conclusion BBR was prodominantly found in erythrocytes, which was critically participated in the biodistribution, pharmacokinetics, metabolism and target delivery of BBR and its metabolite. The anti-inflammatory activity of BBR and PCC was intimately associated with the metabolism into the active congener OBB and the targeted delivery to monocytes/macrophages mediated by the erythrocytes.
Collapse
Affiliation(s)
- Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Zehui Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Qiuxia Yu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People’s Republic of China
| | - Ziwei Huang
- The First Affiliated Hospital of Chinese Medicine Guangzhou University of Chinese Medicine, Guangzhou, 510120, People’s Republic of China
| | - Juanjuan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Linjiang Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People’s Republic of China,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People’s Republic of China,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, People’s Republic of China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Ruoting Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China,Correspondence: Ruoting Zhan; Ziren Su, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, no. 232, Waihuandong Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People’s Republic of China, Email ;
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
8
|
Cell-based drug delivery systems and their in vivo fate. Adv Drug Deliv Rev 2022; 187:114394. [PMID: 35718252 DOI: 10.1016/j.addr.2022.114394] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Cell-based drug delivery systems (DDSs) have received attention recently because of their unique biological properties and self-powered functions, such as excellent biocompatibility, low immunogenicity, long circulation time, tissue-homingcharacteristics, and ability to cross biological barriers. A variety of cells, including erythrocytes, stem cells, and lymphocytes, have been explored as functional vectors for the loading and delivery of various therapeutic payloads (e.g., small-molecule and nucleic acid drugs) for subsequent disease treatment. These cell-based DDSs have their own unique in vivo fates, which are attributed to various factors, including their biological properties and functions, the loaded drugs and loading process, physiological and pathological circumstances, and the body's response to these carrier cells, which result in differences in drug delivery efficiency and therapeutic effect. In this review, we summarize the main cell-based DDSs and their biological properties and functions, applications in drug delivery and disease treatment, and in vivo fate and influencing factors. We envision that the unique biological properties, combined with continuing research, will enable development of cell-based DDSs as friendly drug vectors for the safe, effective, and even personalized treatment of diseases.
Collapse
|
9
|
Che H, Selig M, Rolauffs B. Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Adv Drug Deliv Rev 2022; 184:114169. [PMID: 35217114 DOI: 10.1016/j.addr.2022.114169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022]
Abstract
Human cells are both advanced pharmaceutical drugs and 'drug deliverers'. However, functional control prior to or after cell implantation remains challenging. Micro-patterning cells through geometrically defined adhesion sites allows controlling morphogenesis, polarity, cellular mechanics, proliferation, migration, differentiation, stemness, cell-cell interactions, collective cell behavior, and likely immuno-modulatory properties. Consequently, generating micro-patterned therapeutic cells is a promising idea that has not yet been realized and few if any steps have been undertaken in this direction. This review highlights potential therapeutic applications, summarizes comprehensively the many cell functions that have been successfully controlled through micro-patterning, details the established micro-pattern designs, introduces the available fabrication technologies to the non-specialized reader, and suggests a quality evaluation score. Such a broad review is not yet available but would facilitate the manufacturing of therapeutically patterned cell populations using micro-patterned cell-instructive biomaterials for improved functional control as drug delivery systems in the context of cells as pharmaceutical products.
Collapse
Affiliation(s)
- Hui Che
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou 215006, China
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany.
| |
Collapse
|
10
|
Li Y, Raza F, Liu Y, Wei Y, Rong R, Zheng M, Yuan W, Su J, Qiu M, Li Y, Raza F, Liu Y, Wei Y, Rong R, Zheng M, Yuan W, Su J, Qiu M. Clinical progress and advanced research of red blood cells based drug delivery system. Biomaterials 2021; 279:121202. [PMID: 34749072 DOI: 10.1016/j.biomaterials.2021.121202] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Red blood cells (RBCs) are biocompatible carriers that can be employed to deliver different bioactive substances. In the past few decades, many strategies have been developed to encapsulate or attach drugs to RBCs. Osmotic-based encapsulation methods have been industrialized recently, and some encapsulated RBC formulations have reached the clinical stage for treating tumors and neurological diseases. Inspired by the intrinsic properties of intact RBCs, some advanced delivery strategies have also been proposed. These delivery systems combine RBCs with other novel systems to further exploit and expand the application of RBCs. This review summarizes the clinical progress of drugs encapsulated into intact RBCs, focusing on the loading and clinical trials. It also introduces the latest advanced research based on developing prospects and limitations of intact RBCs drug delivery system (DDS), hoping to provide a reference for related research fields and further application potential of intact RBCs based drug delivery system.
Collapse
Affiliation(s)
- Yichen Li
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Faisal Raza
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Yuhao Liu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Yiqi Wei
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Ruonan Rong
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Mengyuan Zheng
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Weien Yuan
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Jing Su
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China.
| | - Mingfeng Qiu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China.
| | - Y Li
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - F Raza
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Y Liu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - Y Wei
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - R Rong
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - M Zheng
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - W Yuan
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - J Su
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| | - M Qiu
- School of Pharmacy Shanghai Jiao Tong University 800, Dongchuan Road, 200240, Shanghai, China
| |
Collapse
|
11
|
|
12
|
Abstract
Engineered red blood cells (RBCs) appear to be a promising method for therapeutic drug and protein delivery. With a number of agents in clinical trials (e.g., dexamethasone 21-phosphate in ataxia telangiectasia, asparaginase in pancreatic cancer/acute lymphoblastic leukemia, thymidine phosphorylase in mitochondrial neurogastrointestinal encephalomyopathy, RTX-134 in phenylketonuria, etc.), this leading article summarizes the ongoing efforts in developing these agents, focuses on the clinical progress, and provides a brief background into engineered RBCs and the different ways in which they can be exploited for therapeutic/diagnostic purposes. References to available data on safety, efficacy, and tolerability are reported. Due to the continuous progress in this field, the information is updated as of January 2020 from databases, websites, and press releases of the involved companies and information that is in the public domain.
Collapse
|
13
|
Rossi L, Pierigè F, Agostini M, Bigini N, Termopoli V, Cai Y, Zheng F, Zhan CG, Landry DW, Magnani M. Efficient Cocaine Degradation by Cocaine Esterase-Loaded Red Blood Cells. Front Physiol 2020; 11:573492. [PMID: 33013487 PMCID: PMC7511699 DOI: 10.3389/fphys.2020.573492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
Recombinant bacterial cocaine esterase (CocE) represents a potential protein therapeutic for cocaine use disorder treatment. Unfortunately, the native enzyme was highly unstable and the corresponding mutagenized derivatives, RBP-8000 and E196-301, although improving in vitro thermo-stability and in vivo half-life, were a partial solution to the problem. For cocaine use disorder treatment, an efficient cocaine-metabolizing enzyme with a longer residence time in circulation would be needed. We investigated in vitro the possibility of developing red blood cells (RBCs) loaded with RBP-8000 and E196-301 as a biocompatible system to metabolize cocaine for a longer period of time. RBP 8000 stability within human RBCs is limited (approximately 50% residual activity after 1 h at 37°C) and not different as for the free enzyme, while both free and encapsulated E196-301 showed a greater thermo-stability. By reducing cellular glutathione content during the loading procedure, in order to preserve the disulfide bonds opportunely created to stabilize the enzyme dimer structure, it was possible to produce an encapsulated protein maintaining 100% stability at least after 4 h at 37°C. Moreover, E196-301-loaded RBCs were efficiently able to degrade cocaine in a time- and concentration-dependent manner. The same stability results were obtained when murine RBCs were used paving the way to preclinical investigations. Thus, our in vitro data show that E196-301-loaded RBCs could act as efficient bioreactors in degrading cocaine to non-toxic metabolites to be possibly considered in substance-use disorder treatments. This approach should now be investigated in a preclinical model of cocaine use disorder to evaluate if further protein modifications are needed to further improve long term enzyme stability.
Collapse
Affiliation(s)
- Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.,EryDel S.p.A., Milan, Italy
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | | | - Noemi Bigini
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Veronica Termopoli
- Department of Pure and Applied Sciences, University of Urbino, Urbino, Italy
| | - Yingting Cai
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, Lexington, KY, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, United States
| | - Donald W Landry
- Department of Medicine, Columbia University, New York, NY, United States
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.,EryDel S.p.A., Milan, Italy
| |
Collapse
|
14
|
Masterson CH, McCarthy SD, O'Toole D, Laffey JG. The role of cells and their products in respiratory drug delivery: the past, present, and future. Expert Opin Drug Deliv 2020; 17:1689-1702. [PMID: 32842784 DOI: 10.1080/17425247.2020.1814732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Cell-based delivery systems offer considerable promise as novel and innovative therapeutics to target the respiratory system. These systems consist of cells and/or their extracellular vesicles that deliver their contents, such as anti-microbial peptides, micro RNAs, and even mitochondria to the lung, exerting direct therapeutic effects. AREAS COVERED The purpose of this article is to critically review the status of cell-based therapies in the delivery of therapeutics to the lung, evaluate current progress, and elucidate key challenges to the further development of these novel approaches. An overview as to how these cells and/or their products may be modified to enhance efficacy is given. More complex delivery cell-based systems, including cells or vesicles that are genetically modified to (over)express specific therapeutic products, such as proteins and therapeutic nucleic acids are also discussed. Focus is given to the use of the aerosol route to deliver these products directly into the lung. EXPERT OPINION The use of biological carriers to deliver chemical or biological agents demonstrates great potential in modern medicine. The next generation of drug delivery systems may comprise 'cell-inspired' drug carriers that are entirely synthetic, developed using insights from cell-based therapeutics to overcome limitations of current generation synthetic carriers.
Collapse
Affiliation(s)
- Claire H Masterson
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - Sean D McCarthy
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - Daniel O'Toole
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland
| | - John G Laffey
- Anaesthesia, School of Medicine, Clinical Sciences Institute, National University of Ireland , Galway, Ireland.,Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway , Galway, Ireland.,Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group , Galway, Ireland
| |
Collapse
|
15
|
Glassman PM, Villa CH, Ukidve A, Zhao Z, Smith P, Mitragotri S, Russell AJ, Brenner JS, Muzykantov VR. Vascular Drug Delivery Using Carrier Red Blood Cells: Focus on RBC Surface Loading and Pharmacokinetics. Pharmaceutics 2020; 12:E440. [PMID: 32397513 PMCID: PMC7284780 DOI: 10.3390/pharmaceutics12050440] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 01/26/2023] Open
Abstract
Red blood cells (RBC) have great potential as drug delivery systems, capable of producing unprecedented changes in pharmacokinetics, pharmacodynamics, and immunogenicity. Despite this great potential and nearly 50 years of research, it is only recently that RBC-mediated drug delivery has begun to move out of the academic lab and into industrial drug development. RBC loading with drugs can be performed in several ways-either via encapsulation within the RBC or surface coupling, and either ex vivo or in vivo-depending on the intended application. In this review, we briefly summarize currently used technologies for RBC loading/coupling with an eye on how pharmacokinetics is impacted. Additionally, we provide a detailed description of key ADME (absorption, distribution, metabolism, elimination) changes that would be expected for RBC-associated drugs and address unique features of RBC pharmacokinetics. As thorough understanding of pharmacokinetics is critical in successful translation to the clinic, we expect that this review will provide a jumping off point for further investigations into this area.
Collapse
Affiliation(s)
- Patrick M. Glassman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| | - Carlos H. Villa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| | - Anvay Ukidve
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Zongmin Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Paige Smith
- Disruptive Health Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (P.S.); (A.J.R.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (A.U.); (Z.Z.); (S.M.)
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Alan J. Russell
- Disruptive Health Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA; (P.S.); (A.J.R.)
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jacob S. Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R. Muzykantov
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA; (C.H.V.); (J.S.B.)
| |
Collapse
|
16
|
Koleva L, Bovt E, Ataullakhanov F, Sinauridze E. Erythrocytes as Carriers: From Drug Delivery to Biosensors. Pharmaceutics 2020; 12:E276. [PMID: 32197542 PMCID: PMC7151026 DOI: 10.3390/pharmaceutics12030276] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022] Open
Abstract
Drug delivery using natural biological carriers, especially erythrocytes, is a rapidly developing field. Such erythrocytes can act as carriers that prolong the drug's action due to its gradual release from the carrier; as bioreactors with encapsulated enzymes performing the necessary reactions, while remaining inaccessible to the immune system and plasma proteases; or as a tool for targeted drug delivery to target organs, primarily to cells of the reticuloendothelial system, liver and spleen. To date, erythrocytes have been studied as carriers for a wide range of drugs, such as enzymes, antibiotics, anti-inflammatory, antiviral drugs, etc., and for diagnostic purposes (e.g. magnetic resonance imaging). The review focuses only on drugs loaded inside erythrocytes, defines the main lines of research for erythrocytes with bioactive substances, as well as the advantages and limitations of their application. Particular attention is paid to in vivo studies, opening-up the potential for the clinical use of drugs encapsulated into erythrocytes.
Collapse
Affiliation(s)
- Larisa Koleva
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Elizaveta Bovt
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| | - Fazoil Ataullakhanov
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Elena Sinauridze
- Laboratory of Biophysics, Dmitriy Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Ministry of Healthcare of Russian Federation, Samory Mashela str., 1, GSP-7, Moscow 117198, Russia; (E.B.); (F.A.)
- Laboratory of Physiology and Biophysics of the Cell, Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Srednyaya Kalitnikovskaya, 30, Moscow 109029, Russia
| |
Collapse
|
17
|
Coker SA, Szczepiorkowski ZM, Siegel AH, Ferrari A, Mambrini G, Anand R, Hartman RD, Benatti L, Dumont LJ. A Study of the Pharmacokinetic Properties and the In Vivo Kinetics of Erythrocytes Loaded With Dexamethasone Sodium Phosphate in Healthy Volunteers. Transfus Med Rev 2018; 32:102-110. [DOI: 10.1016/j.tmrv.2017.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/24/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
18
|
Zaki-Dizaji M, Akrami SM, Azizi G, Abolhassani H, Aghamohammadi A. Inflammation, a significant player of Ataxia-Telangiectasia pathogenesis? Inflamm Res 2018; 67:559-570. [PMID: 29582093 DOI: 10.1007/s00011-018-1142-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/03/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Ataxia-Telangiectasia (A-T) syndrome is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, chromosome instability, radiosensitivity, and predisposition to malignancy. There is growing evidence that A-T patients suffer from pathologic inflammation that is responsible for many symptoms of this syndrome, including neurodegeneration, autoimmunity, cardiovascular disease, accelerated aging, and insulin resistance. In addition, epidemiological studies have shown A-T heterozygotes, somewhat like deficient patients, are susceptible to ionizing irradiation and have a higher risk of cancers and metabolic disorders. AREA COVERED This review summarizes clinical and molecular findings of inflammation in A-T syndrome. CONCLUSION Ataxia-Telangiectasia Mutated (ATM), a master regulator of the DNA damage response is the protein known to be associated with A-T and has a complex nuclear and cytoplasmic role. Loss of ATM function may induce immune deregulation and systemic inflammation.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
| |
Collapse
|
19
|
Tzounakas VL, Karadimas DG, Papassideri IS, Seghatchian J, Antonelou MH. Erythrocyte-based drug delivery in Transfusion Medicine: Wandering questions seeking answers. Transfus Apher Sci 2017; 56:626-634. [DOI: 10.1016/j.transci.2017.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
In vivo effects of dexamethasone on blood gene expression in ataxia telangiectasia. Mol Cell Biochem 2017; 438:153-166. [DOI: 10.1007/s11010-017-3122-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/15/2017] [Indexed: 12/21/2022]
|
21
|
Menotta M, Biagiotti S, Spapperi C, Orazi S, Rossi L, Chessa L, Leuzzi V, D'Agnano D, Soresina A, Micheli R, Magnani M. ATM splicing variants as biomarkers for low dose dexamethasone treatment of A-T. Orphanet J Rare Dis 2017; 12:126. [PMID: 28679388 PMCID: PMC5498894 DOI: 10.1186/s13023-017-0669-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
Background Ataxia Telangiectasia (AT) is a rare incurable genetic disease, caused by biallelic mutations in the Ataxia Telangiectasia-Mutated (ATM) gene. Treatment with glucocorticoid analogues has been shown to improve the neurological symptoms that characterize this syndrome. Nevertheless, the molecular mechanism underlying the glucocorticoid action in AT patients is not yet understood. Recently, we have demonstrated that Dexamethasone treatment may partly restore ATM activity in AT lymphoblastoid cells by a new ATM transcript, namely ATMdexa1. Results In the present study, the new ATMdexa1 transcript was also identified in vivo, specifically in the PMBCs of AT patients treated with intra-erythrocyte Dexamethasone (EryDex). In these patients it was also possible to isolate new “ATMdexa1 variants” originating from canonical and non-canonical splicing, each containing the coding sequence for the ATM kinase domain. The expression of the ATMdexa1 transcript family was directly related to treatment and higher expression levels of the transcript in patients’ blood correlated with a positive response to Dexamethasone therapy. Neither untreated AT patients nor untreated healthy volunteers possessed detectable levels of the transcripts. ATMdexa1 transcript expression was found to be elevated 8 days after the drug infusion, while it decreased 21 days after treatment. Conclusions For the first time, the expression of ATM splicing variants, similar to those previously observed in vitro, has been found in the PBMCs of patients treated with EryDex. These findings show a correlation between the expression of ATMdexa1 transcripts and the clinical response to low dose dexamethasone administration. Electronic supplementary material The online version of this article (doi:10.1186/s13023-017-0669-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michele Menotta
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61029, Urbino, PU, Italy.
| | - Sara Biagiotti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61029, Urbino, PU, Italy
| | - Chiara Spapperi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61029, Urbino, PU, Italy
| | - Sara Orazi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61029, Urbino, PU, Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61029, Urbino, PU, Italy
| | - Luciana Chessa
- Department of Clinical and Molecular Medicine, University "La Sapienza", 00198, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Pediatrics and Child Neurology and Psychiatry, University "La Sapienza", Rome, Italy
| | - Daniela D'Agnano
- Department of Pediatrics and Child Neurology and Psychiatry, University "La Sapienza", Rome, Italy
| | - Annarosa Soresina
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute of Molecular Medicine "A. Nocivelli", Unit of Child Neurology and Psychiatry Spedali Civili and University of Brescia, Brescia, Italy
| | - Roberto Micheli
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute of Molecular Medicine "A. Nocivelli", Unit of Child Neurology and Psychiatry Spedali Civili and University of Brescia, Brescia, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61029, Urbino, PU, Italy
| |
Collapse
|
22
|
Parayath NN, Amiji MM. Therapeutic targeting strategies using endogenous cells and proteins. J Control Release 2017; 258:81-94. [DOI: 10.1016/j.jconrel.2017.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 01/14/2023]
|
23
|
Pierigè F, Bigini N, Rossi L, Magnani M. Reengineering red blood cells for cellular therapeutics and diagnostics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9. [DOI: 10.1002/wnan.1454] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Francesca Pierigè
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| | - Noemi Bigini
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| | - Luigia Rossi
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences; University of Urbino Carlo Bo; Urbino Italy
| |
Collapse
|
24
|
Mambrini G, Mandolini M, Rossi L, Pierigè F, Capogrossi G, Salvati P, Serafini S, Benatti L, Magnani M. Ex vivo encapsulation of dexamethasone sodium phosphate into human autologous erythrocytes using fully automated biomedical equipment. Int J Pharm 2016; 517:175-184. [PMID: 27939571 DOI: 10.1016/j.ijpharm.2016.12.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/14/2016] [Accepted: 12/05/2016] [Indexed: 02/01/2023]
Abstract
Erythrocyte-based drug delivery systems are emerging as potential new solutions for the release of drugs into the bloodstream. The aim of the present work was to assess the performance of a fully automated process (EDS) for the ex-vivo encapsulation of the pro-drug dexamethasone sodium phosphate (DSP) into autologous erythrocytes in compliance with regulatory requirements. The loading method was based on reversible hypotonic hemolysis, which allows the opening of transient pores in the cell membrane to be crossed by DSP. The efficiency of encapsulation and the biochemical and physiological characteristics of the processed erythrocytes were investigated in blood samples from 34 healthy donors. It was found that the processed erythrocytes maintained their fundamental properties and the encapsulation process was reproducible. The EDS under study showed greater loading efficiency and reduced variability compared to previous EDS versions. Notably, these results were confirmed using blood samples from Ataxia Telangiectasia (AT) patients, 9.33±1.40 and 19.41±2.10mg of DSP (mean±SD, n=134) by using 62.5 and 125mg DSP loading quantities, respectively. These results support the use of the new EDS version 3.2.0 to investigate the effect of erythrocyte-delivered dexamethasone in regulatory trials in patients with AT.
Collapse
Affiliation(s)
| | | | - Luigia Rossi
- EryDel SpA, via Sasso 36, 61029, Urbino (PU), Italy; Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029, Urbino (PU), Italy.
| | - Francesca Pierigè
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029, Urbino (PU), Italy.
| | | | | | | | - Luca Benatti
- EryDel SpA, via Sasso 36, 61029, Urbino (PU), Italy.
| | - Mauro Magnani
- EryDel SpA, via Sasso 36, 61029, Urbino (PU), Italy; Department of Biomolecular Sciences, University of Urbino "Carlo Bo", via Saffi 2, 61029, Urbino (PU), Italy.
| |
Collapse
|
25
|
Rossi L, Pierigè F, Antonelli A, Bigini N, Gabucci C, Peiretti E, Magnani M. Engineering erythrocytes for the modulation of drugs' and contrasting agents' pharmacokinetics and biodistribution. Adv Drug Deliv Rev 2016; 106:73-87. [PMID: 27189231 DOI: 10.1016/j.addr.2016.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/29/2016] [Accepted: 05/09/2016] [Indexed: 01/14/2023]
Abstract
Pharmacokinetics, biodistribution, and biological activity are key parameters that determine the success or failure of therapeutics. Many developments intended to improve their in vivo performance, aim at modulating concentration, biodistribution, and targeting to tissues, cells or subcellular compartments. Erythrocyte-based drug delivery systems are especially efficient in maintaining active drugs in circulation, in releasing them for several weeks or in targeting drugs to selected cells. Erythrocytes can also be easily processed to entrap the desired pharmaceutical ingredients before re-infusion into the same or matched donors. These carriers are totally biocompatible, have a large capacity and could accommodate traditional chemical entities (glucocorticoids, immunossuppresants, etc.), biologics (proteins) and/or contrasting agents (dyes, nanoparticles). Carrier erythrocytes have been evaluated in thousands of infusions in humans proving treatment safety and efficacy, hence gaining interest in the management of complex pathologies (particularly in chronic treatments and when side-effects become serious issues) and in new diagnostic approaches.
Collapse
|
26
|
Drvenica IT, Bukara KM, Ilić VL, Mišić DM, Vasić BZ, Gajić RB, Đorđević VB, Veljović ĐN, Belić A, Bugarski BM. Biomembranes from slaughterhouse blood erythrocytes as prolonged release systems for dexamethasone sodium phosphate. Biotechnol Prog 2016; 32:1046-55. [PMID: 27254304 DOI: 10.1002/btpr.2304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 02/02/2016] [Indexed: 01/04/2023]
Abstract
The present study investigated preparation of bovine and porcine erythrocyte membranes from slaughterhouse blood as bio-derived materials for delivery of dexamethasone-sodium phosphate (DexP). The obtained biomembranes, i.e., ghosts were characterized in vitro in terms of morphological properties, loading parameters, and release behavior. For the last two, an UHPLC/-HESI-MS/MS based analytical procedure for absolute drug identification and quantification was developed. The results revealed that loading of DexP into both type of ghosts was directly proportional to the increase of drug concentration in the incubation medium, while incubation at 37°C had statistically significant effect on loaded amount of DexP (P < 0.05). The encapsulation efficiency was about fivefold higher in porcine compared to bovine ghosts. Insight into ghosts' surface morphology by field emission-scanning electron microscopy and atomic force microscopy confirmed that besides inevitable effects of osmosis, DexP inclusion itself had no observable additional effect on the morphology of the ghosts carriers. DexP release profiles were dependent on erythrocyte ghost type and amount of residual hemoglobin. However, sustained DexP release was achieved and shown over 3 days from porcine ghosts and 5 days from bovine erythrocyte ghosts. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1046-1055, 2016.
Collapse
Affiliation(s)
- Ivana T Drvenica
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Katarina M Bukara
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Vesna Lj Ilić
- Inst. for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Danijela M Mišić
- Inst. for Biological Research "Siniša Stanković,", University of Belgrade, Belgrade, Serbia
| | | | - Radoš B Gajić
- Inst. of Physics, University of Belgrade, Belgrade, Serbia
| | - Verica B Đorđević
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Đorđe N Veljović
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Branko M Bugarski
- Dept. of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
27
|
Xu P, Wang R, Wang X, Ouyang J. Recent advancements in erythrocytes, platelets, and albumin as delivery systems. Onco Targets Ther 2016; 9:2873-84. [PMID: 27274282 PMCID: PMC4876107 DOI: 10.2147/ott.s104691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few years, nanomaterial-based drug delivery systems have been applied to enhance the efficacy of therapeutics and to alleviate negative effects through the controlled delivery of targeting and releasing agents. However, few drug carriers can achieve high targeting efficacy, even when targeting modalities and surface markers are introduced. Immunological problems have also limited their wide applications. Biological drug delivery systems, such as erythrocytes, platelets, and albumin, have been extensively investigated because of their unique properties. In this review, erythrocytes, platelets, and albumin are described as efficient drug delivery systems. Their properties, applications, advantages, and limitations in disease treatment are explained. This review confirms that these systems can be used to facilitate a specific, biocompatible, and smart drug delivery.
Collapse
Affiliation(s)
- Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ruju Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China; Medical School, Southeast University, Nanjing, People's Republic of China
| | - Xiaohui Wang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| | - Jian Ouyang
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People's Republic of China
| |
Collapse
|
28
|
Bourgeaux V, Lanao JM, Bax BE, Godfrin Y. Drug-loaded erythrocytes: on the road toward marketing approval. Drug Des Devel Ther 2016; 10:665-676. [PMID: 26929599 PMCID: PMC4755692 DOI: 10.2147/dddt.s96470] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Erythrocyte drug encapsulation is one of the most promising therapeutic alternative approaches for the administration of toxic or rapidly cleared drugs. Drug-loaded erythrocytes can operate through one of the three main mechanisms of action: extension of circulation half-life (bioreactor), slow drug release, or specific organ targeting. Although the clinical development of erythrocyte carriers is confronted with regulatory and development process challenges, industrial development is expanding. The manufacture of this type of product can be either centralized or bedside based, and different procedures are employed for the encapsulation of therapeutic agents. The major challenges for successful industrialization include production scalability, process validation, and quality control of the released therapeutic agents. Advantages and drawbacks of the different manufacturing processes as well as success key points of clinical development are discussed. Several entrapment technologies based on osmotic methods have been industrialized. Companies have already achieved many of the critical clinical stages, thus providing the opportunity in the future to cover a wide range of diseases for which effective therapies are not currently available.
Collapse
Affiliation(s)
| | - José M Lanao
- Department of Pharmacy and Pharmaceutical Technology, University of Salamanca, Salamanca, Spain
| | - Bridget E Bax
- Cardiovascular and Cell Sciences Research Institute, St George’s University of London, London, UK
| | | |
Collapse
|
29
|
Hussain R, Shahror R, Karpati F, Roomans GM. Glucocorticoids can affectPseudomonas aeruginosa(ATCC 27853) internalization and intracellular calcium concentration in cystic fibrosis bronchial epithelial cells. Exp Lung Res 2015; 41:383-92. [DOI: 10.3109/01902148.2015.1046199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Atukorale PU, Yang YS, Bekdemir A, Carney RP, Silva PJ, Watson N, Stellacci F, Irvine DJ. Influence of the glycocalyx and plasma membrane composition on amphiphilic gold nanoparticle association with erythrocytes. NANOSCALE 2015; 7:11420-32. [PMID: 26077112 PMCID: PMC6309694 DOI: 10.1039/c5nr01355k] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Erythrocytes are attractive as potential cell-based drug carriers because of their abundance and long lifespan in vivo. Existing methods for loading drug cargos into erythrocytes include hypotonic treatments, electroporation, and covalent attachment onto the membrane, all of which require ex vivo manipulation. Here, we characterized the properties of amphiphilic gold nanoparticles (amph-AuNPs), comprised of a ∼2.3 nm gold core and an amphiphilic ligand shell, which are able to embed spontaneously within erythrocyte membranes and might provide a means to load drugs into red blood cells (RBCs) directly in vivo. Particle interaction with RBC membranes occurred rapidly at physiological temperature. We further show that amph-AuNP uptake by RBCs was limited by the glycocalyx and was particularly influenced by sialic acids on cell surface proteoglycans. Using a reductionist model membrane system with synthetic lipid vesicles, we confirmed the importance of membrane fluidity and the glycocalyx in regulating amph-AuNP/membrane interactions. These results thus provide evidence for the interaction of amph-AuNPs with erythrocyte membranes and identify key membrane components that govern this interaction, providing a framework for the development of amph-AuNP-carrying erythrocyte 'pharmacytes' in vivo.
Collapse
Affiliation(s)
- Prabhani U Atukorale
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Naeem S, Kiew LV, Chung LY, Fui KS, Misran MB. A Comparative Approach for the Preparation and Physicochemical Characterization of Lecithin Liposomes Using Chloroform and Non-Halogenated Solvents. J SURFACTANTS DETERG 2015. [DOI: 10.1007/s11743-015-1689-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
32
|
Liu Z, Borlak J, Tong W. Deciphering miRNA transcription factor feed-forward loops to identify drug repurposing candidates for cystic fibrosis. Genome Med 2014; 6:94. [PMID: 25484921 PMCID: PMC4256829 DOI: 10.1186/s13073-014-0094-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/23/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is a fatal genetic disorder caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that primarily affects the lungs and the digestive system, and the current drug treatment is mainly able to alleviate symptoms. To improve disease management for CF, we considered the repurposing of approved drugs and hypothesized that specific microRNA (miRNA) transcription factors (TF) gene networks can be used to generate feed-forward loops (FFLs), thus providing treatment opportunities on the basis of disease specific FFLs. METHODS Comprehensive database searches revealed significantly enriched TFs and miRNAs in CF and CFTR gene networks. The target genes were validated using ChIPBase and by employing a consensus approach of diverse algorithms to predict miRNA gene targets. STRING analysis confirmed protein-protein interactions (PPIs) among network partners and motif searches defined composite FFLs. Using information extracted from SM2miR and Pharmaco-miR, an in silico drug repurposing pipeline was established based on the regulation of miRNA/TFs in CF/CFTR networks. RESULTS In human airway epithelium, a total of 15 composite FFLs were constructed based on CFTR specific miRNA/TF gene networks. Importantly, nine of them were confirmed in patient samples and CF epithelial cells lines, and STRING PPI analysis provided evidence that the targets interacted with each other. Functional analysis revealed that ubiquitin-mediated proteolysis and protein processing in the endoplasmic reticulum dominate the composite FFLs, whose major functions are folding, sorting, and degradation. Given that the mutated CFTR gene disrupts the function of the chloride channel, the constructed FFLs address mechanistic aspects of the disease and, among 48 repurposing drug candidates, 26 were confirmed with literature reports and/or existing clinical trials relevant to the treatment of CF patients. CONCLUSION The construction of FFLs identified promising drug repurposing candidates for CF and the developed strategy may be applied to other diseases as well.
Collapse
Affiliation(s)
- Zhichao Liu
- />Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 USA
| | - Jürgen Borlak
- />Centre for Pharmacology and Toxicology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Weida Tong
- />Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079 USA
| |
Collapse
|
33
|
Rossi L, Pierigè F, Carducci C, Gabucci C, Pascucci T, Canonico B, Bell SM, Fitzpatrick PA, Leuzzi V, Magnani M. Erythrocyte-mediated delivery of phenylalanine ammonia lyase for the treatment of phenylketonuria in BTBR-Pahenu2 mice. J Control Release 2014; 194:37-44. [DOI: 10.1016/j.jconrel.2014.08.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 11/29/2022]
|
34
|
Kostić IT, Ilić VL, Đorđević VB, Bukara KM, Mojsilović SB, Nedović VA, Bugarski DS, Veljović ĐN, Mišić DM, Bugarski BM. Erythrocyte membranes from slaughterhouse blood as potential drug vehicles: Isolation by gradual hypotonic hemolysis and biochemical and morphological characterization. Colloids Surf B Biointerfaces 2014; 122:250-259. [DOI: 10.1016/j.colsurfb.2014.06.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/17/2014] [Accepted: 06/22/2014] [Indexed: 11/30/2022]
|
35
|
|
36
|
Palma L, Amatori S, Cruz Chamorro I, Fanelli M, Magnani M. Promoter-specific relevance of histone modifications induced by dexamethasone during the regulation of pro-inflammatory mediators. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:571-8. [PMID: 24844181 DOI: 10.1016/j.bbagrm.2014.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 01/05/2023]
Abstract
Glucocorticosteroids (GCs) are widely used to treat different kinds of chronic inflammatory and immune diseases through transcriptional regulation of inflammatory genes. Modulation of gene expression by GCs is known to occur through diverse mechanisms of varying relevance to specific classes of genes. Epigenetic modifications are indeed a pivotal regulatory feature of glucocorticoid receptor and other transcription factors. In this study, histone post-translational modifications were investigated for their involvement in the regulation of selected pro-inflammatory genes - expressed in human monocyte-derived macrophages - in response to treatment with synthetic GC dexamethasone (DEX). We show that histone tail acetylation status is modified following DEX administration, through distinct and alternative mechanisms at the promoters of interleukin-8 and interleukin-23. In addition to histone H3 acetylation, our results demonstrate that H3 lysine 4 trimethylation is affected following drug treatment.
Collapse
Affiliation(s)
- Linda Palma
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Sezione di Biochimica e Biologia Molecolare "G. Fornaini", Via A. Saffi 2, 61029 Urbino, PU, Italy.
| | - Stefano Amatori
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Sezione di Biotecnologie, Laboratorio di Patologia Molecolare "M. PaoLa", Via Arco d'Augusto 2, 61032 Fano, PU, Italy
| | - Ivan Cruz Chamorro
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Sezione di Biochimica e Biologia Molecolare "G. Fornaini", Via A. Saffi 2, 61029 Urbino, PU, Italy
| | - Mirco Fanelli
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Sezione di Biotecnologie, Laboratorio di Patologia Molecolare "M. PaoLa", Via Arco d'Augusto 2, 61032 Fano, PU, Italy
| | - Mauro Magnani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Sezione di Biochimica e Biologia Molecolare "G. Fornaini", Via A. Saffi 2, 61029 Urbino, PU, Italy
| |
Collapse
|
37
|
Bomberger JM, Coutermarsh BA, Barnaby RL, Sato JD, Chapline MC, Stanton BA. Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval. PLoS One 2014; 9:e89599. [PMID: 24586903 PMCID: PMC3931797 DOI: 10.1371/journal.pone.0089599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 01/23/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chloride (Cl) secretion by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) located in the apical membrane of respiratory epithelial cells plays a critical role in maintenance of the airway surface liquid and mucociliary clearance of pathogens. Previously, we and others have shown that the serum and glucocorticoid-inducible kinase-1 (SGK1) increases wild type CFTR (wt-CFTR) mediated Cl transport in Xenopus oocytes by increasing the amount of wt-CFTR protein in the plasma membrane. However, the effect of SGK1 on the membrane abundance of wt-CFTR in airway epithelial cells has not been examined, and the mechanism whereby SGK1 increases membrane wt-CFTR has also not been examined. Thus, the goal of this study was to elucidate the mechanism whereby SGK1 regulates the membrane abundance of wt-CFTR in human airway epithelial cells. METHODS AND RESULTS We report that elevated levels of SGK1, induced by dexamethasone, increase plasma membrane abundance of wt-CFTR. Reduction of SGK1 expression by siRNA (siSGK1) and inhibition of SGK1 activity by the SGK inhibitor GSK 650394 abrogated the ability of dexamethasone to increase plasma membrane wt-CFTR. Overexpression of a constitutively active SGK1 (SGK1-S422D) increased plasma membrane abundance of wt-CFTR. To understand the mechanism whereby SGK1 increased plasma membrane wt-CFTR, we examined the effects of siSGK1 and SGK1-S442D on the endocytic retrieval of wt-CFTR. While siSGK1 increased wt-CFTR endocytosis, SGK1-S442D inhibited CFTR endocytosis. Neither siSGK1 nor SGK1-S442D altered the recycling of endocytosed wt-CFTR back to the plasma membrane. By contrast, SGK1 increased the endocytosis of the epidermal growth factor receptor (EGFR). CONCLUSION This study demonstrates for the first time that SGK1 selectively increases wt-CFTR in the plasma membrane of human airway epithelia cells by inhibiting its endocytic retrieval from the membrane.
Collapse
Affiliation(s)
- Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bonita A. Coutermarsh
- Department of Microbiology and Immunology and of Physiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Roxanna L. Barnaby
- Department of Microbiology and Immunology and of Physiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - J. Denry Sato
- Mt. Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - M. Christine Chapline
- Mt. Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Bruce A. Stanton
- Department of Microbiology and Immunology and of Physiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Mt. Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
- * E-mail:
| |
Collapse
|
38
|
|
39
|
Zarrin A, Foroozesh M, Hamidi M. Carrier erythrocytes: recent advances, present status, current trends and future horizons. Expert Opin Drug Deliv 2014; 11:433-47. [PMID: 24456118 DOI: 10.1517/17425247.2014.880422] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Carrier erythrocytes, thanks to their main advantages, including biocompatibility, biodegradability, immunocompatibility, simple and well-known structure and physiology, availability for sampling and versatility in loading and use, have been studied as cellular carriers for delivery of drugs and other bioactive agents for more than three decades. Based on this body of knowledge and recent advances in this field, and with the help of novel multidisciplinary sciences and technologies, it seems that this field is becoming renowned and experiencing an outstanding turning point in its developmental history. AREAS COVERED In this trendy and timely review, following a short historical review of the story of erythrocytes from oxygen delivery to drug delivery and evaluation of the present status of these biocarriers, recent advances and current experimental, technological and clinical trends, as well as future horizons, and, in particular, translation-prone strategies, are going to be discussed in detail. EXPERT OPINION Despite the challenging developmental history of carrier erythrocytes, they now stand closer to clinical use and market entrance due to their unique advantages in drug delivery, proven by recently reported success stories in late-stage clinical trials and progresses made in biotechnology, nanotechnology and biomaterials fields. Translation-prone approaches, like in vivo loading of circulating erythrocytes or semiautomatic loading of erythrocytes, and more realistic study designs by focusing on clinical needs that have not been responded to or erythrocyte biology/fate-inspired study design are among the main trends being focused on by pioneer research groups active in this field of drug delivery.
Collapse
Affiliation(s)
- Abdolhossein Zarrin
- Shiraz University of Medical Sciences, Medicinal and Natural Products Chemistry Research Center , Shiraz , Iran
| | | | | |
Collapse
|
40
|
Chessa L, Leuzzi V, Plebani A, Soresina A, Micheli R, D'Agnano D, Venturi T, Molinaro A, Fazzi E, Marini M, Ferremi Leali P, Quinti I, Cavaliere FM, Girelli G, Pietrogrande MC, Finocchi A, Tabolli S, Abeni D, Magnani M. Intra-erythrocyte infusion of dexamethasone reduces neurological symptoms in ataxia teleangiectasia patients: results of a phase 2 trial. Orphanet J Rare Dis 2014; 9:5. [PMID: 24405665 PMCID: PMC3904207 DOI: 10.1186/1750-1172-9-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/27/2013] [Indexed: 02/02/2023] Open
Abstract
Background Ataxia Teleangiectasia [AT] is a rare neurodegenerative disease characterized by early onset ataxia, oculocutaneous teleangiectasias, immunodeficiency, recurrent infections, radiosensitivity and proneness to cancer. No therapies are available for this devastating disease. Recent observational studies in few patients showed beneficial effects of short term treatment with betamethasone. To avoid the characteristic side effects of long-term administration of steroids we developed a method for encapsulation of dexamethasone sodium phosphate (DSP) into autologous erythrocytes (EryDex) allowing slow release of dexamethasone for up to one month after dosing. Aims of the study were: the assessment of the effect of EryDex in improving neurological symptoms and adaptive behaviour of AT patients; the safety and tolerability of the therapy. Methods Twenty two patients (F:M = 1; mean age 11.2 ± 3.5) with a confirmed diagnosis of AT and a preserved or partially supported gait were enrolled for the study. The subjects underwent for six months a monthly infusion of EryDex. Ataxia was assessed by the International Cooperative Ataxia Rating Scale (ICARS) and the adaptive behavior by Vineland Adaptive Behavior Scales (VABS). Clinical evaluations were performed at baseline and 1, 3, and 6 months. Results An improvement in ICARS (reduction of the score) was detected in the intention-to-treat (ITT) population (n = 22; p = 0.02) as well as in patients completing the study (per protocol PP) (n = 18; p = 0.01), with a mean reduction of 4 points (ITT) or 5.2 points (PP). When compared to baseline, a significant improvement were also found in VABS (increase of the score) (p < 0.0001, ITT, RMANOVA), with statistically significant increases at 3 and 6 months (p < 0.0001). A large inter-patient variability in the incorporation of DSP into erythrocytes was observed, with an evident positive effect of higher infusion dose on ICARS score decline. Moreover a more marked improvement was found in less neurologically impaired patients. Finally, a 19 month-extension study involving a subgroup of patients suggested that Erydex treatment can possibly delay the natural progression of the disease. EryDex was well tolerated; the most frequent side effects were common AT pathologies. Conclusions EryDex treatment led to a significant improvement in neurological symptoms, without association with the typical steroid side effects. Trial registration Current Controlled Trial
2010-022315-19SpA
Collapse
Affiliation(s)
| | - Vincenzo Leuzzi
- Department of Pediatrics and Child Neurology and Psychiatry, Sapienza Università di Roma, via dei Sabelli 108, 00185 Roma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bossa F, Annese V, Valvano MR, Latiano A, Martino G, Rossi L, Magnani M, Palmieri O, Serafini S, Damonte G, De Santo E, Andriulli A. Erythrocytes-mediated delivery of dexamethasone 21-phosphate in steroid-dependent ulcerative colitis: a randomized, double-blind Sham-controlled study. Inflamm Bowel Dis 2013; 19:1872-1879. [PMID: 23714676 DOI: 10.1097/mib.0b013e3182874065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Efficacy of erythrocyte-mediated delivery of dexamethasone 21-phosphate in patients with steroid-dependent ulcerative colitis. METHODS Thirty-seven patients with steroid-dependent ulcerative colitis were randomized to infusions of dexamethasone 21-phosphate encapsulated into autologous erythrocytes (n = 19) or to sham infusions (n = 18). Each infusion was given monthly for 6 months. The primary endpoint was the proportion of patients able to discontinue oral corticosteroids during treatment while maintaining clinical remission or stable disease. Secondary endpoint was the proportion of patients with disappearance of steroid-related adverse events. RESULTS At each infusion, a mean of 9.8 ± 4.6 mg dexamethasone 21-phosphate was administered at each infusion, which allowed steady-state plasma levels of 8 ng/mL for the following 28 days. Thirteen patients in the dexamethasone 21-phosphate group and 4 sham-treated patients attained the primary outcome of the study, i.e., maintaining a stable condition despite oral steroids withdrawal (P = 0.008). In the remaining patients (6 and 15 in the 2 experimental groups, respectively), the treatment was prematurely withdrawn because of clinical deterioration while tapering oral steroids. At endoscopy, mucosal healing was ascertained in 4 patients and 1 patient of the 2 experimental groups, respectively (P = 0.339). At inclusion, 14 and 13 patients in the 2 experimental groups complained of steroid-related adverse events; at end of the treatment, events were still present in 5 and 13 patients, respectively (P = 0.008). CONCLUSIONS In patients with steroid-dependent ulcerative colitis, 6-month therapy with low dose of dexamethasone 21-phosphate allowed the withdrawal of oral steroids and the reversal of steroid-related adverse events in most patients while maintaining clinical remission (ClinicalTrials.gov number, NCT01171807).
Collapse
Affiliation(s)
- Fabrizio Bossa
- Division of Gastroenterology, Casa Sollievo della Sofferenza Hospital, IRCCS, San Giovanni Rotondo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhumadilov Z. Global initiative for interdisciplinary approach to improve innovative clinical research and treatment outcomes in geriatrics: biological cell-based targeted drug delivery systems for geriatrics. Rejuvenation Res 2013; 16:212-23. [PMID: 23496161 DOI: 10.1089/rej.2013.1408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
At the intersection of the late 20(th) century and early 21(st) century, a worldwide challenge began to emerge--how can the quality of life be improved for a steadily increasing elderly population. It is well known that elderly patients show increased susceptibility to infections and a higher incidence of co-morbidity rates. Older adults frequently demonstrate pharmacokinetic and pharmacodynamic changes promoting adverse drug reactions and complications. Analysis of world literature and practical observations indicate that new approaches are required in gerontology and geriatric medicine due to recent significant advances in biomedical science. Global interdisciplinary approaches to improve medical science and medical care services for growing elderly population are indicated. This global, interdisciplinary initiative should integrate select, tangible clinical results achieved in leading research centers and universities that are applicable in the field of geriatrics and helpful to geriatricians. Among past scientific and clinically significant study results in the field of biomedicine, one must consider targeted drug delivery systems (DDS), which are designed to minimize drug side effects, increase the efficacy of drugs, and prolong and target drug interactions with particular pathological foci in sick patients. Many review articles focus on various methods of drug encapsulation and pharmacokinetics, but not on developing clinical modalities. This article attempts to further the discussion with researchers and clinicians from various fields, as well as to encourage comprehensive and elderly patient-oriented research focused on clinical implementation of DDS, especially erythrocyte-based DDS.
Collapse
|
43
|
Prota LFM, Cebotaru L, Cheng J, Wright J, Vij N, Morales MM, Guggino WB. Dexamethasone regulates CFTR expression in Calu-3 cells with the involvement of chaperones HSP70 and HSP90. PLoS One 2012; 7:e47405. [PMID: 23272037 PMCID: PMC3521767 DOI: 10.1371/journal.pone.0047405] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/12/2012] [Indexed: 12/03/2022] Open
Abstract
Background Dexamethasone is widely used for pulmonary exacerbation in patients with cystic fibrosis, however, not much is known about the effects of glucocorticoids on the wild-type cystic fibrosis channel transmembrane regulator (CFTR). Our aim was to determine the effects of dexamethasone treatment on wild-type CFTR expression. Methods and Results Dose–response (1 nM to 10 µM) and time course (3 to 48 h) curves were generated for dexamethasone for mRNA expression in Calu-3 cells using a real-time PCR. Within 24 h, dexamethasone (10 nM) showed a 0.3-fold decrease in CFTR mRNA expression, and a 3.2-fold increase in αENaC mRNA expression compared with control groups. Dexamethasone (10 nM) induced a 1.97-fold increase in the total protein of wild-type CFTR, confirmed by inhibition by mifepristone. To access surface protein expression, biotinylation followed by Western blotting showed that dexamethasone treatment led to a 2.35-fold increase in the amount of CFTR in the cell surface compared with the untreated control groups. Once protein translation was inhibited with cycloheximide, dexamethasone could not increase the amount of CFTR protein. Protein stability was assessed by inhibition of protein synthesis with cycloheximide (50 µg/ml) at different times in cells treated with dexamethasone and in untreated cells. Dexamethasone did not alter the degradation of wild-type CFTR. Assessment of the B band of CFTR within 15 min of metabolic pulse labeling showed a 1.5-fold increase in CFTR protein after treatment with dexamethasone for 24 h. Chaperone 90 (HSP90) binding to CFTR increased 1.55-fold after treatment with dexamethasone for 24 h, whereas chaperone 70 (HSP70) binding decreased 0.30 fold in an immunoprecipitation assay. Conclusion Mature wild-type CFTR protein is regulated by dexamethasone post transcription, involving cotranslational mechanisms with HSP90 and HSP70, which enhances maturation and expression of wild-type CFTR.
Collapse
Affiliation(s)
- Luiz Felipe M. Prota
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Cellular and Molecular Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Liudmila Cebotaru
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jie Cheng
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jerry Wright
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Neeraj Vij
- Department of Pediatrics and Institute of Nanobiotechnology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marcelo M. Morales
- Laboratory of Cellular and Molecular Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| | - William B. Guggino
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
44
|
Erythrocyte-mediated delivery of pravastatin: In Vitro study of effect of hypotonic lysis on biochemical parameters and loading efficiency. Arch Pharm Res 2012; 35:1431-9. [DOI: 10.1007/s12272-012-0813-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 03/10/2012] [Accepted: 03/22/2012] [Indexed: 01/28/2023]
|
45
|
Abstract
Herein recent progress in developing red blood cell (RBC)-inspired delivery systems is reviewed, with an emphasis on how our growing understanding of fundamental biological properties of natural RBCs has been applied in the design and engineering of these delivery systems. Specifically, progress achieved in developing carrier RBCs, a class of delivery vehicles engineered by directly loading natural RBCs with therapeutic agents, will be reviewed. Then alternative approaches to engineering synthetic vehicles through mimicking the mechanobiological and chemico-biological properties of natural RBCs will be considered. The synthesis and application of RBC membrane-derived vesicles, of which the natural RBC membranes are collected and directly utilized to prepare drug carriers, will then be discussed. Finally, a recent approach in engineering RBC membrane-camouflaged nanoparticle systems that combine advantages of natural RBCs and synthetic biomaterials will be highlighted. These developments indicate that RBC-inspired delivery systems will result in next-generation nanomedicine with extensive medical applications.
Collapse
Affiliation(s)
- Che-Ming J Hu
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
46
|
Abstract
Cell systems have recently emerged as biological drug carriers, as an interesting alternative to other systems such as micro- and nano-particles. Different cells, such as carrier erythrocytes, bacterial ghosts and genetically engineered stem and dendritic cells have been used. They provide sustained release and specific delivery of drugs, enzymatic systems and genetic material to certain organs and tissues. Cell systems have potential applications for the treatment of cancer, HIV, intracellular infections, cardiovascular diseases, Parkinson’s disease or in gene therapy. Carrier erythrocytes containing enzymes such us L-asparaginase, or drugs such as corticosteroids have been successfully used in humans. Bacterial ghosts have been widely used in the field of vaccines and also with drugs such as doxorubicin. Genetically engineered stem cells have been tested for cancer treatment and dendritic cells for immunotherapeutic vaccines. Although further research and more clinical trials are necessary, cell-based platforms are a promising strategy for drug delivery.
Collapse
|
47
|
Biagiotti S, Rossi L, Bianchi M, Giacomini E, Pierigè F, Serafini G, Conaldi PG, Magnani M. Immunophilin-loaded erythrocytes as a new delivery strategy for immunosuppressive drugs. J Control Release 2011; 154:306-13. [DOI: 10.1016/j.jconrel.2011.05.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 11/15/2022]
|
48
|
Biagiotti S, Paoletti MF, Fraternale A, Rossi L, Magnani M. Drug delivery by red blood cells. IUBMB Life 2011; 63:621-31. [DOI: 10.1002/iub.478] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 03/30/2011] [Indexed: 02/04/2023]
|
49
|
Fraternale A, Paoletti MF, Casabianca A, Orlandi C, Millo E, Balestra E, Damonte G, Perno CF, Magnani M. Erythrocytes as carriers of antisense PNA addressed against HIV-1 gag-pol transframe domain. J Drug Target 2010; 17:278-85. [PMID: 19255894 DOI: 10.1080/10611860902737474] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PNA(PR2) is a peptide nucleic acid (PNA) complementary to a sequence of the viral protease-encoding gene, effective in blocking HIV release, when used at high doses. Erythrocytes (RBC) were used to target PNA(PR2) to the macrophage compartment. The antiviral activity was assessed in human HIV-infected macrophages both as inhibition of p24 production and reduction of HIV DNA content. PNA(PR2), either added to the medium at a concentration of 100 microM or loaded into RBC at about 40 microM, inhibited p24 production approximately 80% compared with infected samples and reduced HIV DNA content by 83% and 90%, respectively. The results show that (1) a stronger anti-HIV effect is achievable with higher doses of PNA(PR2), both when given free and encapsulated into RBC; (2) the antiviral effect obtained by free PNA(PR2) at a concentration of 100 microM is achievable by encapsulating it into RBC at a concentration of 40 microM, suggesting that RBC can be used as a delivery system to increase the antisense effect of PNA(PR2).
Collapse
Affiliation(s)
- Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
IMPORTANCE OF THE FIELD Vascular delivery of several classes of therapeutic agents may benefit from carriage by red blood cells (RBC), for example, drugs that require delivery into phagocytic cells and those that must act within the vascular lumen. The fact that several protocols of infusion of RBC-encapsulated drugs are now being explored in patients illustrates a high biomedical importance for the field. AREAS COVERED BY THIS REVIEW: Two strategies for RBC drug delivery are discussed: encapsulation into isolated RBC ex vivo followed by infusion in compatible recipients and coupling therapeutics to the surface of RBC. Studies of pharmacokinetics and effects in animal models and in human studies of diverse therapeutic enzymes, antibiotics and other drugs encapsulated in RBC are described and critically analyzed. Coupling to RBC surface of compounds regulating immune response and complement, affinity ligands, polyethylene glycol alleviating immune response to donor RBC and fibrinolytic plasminogen activators are described. Also described is a new, translation-prone approach for RBC drug delivery by injection of therapeutics conjugated with fragments of antibodies providing safe anchoring of cargoes to circulating RBC, without need for ex vivo modification and infusion of RBC. WHAT THE READER WILL GAIN Readers will gain historical perspective, current status, challenges and perspectives of medical applications of RBC for drug delivery. TAKE HOME MESSAGE RBC represent naturally designed carriers for intravascular drug delivery, characterized by unique longevity in the bloodstream, biocompatibility and safe physiological mechanisms for metabolism. New approaches for encapsulating drugs into RBC and coupling to RBC surface provide promising avenues for safe and widely useful improvement of drug delivery in the vascular system.
Collapse
Affiliation(s)
- Vladimir R Muzykantov
- University of Pennsylvania Medical Center, Department of Pharmacology and Program in Targeted Therapeutics of Institute of Translational Medicine and Therapeutics, IFEM, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA.
| |
Collapse
|