1
|
Wang T, Ulrich H, Semyanov A, Illes P, Tang Y. Optical control of purinergic signaling. Purinergic Signal 2021; 17:385-392. [PMID: 34156578 PMCID: PMC8410941 DOI: 10.1007/s11302-021-09799-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/07/2021] [Indexed: 12/29/2022] Open
Abstract
Purinergic signaling plays a pivotal role in physiological processes and pathological conditions. Over the past decades, conventional pharmacological, biochemical, and molecular biology techniques have been utilized to investigate purinergic signaling cascades. However, none of them is capable of spatially and temporally manipulating purinergic signaling cascades. Currently, optical approaches, including optopharmacology and optogenetic, enable controlling purinergic signaling with low invasiveness and high spatiotemporal precision. In this mini-review, we discuss optical approaches for controlling purinergic signaling and their applications in basic and translational science.
Collapse
Affiliation(s)
- Tao Wang
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Henning Ulrich
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Peter Illes
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany.
| | - Yong Tang
- International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China. .,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
2
|
Spiryova DV, Vorobev AY, Klimontov VV, Koroleva EA, Moskalensky AE. Optical uncaging of ADP reveals the early calcium dynamics in single, freely moving platelets. BIOMEDICAL OPTICS EXPRESS 2020; 11:3319-3330. [PMID: 32637257 PMCID: PMC7316007 DOI: 10.1364/boe.392745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Platelet activation is considered to be a cornerstone in pathogenesis of cardiovascular disease. The assessment of platelet activation at the single-cell level is a promising approach for the research of platelet function in physiological and pathological conditions. Previous studies used the immobilization of platelets on the surface, which significantly alters the activation signaling. Here we show that the use of photolabile "caged" analog of ADP allows one to track the very early stage of platelet activation in single, freely moving cells. In this approach, the diffusion step and ADP receptor ligation are separated in time, and a millisecond-timescale optical pulse may trigger the activation. The technique allows us to measure the delay (lag time) between the stimulus and calcium response in platelets. We also propose a simple model function for calcium peaks, which is in good agreement with the measured data. The proposed technique and model function can be used for in-depth studies of platelet physiology.
Collapse
Affiliation(s)
| | - Alexei Yu. Vorobev
- Novosibirsk State University, Novosibirsk, 630090, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia
| | - Vadim V. Klimontov
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630117, Russia
| | - Elena A. Koroleva
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Research Institute of Clinical and Experimental Lymphology – Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630117, Russia
| | - Alexander E. Moskalensky
- Novosibirsk State University, Novosibirsk, 630090, Russia
- Voevodsky Institute of Chemical Kinetics and Combustion SB RAS, Novosibirsk, 630090, Russia
| |
Collapse
|
4
|
Jacobson KA, Müller CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology 2015; 104:31-49. [PMID: 26686393 DOI: 10.1016/j.neuropharm.2015.12.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 12/13/2022]
Abstract
Pharmacological tool compounds are now available to define action at the adenosine (ARs), P2Y and P2X receptors. We present a selection of the most commonly used agents to study purines in the nervous system. Some of these compounds, including A1 and A3 AR agonists, P2Y1R and P2Y12R antagonists, and P2X3, P2X4 and P2X7 antagonists, are potentially of clinical use in treatment of disorders of the nervous system, such as chronic pain, neurodegeneration and brain injury. Agonists of the A2AAR and P2Y2R are already used clinically, P2Y12R antagonists are widely used antithrombotics and an antagonist of the A2AAR is approved in Japan for treating Parkinson's disease. The selectivity defined for some of the previously introduced compounds has been revised with updated pharmacological characterization, for example, various AR agonists and antagonists were deemed A1AR or A3AR selective based on human data, but species differences indicated a reduction in selectivity ratios in other species. Also, many of the P2R ligands still lack bioavailability due to charged groups or hydrolytic (either enzymatic or chemical) instability. X-ray crystallographic structures of AR and P2YRs have shifted the mode of ligand discovery to structure-based approaches rather than previous empirical approaches. The X-ray structures can be utilized either for in silico screening of chemically diverse libraries for the discovery of novel ligands or for enhancement of the properties of known ligands by chemical modification. Although X-ray structures of the zebrafish P2X4R have been reported, there is scant structural information about ligand recognition in these trimeric ion channels. In summary, there are definitive, selective agonists and antagonists for all of the ARs and some of the P2YRs; while the pharmacochemistry of P2XRs is still in nascent stages. The therapeutic potential of selectively modulating these receptors is continuing to gain interest in such fields as cancer, inflammation, pain, diabetes, ischemic protection and many other conditions. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Key Words
- 2-MeSADP, (PubChem CID: 121990)
- A-740003, (PubChem CID: 23232014)
- ATP
- Agonists
- Antagonists
- DPCPX, (PubChem CID: 1329)
- GPCR
- IB-MECA, (PubChem CID: 123683)
- Ion channel
- LUF6000, (PubChem CID: 11711282)
- MRS2500, (PubChem CID: 44448831)
- Nucleosides
- Nucleotides
- PPTN, (PubChem CID: 42611190)
- PSB-1114, (PubChem CID: 52952605)
- PSB-603, (PubChem CID: 44185871)
- SCH442416, (PubChem CID: 10668061)
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 20892, Bethesda, USA.
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Jacobson KA, Paoletta S, Katritch V, Wu B, Gao ZG, Zhao Q, Stevens RC, Kiselev E. Nucleotides Acting at P2Y Receptors: Connecting Structure and Function. Mol Pharmacol 2015; 88:220-30. [PMID: 25837834 PMCID: PMC4518082 DOI: 10.1124/mol.114.095711] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 04/02/2015] [Indexed: 12/23/2022] Open
Abstract
Eight G protein-coupled P2Y receptor (P2YR) subtypes are important physiologic mediators. The human P2YRs are fully activated by ATP (P2Y2 and P2Y11), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2 and P2Y4), UDP (P2Y6 and P2Y14), and UDP glucose (P2Y14). Their structural elucidation is progressing rapidly. The X-ray structures of three ligand complexes of the Gi-coupled P2Y12R and two of the Gq-coupled P2Y1Rs were recently determined and will be especially useful in structure-based ligand design at two P2YR subfamilies. These high-resolution structures, which display unusual binding site features, complement mutagenesis studies for probing ligand recognition and activation. The structural requirements for nucleotide agonist recognition at P2YRs are relatively permissive with respect to the length of the phosphate moiety, but less so with respect to base recognition. Nucleotide-like antagonists and partial agonists are also known for P2Y1, P2Y2, P2Y4, and P2Y12Rs. Each P2YR subtype has the ability to be activated by structurally bifunctional agonists, such as dinucleotides, typically, dinucleoside triphosphates or tetraphosphates, and nucleoside polyphosphate sugars (e.g., UDP glucose) as well as the more conventional mononucleotide agonists. A range of dinucleoside polyphosphates, from triphosphates to higher homologs, occurs naturally. Earlier modeling predictions of the P2YRs were not very accurate, but recent findings have provided much detailed structural insight into this receptor family to aid in the rational design of new drugs.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Vsevolod Katritch
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Beili Wu
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Qiang Zhao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Raymond C Stevens
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| | - Evgeny Kiselev
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland (K.A.J., S.P., Z.-G.G., E.K.); The Bridge Institute, Dana and David Dornsife School of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California (V.K., R.C.S.); and Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China (B.W., Q.Z.)
| |
Collapse
|
6
|
Gao ZG, Verzijl D, Zweemer A, Ye K, Göblyös A, Ijzerman AP, Jacobson KA. Functionally biased modulation of A(3) adenosine receptor agonist efficacy and potency by imidazoquinolinamine allosteric enhancers. Biochem Pharmacol 2011; 82:658-68. [PMID: 21718691 DOI: 10.1016/j.bcp.2011.06.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/13/2011] [Accepted: 06/13/2011] [Indexed: 10/24/2022]
Abstract
Allosteric modulators for the G(i)-coupled A(3) adenosine receptor (AR) are of considerable interest as therapeutic agents and as pharmacological tools to probe various signaling pathways. In this study, we initially characterized the effects of several imidazoquinolinamine allosteric modulators (LUF5999, LUF6000 and LUF6001) on the human A(3) AR stably expressed in CHO cells using a cyclic AMP functional assay. These modulators were found to affect efficacy and potency of the agonist Cl-IB-MECA differently. LUF5999 (2-cyclobutyl derivative) enhanced efficacy but decreased potency. LUF6000 (2-cyclohexyl derivative) enhanced efficacy without affecting potency. LUF6001 (2-H derivative) decreased both efficacy and potency. We further compared the agonist enhancing effects of LUF6000 in several other A(3) AR-mediated events. It was shown that although LUF6000 behaved somewhat differently in various signaling pathways, it was more effective in enhancing the effects of low-efficacy than of high-efficacy agonists. In an assay of cyclic AMP accumulation, LUF6000 enhanced the efficacy of all agonists examined, but in the membrane hyperpolarization assay, it only enhanced the efficacy of partial agonists. In calcium mobilization, LUF6000 did not affect the efficacy of the full agonist NECA but was able to switch the nucleoside antagonist MRS542 into a partial agonist. In translocation of β-arrestin2, the agonist-enhancing effect LUF6000 was not pronounced. In an assay of ERK1/2 phosphorylation LUF6000 did not show any effect on the efficacy of Cl-IB-MECA. The differential effects of LUF6000 on the efficacy and potency of the agonist Cl-IB-MECA in various signaling pathway were interpreted quantitatively using a mathematical model.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Pharmacochemistry of the platelet purinergic receptors. Purinergic Signal 2011; 7:305-24. [PMID: 21484092 DOI: 10.1007/s11302-011-9216-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/11/2011] [Indexed: 10/18/2022] Open
Abstract
Platelets contain at least five purinergic G protein-coupled receptors, e.g., the pro-aggregatory P2Y(1) and P2Y(12) receptors, a P2Y(14) receptor (GPR105) of unknown function, and anti-aggregatory A(2A) and A(2B) adenosine receptor (ARs), in addition to the ligand-gated P2X1 ion channel. Probing the structure-activity relationships (SARs) of the P2X and P2Y receptors for extracellular nucleotides has resulted in numerous new agonist and antagonist ligands. Selective agents derived from known ligands and novel chemotypes can be used to help define the subtypes pharmacologically. Some of these agents have entered into clinical trials in spite of the challenges of drug development for these classes of receptors. The functional architecture of P2 receptors was extensively explored using mutagenesis and molecular modeling, which are useful tools in drug discovery. In general, novel drug delivery methods, prodrug approaches, allosteric modulation, and biased agonism would be desirable to overcome side effects that tend to occur even with receptor subtype-selective ligands. Detailed SAR analyses have been constructed for nucleotide and non-nucleotide ligands at the P2Y(1), P2Y(12), and P2Y(14) receptors. The thienopyridine antithrombotic drugs Clopidogrel and Prasugrel require enzymatic pre-activation in vivo and react irreversibly with the P2Y(12) receptor. There is much pharmaceutical development activity aimed at identifying reversible P2Y(12) receptor antagonists. The screening of chemically diverse compound libraries has identified novel chemotypes that act as competitive, non-nucleotide antagonists of the P2Y(1) receptor or the P2Y(12) receptor, and antithrombotic properties of the structurally optimized analogues were demonstrated. In silico screening at the A(2A) AR has identified antagonist molecules having novel chemotypes. Fluorescent and other reporter groups incorporated into ligands can enable new technology for receptor assays and imaging. The A(2A) agonist CGS21680 and the P2Y(1) receptor antagonist MRS2500 were derivatized for covalent attachment to polyamidoamine dendrimeric carriers of MW 20,000, and the resulting multivalent conjugates inhibited ADP-promoted platelet aggregation. In conclusion, a wide range of new pharmacological tools is available to control platelet function by interacting with cell surface purine receptors.
Collapse
|
8
|
Gao ZG, Ding Y, Jacobson KA. P2Y(13) receptor is responsible for ADP-mediated degranulation in RBL-2H3 rat mast cells. Pharmacol Res 2010; 62:500-5. [PMID: 20813187 DOI: 10.1016/j.phrs.2010.08.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 01/19/2023]
Abstract
Extracellular ADP is known to play many important physiological roles. In this study, we identified the P2Y(13) receptor in a rat mast cell line (RBL-2H3) and explored the functional role of ADP, its endogenous agonist. ADP induced both intracellular calcium mobilization and release of hexosaminidase (Hex). In an assay of intracellular calcium, ADP was 100-fold less potent than and equally efficacious as the P2Y(1) receptor-selective agonist MRS2365. However, ADP was more potent and efficacious than MRS2365 in inducing Hex release and in enhancing antigen-induced Hex release. ADP-induced intracellular calcium mobilization was blocked by phospholipase C inhibitor U73122 and by P2Y(1) receptor-selective antagonist MRS2500, but not by pertussis toxin (PTX), suggesting a mechanism mediated by the G(q)-coupled P2Y(1) receptor, but not P2Y(13) (G(i)-coupled) or P2X receptors. ADP-induced Hex release was blocked by PTX and a selective P2Y(13) receptor antagonist MRS2211, but not by MRS2500 or P2Y(1) receptor-specific siRNA, suggesting a G(i)-coupled P2Y(13) receptor-related mechanism. Measurement of gene expression confirmed high expression of both P2Y(1) and P2Y(13) receptors (in comparison to a previously reported P2Y(14) receptor) in RBL-2H3 cells. Thus, we demonstrated that ADP-mediated intracellular calcium mobilization and Hex release in RBL-2H3 cells are via P2Y(1) and P2Y(13) receptors, respectively. Selective antagonists of the P2Y(13) receptor might be novel therapeutic agents for various allergic conditions.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA.
| | | | | |
Collapse
|
9
|
Cherepanov AV, Doroshenko EV, Matysik J, de Vries S, De Groot HJM. A view on phosphate ester photochemistry by time-resolved solid state NMR. Intramolecular redox reaction of caged ATP. Phys Chem Chem Phys 2008; 10:6820-8. [PMID: 19015786 DOI: 10.1039/b806677a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The light-driven intramolecular redox reaction of adenosine-5'-triphosphate-[P3-(1-(2-nitrophenyl)-ethyl)]ester (caged ATP) has been studied in frozen aqueous solution using time-resolved solid state NMR spectroscopy under continuous illumination conditions. Cleavage of the phosphate ester bond leads to 0.3, 1.36, and 6.06 ppm downfield shifts of the alpha-, beta-, and gamma-phosphorus resonances of caged ATP, respectively. The observed rate of ATP formation is 2.4 +/- 0.2 h(-1) at 245 K. The proton released in the reaction binds to the triphosphate moiety of the nascent ATP, causing the upfield shifts of the 31P resonances. Analyses of the reaction kinetics indicate that bond cleavage and proton release are two sequential processes in the solid state, suggesting that the 1-hydroxy,1-(2-nitrosophenyl)-ethyl carbocation intermediate is involved in the reaction. The beta-phosphate oxygen atom of ATP is protonated first, indicating its proximity to the reaction center, possibly within hydrogen bonding distance. The residual linewidth kinetics are interpreted in terms of chemical exchange processes, hydrogen bonding of the beta-phosphate oxygen atom and evolution of the hydrolytic equilibrium at the triphosphate moiety of the nascent ATP. Photoreaction of caged ATP in situ gives an opportunity to study structural kinetics and catalysis of ATP-dependent enzymes by NMR spectroscopy in rotating solids.
Collapse
Affiliation(s)
- Alexey V Cherepanov
- Biophysical Organic Chemistry/Solid State NMR group, Leiden Institute of Chemistry, Faculty of Mathematics and Natural Sciences, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|