1
|
Ulriksen ES, Butt HS, Ohrvik A, Blakeney RA, Kool A, Wangensteen H, Inngjerdingen M, Inngjerdingen KT. The discovery of novel immunomodulatory medicinal plants by combination of historical text reviews and immunological screening assays. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115402. [PMID: 35640738 DOI: 10.1016/j.jep.2022.115402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/12/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With the advent of immunotherapies against cancers, autoimmune diseases and infections, there is a steady demand for novel medicines. New sources for discovery of potentially novel immunomodulatory compounds are therefore needed. Nature contains a large and diverse reservoir of novel compounds that can be exploited for their potential as new drugs, and exploring the pharmaceutical potential of medicinal plants used in traditional medicine is highly relevant. AIM OF THE STUDY We aimed with this study to explore usage of medicinal plants in Scandinavian folk medicine against diseases interpreted to involve the immune system, and to further screen water extracts from previously overlooked medicinal plants in order to discover potential new sources of immunomodulatory compounds. MATERIALS AND METHODS We systematically investigated historical records dating back to the 1800s with an emphasis on plants used as treatment for wounds or diseases interpreted to be inflammatory. Of 74 candidate plants, 23 pharmacologically under-studied species were selected for further characterization. The plants were collected from their natural habitats in Southern Norway, air-dried, and subjected to boiling water and accelerated solvent extraction. The crude extracts were separated into polysaccharide-enriched fractions and C-18 solid phase extracted fractions. Immunological screenings were performed with all extracts and fractions. Monosaccharide composition and total phenolic content were determined and compared across all species. RESULTS We identified 10 species with clear immune activating effects and 8 species with immune inhibitory effects by comparing cytokine production by human peripheral blood mononuclear cells, primary human T- and NK-cell proliferation, and nitric oxide production from macrophages. CONCLUSIONS With this study, we provide a comprehensive overview of Scandinavian medicinal plants and their usage, and our findings support an approach of combining historical sources with modern pharmacology in the discovery of plant sources containing potentially new pharmacological compounds.
Collapse
Affiliation(s)
| | - Hussain Shakeel Butt
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Ane Ohrvik
- Cultural History and Museology, Department of Culture Studies and Oriental Languages, Faculty of Humanities, University of Oslo, Oslo, Norway.
| | | | - Anneleen Kool
- Natural History Museum, University of Oslo, Oslo, Norway.
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway.
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
2
|
Nie YW, Li Y, Luo L, Zhang CY, Fan W, Gu WY, Shi KR, Zhai XX, Zhu JY. Phytochemistry and Pharmacological Activities of the Diterpenoids from the Genus Daphne. Molecules 2021; 26:6598. [PMID: 34771007 PMCID: PMC8588408 DOI: 10.3390/molecules26216598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 01/08/2023] Open
Abstract
There are abundant natural diterpenoids in the plants of the genus Daphne from the Thymelaeaceae family, featuring a 5/7/6-tricyclic ring system and usually with an orthoester group. So far, a total of 135 diterpenoids has been isolated from the species of the genus Daphne, which could be further classified into three main types according to the substitution pattern of ring A and oxygen-containing functions at ring B. A variety of studies have demonstrated that these compounds exert a wide range of bioactivities both in vitro and in vivo including anticancer, anti-inflammatory, anti-HIV, antifertility, neurotrophic, and cholesterol-lowering effects, which is reviewed herein. Meanwhile, the fascinating structure-activity relationship is also concluded in this review in the hope of providing an easy access to available information for the synthesis and optimization of efficient drugs.
Collapse
Affiliation(s)
- Yi-Wen Nie
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
- Central Laboratory, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| | - Yuan Li
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
- Central Laboratory, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| | - Lan Luo
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
| | - Chun-Yan Zhang
- Central Laboratory, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| | - Wei Fan
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
| | - Wei-Ying Gu
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
| | - Kou-Rong Shi
- Department of Pharmacy, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; (Y.-W.N.); (Y.L.); (W.F.); (W.-Y.G.); (K.-R.S.)
| | - Xiao-Xiang Zhai
- Department of Dermatology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| | - Jian-Yong Zhu
- Central Laboratory, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China;
| |
Collapse
|
3
|
Tan M, Ye J, Zhao M, Ke X, Huang K, Liu H. Recent developments in the regulation of cholesterol transport by natural molecules. Phytother Res 2021; 35:5623-5633. [PMID: 34327759 DOI: 10.1002/ptr.7198] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022]
Abstract
The dysregulation of cholesterol metabolism is a high-risk factor for non-alcoholic fatty liver disease (NAFLD), dyslipidemia, and atherosclerosis (AS). Cholesterol transport maintains whole-body cholesterol homeostasis. Low-density apolipoprotein receptor (LDLR) mediates cholesterol uptake in cells and plays an important role in the primary route of circulatory cholesterol clearance in liver cells. Caveolins 1 is an integral membrane protein and shuttle between the cytoplasm and cell membrane. Caveolins 1 not only plays a role in promoting cholesterol absorption in cells but also in the transport of cellular cholesterol efflux by interacting with the ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type I (SR-BI). These proteins, which are associated with reverse cholesterol transport (RCT), are potential therapeutic targets for NAFLD and AS. Many studies have indicated that natural products have lipid-lowering effects. Moreover, natural molecules, derived from natural products, have the potential to be developed into novel drugs. However, the mechanisms underlying the regulation of cholesterol transport by natural molecules have not yet been adequately investigated. In this review, we briefly describe the process of cholesterol transport and summarize the mechanisms by which molecules regulate cholesterol transport. This article provides an overview of recent studies and focuses on the potential therapeutic effects of natural molecules; however, further high-quality studies are needed to firmly establish the clinical efficacies of natural molecules.
Collapse
Affiliation(s)
- Meiao Tan
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China.,First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jintong Ye
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Zhao
- Guangzhou Liwan District Traditional Chinese Medicine Hospital, Guangzhou, China
| | - Xuehong Ke
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Keer Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huabao Liu
- Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| |
Collapse
|
4
|
Vispute MM, Sharma D, Mandal AB, Rokade JJ, Tyagi PK, Yadav AS. Effect of dietary supplementation of hemp (Cannabis sativa) and dill seed (Anethum graveolens) on performance, serum biochemicals and gut health of broiler chickens. J Anim Physiol Anim Nutr (Berl) 2019; 103:525-533. [DOI: 10.1111/jpn.13052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/17/2018] [Accepted: 12/02/2018] [Indexed: 12/11/2022]
Affiliation(s)
| | - Divya Sharma
- ICAR-Central Avian Research Institute; Izatnagar India
| | | | | | | | - Ajit S. Yadav
- ICAR-Central Avian Research Institute; Izatnagar India
| |
Collapse
|
5
|
Süntar I, Küpeli Akkol E, Keles H, Yesilada E, Sarker SD, Arroo R, Baykal T. Efficacy of Daphne oleoides subsp. kurdica used for wound healing: identification of active compounds through bioassay guided isolation technique. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:1058-1070. [PMID: 22521733 DOI: 10.1016/j.jep.2012.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/10/2012] [Accepted: 04/03/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In Turkish traditional medicine, the aerial parts of Daphne oleoides Schreber subsp. kurdica (DOK) have been used to treat malaria, rheumatism and for wound healing. The aim was to evaluate the ethnopharmacological usage of the plant using in vivo and in vitro pharmacological experimental models, and to perform bioassay-guided fractionation of the 85% methanolic extract of DOK for the isolation and identification of active wound-healing component(s) and to elucidate possible mechanism of the wound-healing activity. MATERIALS AND METHODS In vivo wound-healing activity was evaluated by the linear incision and the circular excision wound models. Anti-inflammatory and antioxidant activities, which are known to support the wound healing process, were also assessed by the Whittle method and the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical-scavenging assays, respectively. The total phenolic content of the extract and subextracts was estimated to establish any correlation between the phenolic content and the antioxidant activity. The methanolic extract of DOK was subjected to various chromatographic separation techniques leading to the isolation and identification of the active component(s). Furthermore, in vitro hyaluronidase, collagenase and elastase enzymes inhibitory activity assays were conducted on the active components to explore the activity pathways of the remedy. RESULTS After confirmation of the wound-healing activity, the methanolic extract was subjected to successive solvent partitioning using solvents of increasing polarity creating five subextracts. Each subextract was tested on the same biological activity model and the ethyl acetate (EtOAc) subextract had the highest activity. The EtOAc subextract was subjected to further chromatographic separation for the isolation of components 1, 2 and 3. The structures of these compounds were elucidated as daphnetin (1), demethyldaphnoretin 7-O-glucoside (2) and luteolin-7-O-glucoside (3). Further in vivo testing revealed that luteolin-7-O-glucoside was responsible for the wound-healing activity of the aerial parts. It was also found to exert significant anti-inflammatory, antioxidant, anti-hyaluronidase and anti-collagenase activities. CONCLUSION The present study explored the wound-healing potential of Daphne oleoides subsp. kurdica. Through bioassay-guided fractionation and isolation techniques, luteolin-7-O-glucoside was determined as the main active component of the aerial parts. This compound exerts its activity through inhibition of hyaluronidase and collagenase enzymes activity as well as interfering with the inflammatory stage.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler 06330, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
6
|
Huang SZ, Zhang XJ, Li XY, Kong LM, Jiang HZ, Ma QY, Liu YQ, Hu JM, Zheng YT, Li Y, Zhou J, Zhao YX. Daphnane-type diterpene esters with cytotoxic and anti-HIV-1 activities from Daphne acutiloba Rehd. PHYTOCHEMISTRY 2012; 75:99-107. [PMID: 22196934 DOI: 10.1016/j.phytochem.2011.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/01/2011] [Accepted: 11/21/2011] [Indexed: 05/31/2023]
Abstract
Seven previously unreported daphnane-type diterpene esters named acutilobins A-G, together with 12 known ones, were isolated from EtOAc extract of Daphne acutiloba Rehd. Their structures were elucidated based on the spectroscopic data. The cytotoxic and anti-HIV-1 activities of these daphnane-type diterpene esters were evaluated through bioassays. Fourteen of these isolates exhibited definite cytotoxic activities against the five human tumor cell lines HL-60, SMMC-7721, A-549, MCF-7, and SW480. Additionally, anti-HIV-1 activities were observed in 13 daphnane-type diterpene esters, among which acutilobins A-G exhibited significant anti-HIV-1 activities with EC₅₀ below 1.5 nM and SI over 10,000. Particularly, genkwanineVIII showed the strongest activity with EC₅₀ 0.17 nM and SI 187,010.
Collapse
Affiliation(s)
- Sheng Zhuo Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Holstein SA, Kuder CH, Tong H, Hohl RJ. Pleiotropic effects of a schweinfurthin on isoprenoid homeostasis. Lipids 2011; 46:907-21. [PMID: 21633866 DOI: 10.1007/s11745-011-3572-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 05/12/2011] [Indexed: 11/28/2022]
Abstract
The schweinfurthins, a family of natural products derived from the isoprenoid biosynthetic pathway (IBP), have marked growth inhibitory activity. However, the biochemical basis for the schweinfurthins cellular effects has remained ill-defined. Here, the effects of the synthetic schweinfurthin, 3-deoxyschweinfurthin (3dSB) on multiple aspects of isoprenoid homeostasis are explored. Cytotoxicity assays demonstrate a synergistic interaction between 3dSB and the HMG-CoA reductase inhibitor lovastatin but not with other IBP inhibitors in a variety of human cancer cell lines. The cytotoxic effects of 3dSB were enhanced in cells incubated in lipid-depleted serum. 3dSB was found to enhance the lovastatin-induced decrease in protein prenylation. In addition, 3dSB decreases intracellular farnesyl pyrophosphate and geranylgeranyl pyrophosphate levels in both established cell lines and primary cells. To determine whether 3dSB alters the regulation of expression of genes involved in isoprenoid homeostasis, real-time PCR studies were performed in human cell lines cultured in either lipid-replete or -deplete conditions. These studies demonstrate that 3dSB abrogates lovastatin-induced upregulation of sterol regulatory element-containing genes and lovastatin-induced downregulation of ABCA1. In aggregate, these studies are the first to demonstrate that a schweinfurthin exerts pleiotropic effects on isoprenoid homeostasis.
Collapse
Affiliation(s)
- Sarah A Holstein
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
8
|
Diogo CV, Félix L, Vilela S, Burgeiro A, Barbosa IA, Carvalho MJ, Oliveira PJ, Peixoto FP. Mitochondrial toxicity of the phyotochemicals daphnetoxin and daphnoretin – Relevance for possible anti-cancer application. Toxicol In Vitro 2009; 23:772-9. [DOI: 10.1016/j.tiv.2009.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 02/03/2023]
|
9
|
Affiliation(s)
- Shang-Gao Liao
- State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China
| | - Hua-Dong Chen
- State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai, 201203, P. R. China
| |
Collapse
|