1
|
Mohanraj L, Carter C, Liu J, Swift-Scanlan T. MicroRNA Profiles in Hematopoietic Stem Cell Transplant Recipients. Biol Res Nurs 2024; 26:559-568. [PMID: 38819871 DOI: 10.1177/10998004241257847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Background: Hematopoietic Stem Cell Transplant (HCT) is a potentially curative treatment for hematologic malignancies, including multiple myeloma. Biomarker investigation can guide identification of HCT recipients at-risk for poor outcomes. MicroRNAs (miRNAs) are a class of non-coding RNAs involved in the modulation and regulation of pathological processes and are emerging as prognostic and predictive biomarkers for multiple health conditions. This pilot study aimed to examine miRNA profiles associated with HCT-related risk factors and outcomes in patients undergoing autologous HCT. Methods: Patients eligible for autologous HCT were recruited and blood samples and HCT-related variables were collected. Differential expression analysis of miRNA was conducted on 24 patient samples to compare changes in miRNA profile in HCT eligible patients before and after transplant. Results: Unsupervised clustering of differentially expressed (p < .05) miRNAs pre- and post- HCT identified clusters of up- and down-regulated miRNAs. Four miRNAs (miR-125a-5p, miR-99b-5p, miR-382-5p, miR-145-5p) involved in hematopoiesis (differentiation of progenitor cells, granulocyte function, thrombopoiesis, and tumor suppression) were significantly downregulated post-HCT. Correlation analyses identified select miRNAs associated with risk factors (such as frailty, fatigue, cognitive decline) and quality of life pre- and post-HCT. Select miRNAs were correlated with platelet engraftment. Conclusion: Future studies should examine miRNA signatures in larger cohorts in association with HCT outcomes; and expand investigations in patients receiving allogeneic transplants. This will lead to identification of biomarkers for risk stratification of HCT recipients.
Collapse
Affiliation(s)
- Lathika Mohanraj
- Department of Adult Health and Nursing Systems, School of Nursing, Virginia Commonwealth University, Richmond, VA, USA
| | - Christiane Carter
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinze Liu
- Department of Biostatistics, School of Population Health, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
2
|
De Rosa S, Iaconetti C, Eyileten C, Yasuda M, Albanese M, Polimeni A, Sabatino J, Sorrentino S, Postula M, Indolfi C. Flow-Responsive Noncoding RNAs in the Vascular System: Basic Mechanisms for the Clinician. J Clin Med 2022; 11:jcm11020459. [PMID: 35054151 PMCID: PMC8777617 DOI: 10.3390/jcm11020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/10/2022] Open
Abstract
The vascular system is largely exposed to the effect of changing flow conditions. Vascular cells can sense flow and its changes. Flow sensing is of pivotal importance for vascular remodeling. In fact, it influences the development and progression of atherosclerosis, controls its location and has a major influx on the development of local complications. Despite its importance, the research community has traditionally paid scarce attention to studying the association between different flow conditions and vascular biology. More recently, a growing body of evidence has been accumulating, revealing that ncRNAs play a key role in the modulation of several biological processes linking flow-sensing to vascular pathophysiology. This review summarizes the most relevant evidence on ncRNAs that are directly or indirectly responsive to flow conditions to the benefit of the clinician, with a focus on the underpinning mechanisms and their potential application as disease biomarkers.
Collapse
Affiliation(s)
- Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Correspondence: (S.D.R.); (C.I.)
| | - Claudio Iaconetti
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Masakazu Yasuda
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Michele Albanese
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Alberto Polimeni
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Sabato Sorrentino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, 02-097 Warsaw, Poland; (C.E.); (M.P.)
| | - Ciro Indolfi
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (C.I.); (M.Y.); (M.A.); (A.P.); (J.S.); (S.S.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Correspondence: (S.D.R.); (C.I.)
| |
Collapse
|