1
|
Chen Q, Lu C, Li D, Xu L, Wang C, Yu L. CDK1 inhibitor RO-3306 enhances BTKi potency in diffuse large B-cell lymphoma by suppressing JAK2/STAT3 signaling. Int J Biol Macromol 2025; 297:139893. [PMID: 39818374 DOI: 10.1016/j.ijbiomac.2025.139893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma in adults, which characterized by a high degree of heterogeneity in terms of clinical presentation, molecular phenotype, and genetic features. However, approximately 30 %-40 % of patients are refractory to standard chemotherapy, and their prognosis is poor. The emergence of small-molecule inhibitors, such as Bruton's tyrosine kinase inhibitors (BTKi), has greatly improved the treatment of DLBCL; however, drug resistance associated with small-molecule inhibitors has greatly limited their clinical application. In this study, we elucidated the principal genes influencing BTKi sensitivity in DLBCL and delineated the underlying mechanisms. This study identified cyclin-dependent kinase 1 (CDK1) as the central gene influencing BTKi sensitivity in DLBCL cells. The application of RO-3306 effectively promoted the growth and increased the apoptotic rate of DLBCL cells. Furthermore, RO-3306 increased the susceptibility of DLBCL cells to BTKis in both in vitro and xenograft experimental models. RNA-seq analyses suggested the potential modulation of the JAK2/STAT3 signaling cascade by RO-3306, a finding further confirmed by the diminished phosphorylation documented by western blotting. This study provides pivotal insights into the mechanisms governing BTKi sensitivity in DLBCL and potentially reveals new avenues for targeted therapeutic strategies.
Collapse
MESH Headings
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Humans
- STAT3 Transcription Factor/metabolism
- Janus Kinase 2/metabolism
- Signal Transduction/drug effects
- Animals
- Cell Line, Tumor
- CDC2 Protein Kinase/antagonists & inhibitors
- CDC2 Protein Kinase/metabolism
- Mice
- Protein Kinase Inhibitors/pharmacology
- Xenograft Model Antitumor Assays
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Gene Expression Regulation, Neoplastic/drug effects
Collapse
Affiliation(s)
- Qiuni Chen
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China
| | - Chuanyang Lu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China
| | - Dongnan Li
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China
| | - Lei Xu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China
| | - Chunling Wang
- Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Huai'an, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China.
| | - Liang Yu
- Department of Hematology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu Province, PR China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China.
| |
Collapse
|
2
|
Al-Mustafa A, Al-Zereini W, Ashram M, Al-Sha’er MA. Evaluation of antibacterial, antioxidant, cytotoxic, and acetylcholinesterase inhibition activities of novel [1,4] benzoxazepines fused to heterocyclic systems with a molecular modeling study. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Cyclin-Dependent Kinase Inhibitors in Hematological Malignancies-Current Understanding, (Pre-)Clinical Application and Promising Approaches. Cancers (Basel) 2021; 13:cancers13102497. [PMID: 34065376 PMCID: PMC8161389 DOI: 10.3390/cancers13102497] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cyclin-dependent kinases are involved in the regulation of cancer-initiating processes like cell cycle progression, transcription, and DNA repair. In hematological neoplasms, these enzymes are often overexpressed, resulting in increased cell proliferation and cancer progression. Early (pre-)clinical data using cyclin-dependent kinase inhibitors are promising but identifying the right drug for each subgroup and patient is challenging. Certain chromosomal abnormalities and signaling molecule activities are considered as potential biomarkers. We therefore summarized relevant studies investigating cyclin-dependent kinase inhibitors in hematological malignancies and further discuss molecular mechanisms of resistance and other open questions. Abstract Genetically altered stem or progenitor cells feature gross chromosomal abnormalities, inducing modified ability of self-renewal and abnormal hematopoiesis. Cyclin-dependent kinases (CDK) regulate cell cycle progression, transcription, DNA repair and are aberrantly expressed in hematopoietic malignancies. Incorporation of CDK inhibitors (CDKIs) into the existing therapeutic regimens therefore constitutes a promising strategy. However, the complex molecular heterogeneity and different clinical presentation is challenging for selecting the right target and defining the ideal combination to mediate long-term disease control. Preclinical and early clinical data suggest that specific CDKIs have activity in selected patients, dependent on the existing rearrangements and mutations, potentially acting as biomarkers. Indeed, CDK6, expressed in hematopoietic cells, is a direct target of MLL fusion proteins often observed in acute leukemia and thus contributes to leukemogenesis. The high frequency of aberrancies in the retinoblastoma pathway additionally warrants application of CDKIs in hematopoietic neoplasms. In this review, we describe the preclinical and clinical advances recently made in the use of CDKIs. These include the FDA-approved CDK4/6 inhibitors, traditional and novel pan-CDKIs, as well as dual kinase inhibitors. We additionally provide an overview on molecular mechanisms of response vs. resistance and discuss open questions.
Collapse
|
4
|
Kadia TM, Kantarjian HM, Konopleva M. Myeloid cell leukemia-1 dependence in acute myeloid leukemia: a novel approach to patient therapy. Oncotarget 2019; 10:1250-1265. [PMID: 30815228 PMCID: PMC6383813 DOI: 10.18632/oncotarget.26579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/16/2018] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults, affecting approximately 21,000 people annually (nearly 11,000 deaths) in the United States. B-cell lymphoma 2 (BCL-2) family proteins, notably myeloid cell leukemia-1 (MCL-1), have been associated with both the development and persistence of AML. MCL-1 is one of the predominant BCL-2 family members expressed in samples from patients with untreated AML. MCL-1 is a critical cell survival factor for cancer and contributes to chemotherapy resistance by directly affecting cell death pathways. Here, we review the role of MCL-1 in AML and the mechanisms by which the potent cyclin-dependent kinase 9 inhibitor alvocidib, through regulation of MCL-1, may serve as a rational therapeutic approach against the disease.
Collapse
Affiliation(s)
| | | | - Marina Konopleva
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
5
|
Saraei R, Marofi F, Naimi A, Talebi M, Ghaebi M, Javan N, Salimi O, Hassanzadeh A. Leukemia therapy by flavonoids: Future and involved mechanisms. J Cell Physiol 2018; 234:8203-8220. [PMID: 30500074 DOI: 10.1002/jcp.27628] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Flavonoids are a varied family of phytonutrients (plant chemicals) usually are detected in fruits and vegetables. In this big family, there exist more than 10,000 members that is separated into six chief subtypes: isoflavonols, flavonoenes, flavones, flavonols, anthocyanins, and chalcones. The natural compounds, such as fruits, have visible positive effects in regulating of survival involved signaling pathways that performance as the regulator of cell survival, growth, and proliferation. Researchers have established that commonly consumption up flavonoids decreases incidence and development risk of certain cancers, especially leukemia. Flavonoids have been able to induce apoptosis and stimulate cell cycle arrest in cancer cells via different pathways. Similarly, they have antiangiogenesis and antimetastasis capability, which were shown in wide ranges of cancer cells, particularly, leukemia. It seems that flavonoid because of their widespread approval, evident safety and low rate of side effects, have hopeful anticarcinogenic potential for leukemia therapy. Based on the last decade reports, the most important acting mechanisms of these natural compounds in leukemia cells are stimulating of apoptosis pathways by upregulation of caspase 3, 8, 9 and poly ADP-ribose polymerase (PARP) and proapoptotic proteins, particularly Bax activation. As well, they can induce cell cycle arrest in target cells not only via increasing of activated levels of p21 and p53 but also by inhibition of cyclins and cyclin-dependent kinases. Furthermore, attenuation of neclear factor-κB and signal transducer and activator of transcription 3 activation, suppression of signaling pathway and downregulation of intracellular antiapoptotic proteins are other significant antileukemic function mechanism of flavonoids. Overall, it appears that flavonoids are promising and effective compounds in the field of leukemia therapy. In this review, we tried to accumulate and revise most promising flavonoids and finally declared their major working mechanisms in leukemia cells.
Collapse
Affiliation(s)
- Raedeh Saraei
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Naimi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Ghaebi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Javan
- Department of Clinical Biochemistry and Laboratories Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Salimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Synthesis of a new polycyclic heterocyclic ring system. Part III. Benzo[b]imidazo[1,5-d][1,4]oxazepine-1,4(2H,5H)-diones. HETEROCYCL COMMUN 2017. [DOI: 10.1515/hc-2016-0236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractA series of novel tricyclic benzoxazepines with fused imidazolone ring was prepared in five steps starting from the corresponding benzoxazolones
Collapse
|
7
|
Greene LM, Butini S, Campiani G, Williams DC, Zisterer DM. Pre-clinical evaluation of a novel class of anti-cancer agents, the Pyrrolo-1, 5-benzoxazepines. J Cancer 2016; 7:2367-2377. [PMID: 27994676 PMCID: PMC5166549 DOI: 10.7150/jca.16616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/28/2016] [Indexed: 02/05/2023] Open
Abstract
Microtubules are currently ranked one of the most validated targets for chemotherapy; with clinical use of microtubule targeting agents (MTAs) extending beyond half a century. Recent research has focused on the development of novel MTAs to combat drug resistance and drug associated toxicities. Of particular interest are compounds structurally different to those currently used within the clinic. The pyrrolo-1, 5-benzoxazepines (PBOXs) are a structurally distinct novel group of anti-cancer agents, some of which target tubulin. Herein, we review the chemistry, mechanism of action, preclinical development of the PBOXs and comparisons with clinically relevant chemotherapeutics. The PBOXs induce a range of cellular responses including; cell cycle arrest, apoptosis, autophagy, anti-vascular and anti-angiogenic effects. The apoptotic potential of the PBOXs extends across a wide spectrum of cancer-derived cell lines, by targeting tubulin and multiple molecular pathways frequently deregulated in human cancers. Extensive experimental data suggest that combining the PBOXs with established chemotherapeutics or radiation is therapeutically advantageous. Pre-clinical highlights of the PBOXs include; cancer specificity and improved therapeutic efficacy as compared to some current first line therapeutics.
Collapse
Affiliation(s)
- L M Greene
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - S Butini
- European Research Centre for Drug Discovery and Development, Department of Biotechnology, Chemistry and Pharmacy, and Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - G Campiani
- European Research Centre for Drug Discovery and Development, Department of Biotechnology, Chemistry and Pharmacy, and Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - D C Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - D M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
8
|
Involvement of AMP-activated protein kinase in mediating pyrrolo-1,5-benzoxazepine–induced apoptosis in neuroblastoma cells. Invest New Drugs 2016; 34:663-76. [DOI: 10.1007/s10637-016-0366-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022]
|
9
|
Badru R, Singh B. Triethylamine-Catalyzed Synthesis of Oxazepine from Maleamic Acids. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rahul Badru
- Department of Chemistry; Punjabi University; Patiala 147002 Punjab India
| | - Baldev Singh
- Department of Chemistry; Punjabi University; Patiala 147002 Punjab India
| |
Collapse
|
10
|
Lennon JC, Bright SA, Carroll E, Butini S, Campiani G, O'Meara A, Williams DC, Zisterer DM. The novel pyrrolo-1,5-benzoxazepine, PBOX-6, synergistically enhances the apoptotic effects of carboplatin in drug sensitive and multidrug resistant neuroblastoma cells. Biochem Pharmacol 2014; 87:611-24. [PMID: 24406249 DOI: 10.1016/j.bcp.2013.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 01/22/2023]
Abstract
Neuroblastoma, a malignancy of neuroectoderrmal origin, accounts for 15% of childhood cancer deaths. Despite advances in understanding the biology, it remains one of the most difficult paediatric cancers to treat. A major obstacle in the effective treatment of neuroblastoma is the development of multidrug resistance (MDR). There is thus a compelling demand for new treatment strategies for this cancer that can bypass such resistance mechanisms. The pyrrolo-1,5-benzoxazepine (PBOX) compounds are a series of novel microtubule-targeting agents that potently induce apoptosis in various cancer cell lines, ex vivo patient samples and in vivo cancer models. In this study we examined the ability of two members, PBOX-6 and -15, to exhibit anti-cancer effects in a panel of drug sensitive and MDR neuroblastoma cell lines. The PBOX compounds potently reduced the viability of all neuroblastoma cells examined and exhibited a lower fold resistance in MDR cells when compared to standard chemotherapeutics. In addition, the PBOX compounds synergistically enhanced apoptosis induced by etoposide, carboplatin and doxorubicin. Exposure of drug sensitive and resistant cell lines to PBOX-6/carboplatin induced cleavage of Bcl-2, a downregulation of Mcl-1 and a concomitant increase in Bak. Furthermore, activation of caspase-3, -8 and -9 was demonstrated. Finally, gene silencing of Mcl-1 by siRNA was shown to sensitise both drug sensitive and multidrug resistant cells to carboplatin-induced apoptosis demonstrating the importance of Mcl-1 downregulation in the apoptotic pathway mediated by the PBOX compounds in neuroblastoma. In conclusion, our findings indicate the potential of the PBOX compounds in enhancing chemosensitivity in neuroblastoma.
Collapse
Affiliation(s)
- Jennifer C Lennon
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland; The National Children's Research Centre, Crumlin, Dublin, Ireland.
| | - Sandra A Bright
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Eilis Carroll
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Stefania Butini
- European Research Centre for Drug Discovery & Development, University of Siena, Siena, Italy.
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery & Development, University of Siena, Siena, Italy.
| | - Anne O'Meara
- Our Lady's Childrens Hospital, Crumlin, Dublin, Ireland.
| | - D Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
11
|
Banerji B, Pramanik SK, Sanphui P, Nikhar S, Biswas SC. Synthesis and cytotoxicity studies of novel triazolo-benzoxazepine as new anticancer agents. Chem Biol Drug Des 2013; 82:401-9. [PMID: 23672315 DOI: 10.1111/cbdd.12164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 04/25/2013] [Accepted: 05/03/2013] [Indexed: 12/16/2022]
Abstract
Cancer continues to be one of the biggest threats to the human civilization because there is no cure of it. Small heterocyclic molecule with low molecular weight and novel structural feature is therapeutically highly demanding. These molecules have the capability to disrupt signaling pathways leading to anticancer activities. Therefore, the search for new anticancer agents continues to draw attention to the research community. In this study, a small triazolo-benzoxazepine scaffolds was synthesized using a one-pot four-step synthetic methodology involving click reaction. Small libraries of 12 compounds were successfully synthesized and screened them against different cancer cell lines. Low micromolar anticancer activity was recorded using MTT assay, and further confirmation of cell death was obtained by phase contrast, fluorescent, and confocal images.
Collapse
Affiliation(s)
- Biswadip Banerji
- Department of Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | | | | | | | | |
Collapse
|
12
|
Greene LM, Nolan DP, Regan-Komito D, Campiani G, Williams DC, Zisterer DM. Inhibition of late-stage autophagy synergistically enhances pyrrolo-1,5-benzoxazepine-6-induced apoptotic cell death in human colon cancer cells. Int J Oncol 2013; 43:927-35. [PMID: 23799546 DOI: 10.3892/ijo.2013.1989] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/23/2013] [Indexed: 11/06/2022] Open
Abstract
The pyrrolo-1,5-benzoxazepines (PBOXs) are a novel group of selective apoptotic agents displaying promising therapeutic potential in both ex vivo chemotherapy-refractory patient samples and in vivo murine carcinoma models. In this report, we present novel data concerning the induction of autophagy by the PBOXs in adenocarcinoma-derived colon cancer cells. Autophagy is a lysosome-dependent degradative pathway recently associated with chemotherapy. However, whether autophagy facilitates cell survival in response to chemotherapy or contributes to chemotherapy-induced cell death is highly controversial. Autophagy was identified by enhanced expression of LC3B-II, an autophagosome marker, an increase in the formation of acridine orange-stained cells, indicative of increased vesicle formation and electron microscopic confirmation of autophagic structures. The vacuolar H+ ATPase inhibitor bafilomycin-A1 (BAF-A1) inhibited vesicle formation and enhanced the apoptotic potential of PBOX-6. These findings suggest a cytoprotective role of autophagy in these cells following prolonged exposure to PBOX-6. Furthermore, BAF-A1 and PBOX-6 interactions were determined to be synergistic and caspase-dependent. Potentiation of PBOX-6-induced apoptosis by BAF-A1 was associated with a decrease in the levels of the anti-apoptotic protein, Mcl-1. The data provide evidence that autophagy functions as a survival mechanism in colon cancer cells to PBOX-6-induced apoptosis and a rationale for the use of autophagy inhibitors to further enhance PBOX‑6‑induced apoptosis in colon cancer.
Collapse
Affiliation(s)
- Lisa M Greene
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
13
|
The Interface between BCR-ABL-Dependent and -Independent Resistance Signaling Pathways in Chronic Myeloid Leukemia. LEUKEMIA RESEARCH AND TREATMENT 2012; 2012:671702. [PMID: 23259070 PMCID: PMC3505928 DOI: 10.1155/2012/671702] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/10/2012] [Indexed: 12/15/2022]
Abstract
Chronic myeloid leukemia (CML) is a clonal hematopoietic disorder characterized by the presence of the Philadelphia chromosome which resulted from the reciprocal translocation between chromosomes 9 and 22. The pathogenesis of CML involves the constitutive activation of the BCR-ABL tyrosine kinase, which governs malignant disease by activating multiple signal transduction pathways. The BCR-ABL kinase inhibitor, imatinib, is the front-line treatment for CML, but the emergence of imatinib resistance and other tyrosine kinase inhibitors (TKIs) has called attention for additional resistance mechanisms and has led to the search for alternative drug treatments. In this paper, we discuss our current understanding of mechanisms, related or unrelated to BCR-ABL, which have been shown to account for chemoresistance and treatment failure. We focus on the potential role of the influx and efflux transporters, the inhibitor of apoptosis proteins, and transcription factor-mediated signals as feasible molecular targets to overcome the development of TKIs resistance in CML.
Collapse
|
14
|
Bright SA, McElligott AM, O'Connell JW, O'Connor L, Carroll P, Campiani G, Deininger MW, Conneally E, Lawler M, Williams DC, Zisterer DM. Novel pyrrolo-1,5-benzoxazepine compounds display significant activity against resistant chronic myeloid leukaemia cells in vitro, in ex vivo patient samples and in vivo. Br J Cancer 2010; 102:1474-82. [PMID: 20407438 PMCID: PMC2869169 DOI: 10.1038/sj.bjc.6605670] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Imatinib is a direct and potent inhibitor of the constitutively active tyrosine kinase, breakpoint cluster region-Abelson (Bcr-Abl), which is central to the pathogenesis of chronic myeloid leukaemia (CML) patients. As such, imatinib has become the front-line treatment for CML patients. However, the recent emergence of imatinib resistance, commonly associated with point mutations within the kinase domain, has led to the search for alternative drug treatments and combination therapies for CML. METHODS In this report, we analyse the effects of representative members of the novel pro-apoptotic microtubule depolymerising pyrrolo-1,5-benzoxazepines or PBOX compounds on chemotherapy-refractory CML cells using a series of Bcr-Abl mutant cell lines, clinical ex vivo patient samples and an in vivo mouse model. RESULTS The PBOX compounds potently reduce cell viability in cells expressing the E225K and H396P mutants as well as the highly resistant T315I mutant. The PBOX compounds also induce apoptosis in primary CML samples including those resistant to imatinib. We also show for the first time, the in vivo efficacy of the pro-apoptotic PBOX compound, PBOX-6, in a CML mouse model of the T315I Bcr-Abl mutant. CONCLUSION Results from this study highlight the potential of these novel series of PBOX compounds as an effective therapy against CML.
Collapse
Affiliation(s)
- S A Bright
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|