1
|
Yang RY, Zongo AWS, Chen YC, Chiang MT, Zogona D, Huang CY, Yao HT. Green sweet potato leaves increase Nrf2-mediated antioxidant activity and facilitate benzo[ a]pyrene metabolism in the liver by increasing phase II detoxifying enzyme activities in rats. Food Funct 2022; 13:7548-7559. [DOI: 10.1039/d2fo01049f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Green and purple SPL consumption may enhance the Nrf2-mediated hepatic antioxidant activity and modulate xenobiotic-metabolizing enzymes and transporters via different mechanisms.
Collapse
Affiliation(s)
- Ray-Yu Yang
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| | - Abel Wend-Soo Zongo
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| | - Yu-Chen Chen
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| | - Meng-Tsan Chiang
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| | - Daniel Zogona
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| | - Chun-Yin Huang
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, 100 Jingmao Road, Taichung 406, Taiwan
| |
Collapse
|
2
|
Total phenolic extract of Euscaphis konishii hayata Pericarp attenuates carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Biomed Pharmacother 2020; 125:109932. [DOI: 10.1016/j.biopha.2020.109932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
|
3
|
Ghanem CI, Manautou JE. Modulation of Hepatic MRP3/ABCC3 by Xenobiotics and Pathophysiological Conditions: Role in Drug Pharmacokinetics. Curr Med Chem 2019; 26:1185-1223. [PMID: 29473496 DOI: 10.2174/0929867325666180221142315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Liver transporters play an important role in the pharmacokinetics and disposition of pharmaceuticals, environmental contaminants, and endogenous compounds. Among them, the family of ATP-Binding Cassette (ABC) transporters is the most important due to its role in the transport of endo- and xenobiotics. The ABCC sub-family is the largest one, consisting of 13 members that include the cystic fibrosis conductance regulator (CFTR/ABCC7); the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) and the multidrug resistanceassociated proteins (MRPs). The MRP-related proteins can collectively confer resistance to natural, synthetic drugs and their conjugated metabolites, including platinum-containing compounds, folate anti-metabolites, nucleoside and nucleotide analogs, among others. MRPs can be also catalogued into "long" (MRP1/ABCC1, -2/C2, -3/C3, -6/C6, and -7/C10) and "short" (MRP4/C4, -5/C5, -8/C11, -9/C12, and -10/C13) categories. While MRP2/ABCC2 is expressed in the canalicular pole of hepatocytes, all others are located in the basolateral membrane. In this review, we summarize information from studies examining the changes in expression and regulation of the basolateral hepatic transporter MPR3/ABCC3 by xenobiotics and during various pathophysiological conditions. We also focus, primarily, on the consequences of such changes in the pharmacokinetic, pharmacodynamic and/or toxicity of different drugs of clinical use transported by MRP3.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacologicas (ININFA), Facultad de Farmacia y Bioquimica. CONICET. Universidad de Buenos Aires, Buenos Aires, Argentina.,Catedra de Fisiopatologia. Facultad de Farmacia y Bioquimica. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jose E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Development and Application of an UHPLC-MS/MS Method for Comparative Pharmacokinetic Study of Eight Major Bioactive Components from Yin Chen Hao Tang in Normal and Acute Liver Injured Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3239785. [PMID: 30519262 PMCID: PMC6241247 DOI: 10.1155/2018/3239785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/10/2018] [Indexed: 12/12/2022]
Abstract
Yin Chen Hao Tang (YCHT) is one of the most famous hepatoprotective herbal formulas in China, but its pharmacokinetic investigation in model rats has been rarely conducted. In this study, the hepatic injury model was caused by intraperitoneal injections of carbon tetrachloride (CCl4), and YCHT was orally administered to the model and normal rats. An ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established to analyze the plasma pharmacokinetics of eight major bioactive ingredients from YCHT in both the normal and liver injured rats. The calibration curves presented good linearity (r > 0.9981) in the concentration range. The relative standard deviation (RSD%) of inter- and intraday precision was within 9.55%, and the accuracy (RE%) ranged from -10.72% to 2.46%. The extraction recovery, matrix effect, and stability were demonstrated to be within acceptable ranges. The lower limit of detection (LLOD) and lower limit of quantitation (LLOQ) were around 0.1 ng/mL and 0.5 ng/mL, respectively, which were much lower than those in other related researches. Results reveal that there are significant differences in the pharmacokinetics of scoparone, geniposide, rhein, aloe-emodin, physcion, and chrysophanol in hepatic injured rats as compared to those in control except for scopoletin and emodin. Our experimental results provide a meaningful reference for the clinical dosage of YCHT in treating liver disorders, and the improvement of LLOD and LLOQ can also broaden the range of our method's application, which is very suitable for quantitating these eight compounds with low levels.
Collapse
|
5
|
Lim CY, Kim BY, Lim SH, Cho SI. Effect of co-administration of Angelicae gigantis radix and Lithospermi radix on rat hepatic injury induced by carbon tetrachloride. Pharmacogn Mag 2015; 11:395-403. [PMID: 25829781 PMCID: PMC4378140 DOI: 10.4103/0973-1296.153095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/27/2014] [Accepted: 03/12/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Co-administration of Angelicae gigantis radix (AGR) and Lithospermi radix (LR) has been commonly applied to patients to treat cardiac and hepatic disorders. Individual bioactivities of these herbal medicines have been widely investigated, but the hepatoprotective effects of co-treatment of AGR and LR have yet to be clarified. OBJECTIVE The present study investigated the protective effects of extracts of AGR and LR on carbon tetrachloride (CCl4) induced hepatic injury. MATERIALS AND METHODS In this study, we measured the hepatoprotective activity of individual and co-treatment of the two herbal medicines on hepatic injury induced by CCl4 by measuring different biochemical parameters such as serum aspartate aminotransaminase (AST) and serum alanine aminotransaminase (ALT). Microarray technology also used to compare ontological difference with individual and co-treatment of these two. RESULTS Combined treatment with AGR and LR (AGR + LR) decreased AST and ALT level in serum which demonstrate hepatoprotective effect of the therapy. When the effect of AGR and LR according to treatment conditions was measured, co-treatment showed the most prominent effect on hepatic injury by CCl4 rather than individual treatment condition. We further defined gene set that could be the molecular target of herbal effect on hepatic injury by CCl4 using bioinformatical analysis of interaction network. Highly recovered genes by treating AGR + LR play significant roles in response to hepatic injury induced by CCl4. CONCLUSION Combined treatment with AGR and LR showed synergistic protective effects on the CCl4-induced rat hepatic tissue injury.
Collapse
Affiliation(s)
- Chi-Yeon Lim
- Department of Medicine, College of Medicine, Dongguk University, Ilsan, Republic of Korea
| | - Bu-Yeo Kim
- Department of Medical Research, Korea Institute of Oriental Medicine, Daejon 305-701, Republic of Korea
| | - Se-Hyun Lim
- Department of Nursing, School of Public Health, Far East University, Chungbuk 369-700, Republic of Korea
| | - Su-In Cho
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Busan 626-870, Republic of Korea
| |
Collapse
|
6
|
Feng L, Mao W, Zhang J, Liu X, Jiao Y, Zhao X, Wang X, Zhang D, Cai D, Wang Y. Pharmacokinetic variations of tetramethylpyrazine phosphate after oral administration in hepatic precancerous mice and its hepatoprotective effects. Drug Dev Ind Pharm 2013; 40:1-8. [DOI: 10.3109/03639045.2012.756513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Delfino R, Altissimo M, Menk RH, Alberti R, Klatka T, Frizzi T, Longoni A, Salomè M, Tromba G, Arfelli F, Clai M, Vaccari L, Lorusso V, Tiribelli C, Pascolo L. X-ray fluorescence elemental mapping and microscopy to follow hepatic disposition of a Gd-based magnetic resonance imaging contrast agent. Clin Exp Pharmacol Physiol 2011; 38:834-45. [DOI: 10.1111/j.1440-1681.2011.05618.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Taguchi K, Maruyama T, Otagiri M. Pharmacokinetic properties of hemoglobin vesicles as a substitute for red blood cells. Drug Metab Rev 2011; 43:362-73. [DOI: 10.3109/03602532.2011.558094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Alteration in the Pharmacokinetics of Hemoglobin-Vesicles in a Rat Model of Chronic Liver Cirrhosis Is Associated with Kupffer Cell Phagocyte Activity. J Pharm Sci 2011; 100:775-83. [DOI: 10.1002/jps.22286] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/07/2010] [Accepted: 06/08/2010] [Indexed: 12/18/2022]
|
10
|
HWANG YH, YUN HI. Effects of Acute Hepatic and Renal Failure on Pharmacokinetics of Flunixin Meglumine in Rats. Exp Anim 2011; 60:187-91. [DOI: 10.1538/expanim.60.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Youn-Hwan HWANG
- Institute of Veterinary Science, Chungnam National University
| | - Hyo-In YUN
- Institute of Veterinary Science, Chungnam National University
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chungnam National University
| |
Collapse
|
11
|
Taguchi K, Miyasato M, Ujihira H, Watanabe H, Kadowaki D, Sakai H, Tsuchida E, Horinouchi H, Kobayashi K, Maruyama T, Otagiri M. Hepatically-metabolized and -excreted artificial oxygen carrier, hemoglobin vesicles, can be safely used under conditions of hepatic impairment. Toxicol Appl Pharmacol 2010; 248:234-41. [DOI: 10.1016/j.taap.2010.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 07/31/2010] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
|
12
|
Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 2010; 42:482-538. [PMID: 20233023 DOI: 10.3109/03602531003654915] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | | |
Collapse
|
13
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 580] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
14
|
Ikemura K, Iwamoto T, Okuda M. Altered functions and expressions of drug transporters in liver, kidney and intestine in disorders of local and remote organs: possible role of oxidative stress in the pathogenesis. Expert Opin Drug Metab Toxicol 2009; 5:907-20. [DOI: 10.1517/17425250903008525] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Tan W, Wang B, Zhao J, Sheng L, Hu J, Li Y. Pharmacokinetics of bicyclol in rats with acute hepatic failure. Xenobiotica 2008; 38:1399-409. [PMID: 18988083 DOI: 10.1080/00498250802460733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of present study is to evaluate the pharmacokinetics of bicyclol in carbon tetrachloride (CCl(4))-intoxicated rats. The plasma concentration of bicyclol was detected in rats after a single oral or intravenous administration by high-performance liquid chromatography (HPLC) analysis. Rat intestinal and hepatic perfusion models were employed to clarify the respective effect of gut and liver on the pharmacokinetics of bicyclol in acute hepatic failure (AHF) rats. Rat in vitro microsomal incubation was also conducted. The bioavailability of bicyclol was increased 3.1-fold after CCl(4) intoxication in rats. The area under the curve (AUC)((0-infinity)), C(max), and clearance (CL) of bicyclol after intravenous administration were 13.4 mg h l(-1), 18.8 mg l(-1), and 1.8 l h(-1) kg(-1) in control rats, and 130 mg h l(-1), 33.1 mg l(-1), and 0.15 l h(-1) kg(-1) in AHF rats, respectively. In the present study we investigated the pharmacokinetics of bicyclol in CCl(4)-intoxicated rats and differentiated the respective role of intestine and liver by using in situ intestinal and hepatic perfusion in rats, and in vitro rat microsomes incubation. The studies are expected to provide a better understanding related to the alteration of pharmacokinetics of bicyclol in pathological situation.
Collapse
Affiliation(s)
- Wei Tan
- Department of New Drug Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | |
Collapse
|