1
|
Valproic Acid Prodrug Affects Selective Markers, Augments Doxorubicin Anticancer Activity and Attenuates Its Toxicity in a Murine Model of Aggressive Breast Cancer. Pharmaceuticals (Basel) 2021; 14:ph14121244. [PMID: 34959644 PMCID: PMC8706415 DOI: 10.3390/ph14121244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
We studied the unique inhibitor of the histone deacetylases (HDAC) valproate-valpromide of acyclovir (AN446) that upon metabolic degradation release the HDAC inhibitor (HDACI) valproic acid (VPA). Among the HDAC inhibitors that we have tested, only AN446, and to a lesser extent VPA, synergized with doxorubicin (Dox) anti-cancer activity. Romidepsin (Rom) was additive and the other HDACIs tested were antagonistic. These findings led us to test and compare the anticancer activities of AN446, VPA, and Rom with and without Dox in the 4T1 triple-negative breast cancer murine model. A dose of 4 mg/kg once a week of Dox had no significant effect on tumor growth. Rom was toxic, and when added to Dox the toxicity intensified. AN446, AN446 + Dox, and VPA + Dox suppressed tumor growth. AN446 and AN446 + Dox were the best inhibitory treatments for tumor fibrosis, which promotes tumor growth and metastasis. Dox increased fibrosis in the heart and kidneys, disrupting their function. AN446 most effectively suppressed Dox-induced fibrosis in these organs and protected their function. AN446 and AN446 + Dox treatments were the most effective inhibitors of metastasis to the lungs, as measured by the gap area. Genes that control and regulate tumor growth, DNA damage and repair, reactive oxygen production, and generation of inflammation were examined as potential therapeutic targets. AN446 affected their expression in a tissue-dependent manner, resulting in augmenting the anticancer effect of Dox while reducing its toxicity. The specific therapeutic targets that emerged from this study are discussed.
Collapse
|
2
|
Ari F, Napieralski R, Akgun O, Magdolen V, Ulukaya E. Epigenetic modulators combination with chemotherapy in breast cancer cells. Cell Biochem Funct 2021; 39:571-583. [PMID: 33608886 DOI: 10.1002/cbf.3626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/15/2022]
Abstract
Despite the concerning adverse effects on tumour development, epigenetic drugs are very promising in cancer treatment. The aim of this study was to compare the differential effects of standard chemotherapy regimens (FEC: 5-fluorouracil plus epirubicine plus cyclophosphamide) in combination with epigenetic modulators (decitabine, valproic acid): (a) on gene methylation levels of selected tumour biomarkers (LINE-1, uPA, PAI-1, DAPK); (b) their expression status (uPA and PAI-1); (c) differentiation status (5meC and H3K27me3). Furthermore, cell survival as well as changes concerning the invasion capacity were monitored in cell culture models of breast cancer (MCF-7, MDA-MB-231). A significant overall decrease of cell survival was observed in the FEC-containing combination therapies for both cell lines. Methylation results showed a general tendency towards increased demethylation of the uPA and PAI-1 gene promoters for the MCF-7 cells, as well as the proapoptotic DAPK gene in the treatment regimens for both cell lines. The uPA and PAI-1 antigen levels were mainly increased in the supernatant of FEC-only treated MDA-MB-231 cells. DAC-only treatment induced an increase of secreted uPA protein in MCF-7 cell culture, while most of the VPA-containing regimens also induced uPA and PAI-1 expression in MCF-7 cell fractions. Epigenetically active substances can also induce a re-differentiation in tumour cells, as shown by 5meC, H3K27me3 applying ICC. SIGNIFICANCE OF THE STUDY: Epigenetic modulators especially in the highly undifferentiated and highly malignant MDA-MB-231 tumour cells significantly reduced tumour malignancy thus; further clinical studies applying specific combination therapies with epigenetic modulators may be warranted.
Collapse
Affiliation(s)
- Ferda Ari
- Science and Art Faculty, Department of Biology, Bursa Uludag University, Bursa, Turkey
| | - Rudolf Napieralski
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Therawis Diagnostics GmbH, Munich, Germany
| | - Oguzhan Akgun
- Science and Art Faculty, Department of Biology, Bursa Uludag University, Bursa, Turkey
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Clinical Research Unit, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Engin Ulukaya
- Faculty of Medicine, Department of Clinical Biochemistry, Istinye University, Istanbul, Turkey
| |
Collapse
|
3
|
Park SA, Han HR, Ahn S, Ryu CH, Jeun SS. Combination treatment with VPA and MSCs‑TRAIL could increase anti‑tumor effects against intracranial glioma. Oncol Rep 2021; 45:869-878. [PMID: 33469674 PMCID: PMC7859926 DOI: 10.3892/or.2021.7937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
Human bone marrow-derived mesenchymal stem cells secreting tumor necrosis factor-related apoptosis-inducing ligand (MSCs-TRAIL) have demonstrated effective anti-tumor activity against various tumors including lung, pancreatic and prostate tumors, although several tumor types are not responsive. In such case, other reagents may decrease tumor growth via TRAIL-mediated cell death. The present study aimed to examine the effectiveness of valproic acid (VPA) in enhancing the efficacy of TRAIL, which was delivered using MSCs. Moreover, the present study examined the induced tumor tropism of MSCs via cell viability and migration assays. Combination treatment with VPA and MSCs-TRAIL enhanced the glioma therapeutic effect by increasing death receptor 5 and caspase activation. Migration assays identified increased MSC migration in VPA and MSCs-TRAIL-treated glioma cells and in the tumor site in glioma-bearing mice compared with VPA or MSC-TRAIL treatment alone. In vivo experiments demonstrated that MSC-based TRAIL gene delivery to VPA-treated tumors had greater therapeutic efficacy compared with treatment with each agent alone. These findings suggested that VPA treatment increased the therapeutic efficacy of MSC-TRAIL via TRAIL-induced apoptosis and enhanced tropism of MSCs, which may offer a useful strategy for tumor gene therapy.
Collapse
Affiliation(s)
- Soon A Park
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hye Rim Han
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chung Heon Ryu
- Department of Clinical Laboratory Science, Daejeon Health Institute of Technology, Daejeon 34504, Republic of Korea
| | - Sin-Soo Jeun
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Cheong A, McGrath S, Robinson T, Maliki R, Spurling A, Lock P, Rephaeli A, Nudelman A, Parker BS, Pepe S, Cutts SM. A switch in mechanism of action prevents doxorubicin-mediated cardiac damage. Biochem Pharmacol 2021; 185:114410. [PMID: 33428897 DOI: 10.1016/j.bcp.2021.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Cancer patients treated with doxorubicin are at risk of congestive heart failure due to doxorubicin-mediated cardiotoxicity via topoisomerase IIβ poisoning. Acute cardiac muscle damage occurs in response to the very first dose of doxorubicin, however, cardioprotection has been reported after co-treatment of doxorubicin with acyloxyalkyl ester prodrugs. The aim of this study was to examine the role played by various forms of acute cardiac damage mediated by doxorubicin and determine a mechanism for the cardioprotective effect of formaldehyde-releasing prodrug AN-9 (pivaloyloxymethyl butyrate). Doxorubicin-induced cardiac damage in BALB/c mice bearing mammary tumours was established with a single dose of doxorubicin (4 or 16 mg/kg) administered alone or in combination with AN-9 (100 mg/kg). AN-9 protected the heart from doxorubicin-induced myocardial apoptosis and also significantly reduced dsDNA breaks, independent from the level of doxorubicin biodistribution to the heart. Covalent incorporation of [14C]doxorubicin into DNA showed that the combination treatment yielded significantly higher levels of formaldehyde-mediated doxorubicin-DNA adducts compared to doxorubicin alone, yet this form of damage was associated with cardioprotection from apoptosis. The cardiac transcriptomic analysis indicates that the combination treatment initiates inflammatory response signalling pathways. Doxorubicin and AN-9 combination treatments were cardioprotective, yet preserved doxorubicin-mediated anti-tumour proliferation and apoptosis in mammary tumours. This was associated with a switch in doxorubicin action from cardiac topoisomerase IIβ poisoning to covalent-DNA adduct formation. Co-administration of doxorubicin and formaldehyde-releasing prodrugs, such as AN-9, may be a promising cardioprotective therapy while maintaining doxorubicin activity in primary mammary tumours.
Collapse
Affiliation(s)
- Alison Cheong
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Sean McGrath
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Tina Robinson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ruqaya Maliki
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Alex Spurling
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Peter Lock
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Ada Rephaeli
- Laboratory for Pharmacology and Experimental Oncology, Felsenstein Medical Research Center, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, 49100 Tel Aviv, Israel
| | - Abraham Nudelman
- Division of Medicinal Chemistry, Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Belinda S Parker
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Salvatore Pepe
- Murdoch Children's Research Institute, Department of Cardiology, Royal Children's Hospital, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Suzanne M Cutts
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia.
| |
Collapse
|
5
|
Histone deacetylase inhibitor based prodrugs. Eur J Med Chem 2020; 203:112628. [PMID: 32679451 DOI: 10.1016/j.ejmech.2020.112628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) are a family of enzymes which play important roles in the development and progression of cancers. Inhibition of HDACs has been widely studied as a therapeutic strategy in the discovery of anticancer drugs. HDAC inhibitors (HDACIs) have exhibited potency against a variety of cancer types, and four of them have been approved by the US FDA for cancer treatment. However, the clinical benefits of current HDACIs is limited by the insufficient physicochemical property, selectivity and potency. To improve the clinical potential of HDACIs, the prodrug strategy had been utilized to improve the in vivo pharmacokinetic and pharmacodynamic performances of HDACIs. Enhancements in the stability, water solubility, lipophilicity, oral bioavailability and tumor cell selectivity were reported by various studies. Herein, the development of different kinds of HDACI-based prodrug is summarized for the further structural modification of HDACIs with high potential to be drug candidates.
Collapse
|
6
|
Similar Safety Profile of the Enantiomeric N-Aminoalkyl Derivatives of Trans-2-Aminocyclohexan-1-ol Demonstrating Anticonvulsant Activity. Molecules 2019; 24:molecules24132505. [PMID: 31323993 PMCID: PMC6651381 DOI: 10.3390/molecules24132505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is one of the most common neurological disorder in the world. Many antiepileptic drugs cause multiple adverse effects. Moreover, multidrug resistance is a serious problem in epilepsy treatment. In the present study we evaluated the safety profile of three (1–3) new chiral N-aminoalkyl derivatives of trans-2-aminocyclohexan-1-ol demonstrating anticonvulsant activity. Our aim was also to determine differences between the enantiomeric compounds with respect to their safety profile. The results of the study indicated that compounds 1–3 are non-cytotoxic for astrocytes, although they exhibit cytotoxic activity against human glioblastoma cells. Moreover, 1–3 did not affect the viability of HepG2 cells and did not produce adducts with glutathione. Compounds 1–3 demonstrated no mutagenic activity either in the Salmonella typhimurium or in Vibrio harveyi tests. Additionally, the compounds displayed a strong or moderate antimutagenic effect. Finally, the P-glycoprotein (P-gp) ATPase assay demonstrated that both enantiomers are potent P-gp inhibitors. To sum up, our results indicate that the newly synthesized derivatives may be considered promising candidates for further research on anticonvulsant drug discovery and development. Our study indicated the similar safety profile of the enantiomeric N-aminoalkyl derivatives of trans-2-aminocyclohexan-1-ol, although in the previous studies both enantiomers differ in their biotransformation pathways and pharmacological activity.
Collapse
|
7
|
Hu Y, Epling D, Shi J, Song F, Tsume Y, Zhu HJ, Amidon GL, Smith DE. Effect of biphenyl hydrolase-like (BPHL) gene disruption on the intestinal stability, permeability and absorption of valacyclovir in wildtype and Bphl knockout mice. Biochem Pharmacol 2018; 156:147-156. [PMID: 30121252 DOI: 10.1016/j.bcp.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/14/2018] [Indexed: 11/17/2022]
Abstract
Biphenyl hydrolase-like protein (BPHL) is a novel human serine hydrolase that was originally cloned from a breast carcinoma cDNA library and shown to convert valacyclovir to acyclovir and valganciclovir to ganciclovir. However, the exclusivity of this process has not been determined and, indeed, it is possible that a number of esterases/proteases may mediate the hydrolysis of valacyclovir and similar prodrugs. The objectives of the present study were to evaluate the in situ intestinal permeability and stability of valacyclovir in wildtype (WT) and Bphl knockout (KO) mice, as well as the in vivo oral absorption and intravenous disposition of valacyclovir and acyclovir in the two mouse genotypes. We found that Bphl knockout mice had no obvious phenotype and that Bphl ablation did not alter the jejunal permeability of valacyclovir during in situ perfusions (i.e., 0.54 × 10-4 in WT vs. 0.53 × 10-4 cm/s in KO). Whereas no meaningful changes occurred between genotypes in the gene expression of proton-coupled oligopeptide transporters (i.e., PepT1, PepT2, PhT1, PhT2), enzymatic upregulation of Cyp3a11, Cyp3a16, Abhd14a and Abhd14b was observed in some tissues of Bphl knockout mice. Most importantly, we found that valacyclovir was rapidly and efficiently hydrolyzed to acyclovir in the absence of BPHL, and that hydrolysis was more extensive after the oral vs. intravenous route of administration (for both genotypes). Taken as a whole, BPHL is not obligatory for the conversion of valacyclovir to acyclovir either presystemically or systemically.
Collapse
Affiliation(s)
- Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Epling
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jian Shi
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Feifeng Song
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA; Laboratory of Pharmaceutical Analysis and Drug Metabolism, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yasuhiro Tsume
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hao-Jie Zhu
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gordon L Amidon
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Leveraging Epigenetics to Enhance the Cellular Response to Chemotherapies and Improve Tumor Immunogenicity. Adv Cancer Res 2018; 138:1-39. [PMID: 29551125 DOI: 10.1016/bs.acr.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer chemotherapeutic drugs have greatly advanced our ability to successfully treat a variety of human malignancies. The different forms of stress produced by these agents in cancer cells result in both cell autonomous and cell nonautonomous effects. Desirable cell autonomous effects include reduced proliferative potential, cellular senescence, and cell death. More recently recognized cell nonautonomous effects, usually in the form of stimulating an antitumor immune response, have significant roles in therapeutic efficiency for a select number of chemotherapies. Unfortunately, the success of these therapeutics is not universal as not all tumors respond to treatment, and those that do respond will frequently relapse into therapy-resistant disease. Numerous strategies have been developed to sensitize tumors toward chemotherapies as a means to either improve initial responses, or serve as a secondary treatment strategy for therapy-resistant disease. Recently, targeting epigenetic regulators has emerged as a viable method of sensitizing tumors to the effects of chemotherapies, many of which are cytotoxic. In this review, we summarize these strategies and propose a path for future progress.
Collapse
|
9
|
Tarasenko N, Chekroun-Setti H, Nudelman A, Rephaeli A. Comparison of the anticancer properties of a novel valproic acid prodrug to leading histone deacetylase inhibitors. J Cell Biochem 2017; 119:3417-3428. [PMID: 29135083 DOI: 10.1002/jcb.26512] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/09/2017] [Indexed: 12/23/2022]
Abstract
The HDAC inhibitory activity of valproic acid (VPA) has led to on-going evaluation of it as an anticancer agent. The histone deacetylase (HDAC) inhibitor AN446, a prodrug of VPA, releases the acid upon metabolic degradation. AN446 is >60-fold more potent than VPA in killing cancer cells in vitro. Herein, we compare the activities of AN446, as an anticancer agent, to those of representative types from each of the four major classes of HDAC inhibitors (HDACIs): vorinostat, romidepsin, entinostat, and VPA. AN446 exhibited the greatest selectivity and HDAC inhibitory activity against cancer cells. In glioblastoma cells only AN446, and in MDA-MB-231 cells only AN446 and VPA interacted in synergy with doxorubicin (Dox). AN446 was superior to the studied HDACIs in inducing DNA-damage in cancer cells, while in normal astrocytes and cardiomyoblasts AN446 was the least toxic. AN446 was the only HDACI tested that exhibited selective HDAC inhibitory activity that was high in cancer cells and low in noncancerous cells. This discriminating inhibition correlated with the toxicity of the HDACIs, suggesting that their effects could be attributed to HDAC inhibition. In cardiomyoblasts, the HDACIs tested, except for AN446, hampered DNA repair by reducing the level of Rad 51. VPA and AN446 were the most effective HDACIs in inhibiting in vitro migration and invasion. The advantages of AN446 shown here, position it as a potentially improved HDACI for treatment of glioblastoma and triple negative breast cancer.
Collapse
Affiliation(s)
- Nataly Tarasenko
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Beilinson Campus, Petach-Tikva, Israel
| | - Hanna Chekroun-Setti
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Beilinson Campus, Petach-Tikva, Israel.,Faculté de Pharmacie de Chatenay Malabry, Châtenay-Malabry, France
| | | | - Ada Rephaeli
- Felsenstein Medical Research Center, Sackler Faculty of Medicine, Tel-Aviv University, Beilinson Campus, Petach-Tikva, Israel
| |
Collapse
|
10
|
Valproic Acid Induces Endocytosis-Mediated Doxorubicin Internalization and Shows Synergistic Cytotoxic Effects in Hepatocellular Carcinoma Cells. Int J Mol Sci 2017; 18:ijms18051048. [PMID: 28498322 PMCID: PMC5454960 DOI: 10.3390/ijms18051048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
Abstract
Valproic acid (VPA), a well-known histone deacetylase (HDAC) inhibitor, is used as an anti-cancer drug for various cancers, but the synergistic anti-cancer effect of VPA and doxorubicin (DOX) combination treatment and its potential underlying mechanism in hepatocellular carcinoma (HCC) remain to be elucidated. Here, we evaluate the mono- and combination-therapy effects of VPA and DOX in HCC and identify a specific and efficient, synergistic anti-proliferative effect of the VPA and DOX combination in HCC cells, especially HepG2 cells; this effect was not apparent in MIHA cells, a normal hepatocyte cell line. The calculation of the coefficient of drug interaction confirmed the significant synergistic effect of the combination treatment. Concurrently, the synergistic apoptotic cell death caused by the VPA and DOX combination treatment was confirmed by Hoechst nuclear staining and Western blot analysis of caspase-3 and poly (ADP-ribose) polymerase (PARP) activation. Co-treatment with VPA and DOX enhanced reactive oxygen species (ROS) generation and autophagy, which were clearly attenuated by ROS and autophagy inhibitors, respectively. Furthermore, as an indication of the mechanism underlying the synergistic effect, we observed that DOX internalization, which was induced in the VPA and DOX combination-treated group, occurred via by the caveolae-mediated endocytosis pathway. Taken together, our study uncovered the potential effect of the VPA and DOX combination treatment with regard to cell death, including induction of cellular ROS, autophagy, and the caveolae-mediated endocytosis pathway. Therefore, these results present novel implications in drug delivery research for the treatment of HCC.
Collapse
|
11
|
Effects of histone deacetylase inhibitory prodrugs on epigenetic changes and DNA damage response in tumor and heart of glioblastoma xenograft. Invest New Drugs 2017; 35:412-426. [DOI: 10.1007/s10637-017-0448-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/01/2017] [Indexed: 12/22/2022]
|
12
|
Alpuche-García A, Dávila-González X, Arregui L, Beltrán HI. Novel valproic aminophenol amides with enhanced glial cell viability effect. RSC Adv 2017. [DOI: 10.1039/c7ra00048k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this work, ortho-aminophenols were attached to valproic acid, resulting in seven novel anticancer drug prototypes.
Collapse
Affiliation(s)
| | | | - Leticia Arregui
- Departamento de Ciencias Naturales
- DCNI
- UAM Cuajimalpa
- Ciudad de México
- Mexico
| | - Hiram I. Beltrán
- Departamento de Ciencias Naturales
- DCNI
- UAM Cuajimalpa
- Ciudad de México
- Mexico
| |
Collapse
|
13
|
Raveendran R, Braude JP, Wexselblatt E, Novohradsky V, Stuchlikova O, Brabec V, Gandin V, Gibson D. Pt(iv) derivatives of cisplatin and oxaliplatin with phenylbutyrate axial ligands are potent cytotoxic agents that act by several mechanisms of action. Chem Sci 2016; 7:2381-2391. [PMID: 29997781 PMCID: PMC6003606 DOI: 10.1039/c5sc04205d] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/24/2015] [Indexed: 12/27/2022] Open
Abstract
The Pt(iv) derivative of cisplatin, ctc-[Pt(NH3)2(PhB)2Cl2], is a p53 independent very potent cytotoxic agent that kills cancer cells by triggering various cellular pathways.
Our study demonstrates that Pt(iv) derivative of cisplatin, with two axial PhB ligands, ctc-[Pt(NH3)2(PhB)2Cl2], is a very potent cytotoxic agent against many different human cancer cell lines and is up to 100 fold more potent than cisplatin, and significantly more potent than the Pt(iv) derivatives of cisplatin with either two hydroxido, two acetato or two valproato ligands. The high potency of this compound (and some others) is due to several factors including enhanced internalization, probably driven by “synergistic accumulation” of both the Pt moiety and the phenylbutyrate, that correlates with enhanced DNA binding and cytotoxicity. ctc-[Pt(NH3)2(PhB)2Cl2] inhibits 60–70% HDAC activity in cancer cells, at levels below the IC50 values of PhB, suggesting synergism between Pt and PhB. Mechanistically, ctc-[Pt(NH3)2(PhB)2Cl2] induces activation of caspases (3 and 9) triggering apoptotic signaling via the mitochondrial pathway. Data also suggest that the antiproliferative effect of ctc-[Pt(NH3)2(PhB)2Cl2] may not depend of p53. Pt(iv) derivatives of cisplatin with either two axial PhB or valproate ligands are more potent than their oxaliplatin analogs. ctc-[Pt(NH3)2(PhB)2Cl2] is significantly more potent than its valproate analog ctc-[Pt(NH3)2(VPA)2Cl2]. These compounds combine multiple effects such as efficient uptake of both Pt and PhB with DNA binding, HDAC inhibition and activation of caspases to effectively kill cancer cells.
Collapse
Affiliation(s)
- Raji Raveendran
- Institute for Drug Research , School of Pharmacy , The Hebrew University , Jerusalem , 91120 , Israel
| | - Jeremy Phillip Braude
- Dipartimento di Scienze del Farmaco , Universita di Padova , Via Marzolo 5 , 35131 Padova , Italy .
| | - Ezequiel Wexselblatt
- Institute for Drug Research , School of Pharmacy , The Hebrew University , Jerusalem , 91120 , Israel
| | - Vojtech Novohradsky
- Institute of Biophysics , Academy of Sciences of the Czech Republic, v.v.i. , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Olga Stuchlikova
- Institute of Biophysics , Academy of Sciences of the Czech Republic, v.v.i. , Kralovopolska 135 , CZ-61265 Brno , Czech Republic.,Department of Biophysics , Faculty of Science , Palacky University , 17. listopadu 12 , CZ-77146 Olomouc , Czech Republic
| | - Viktor Brabec
- Institute of Biophysics , Academy of Sciences of the Czech Republic, v.v.i. , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Valentina Gandin
- Dipartimento di Scienze del Farmaco , Universita di Padova , Via Marzolo 5 , 35131 Padova , Italy .
| | - Dan Gibson
- Institute for Drug Research , School of Pharmacy , The Hebrew University , Jerusalem , 91120 , Israel
| |
Collapse
|
14
|
Zhao Y, Tu MJ, Yu YF, Wang WP, Chen QX, Qiu JX, Yu AX, Yu AM. Combination therapy with bioengineered miR-34a prodrug and doxorubicin synergistically suppresses osteosarcoma growth. Biochem Pharmacol 2015; 98:602-13. [PMID: 26518752 PMCID: PMC4725324 DOI: 10.1016/j.bcp.2015.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/21/2015] [Indexed: 01/07/2023]
Abstract
Osteosarcoma (OS) is the most common form of primary malignant bone tumor and prevalent among children and young adults. Recently we have established a novel approach to bioengineering large quantity of microRNA-34a (miR-34a) prodrug for miRNA replacement therapy. This study is to evaluate combination treatment with miR-34a prodrug and doxorubicin, which may synergistically suppress human OS cell growth via RNA interference and DNA intercalation. Synergistic effects were indeed obvious between miR-34a prodrug and doxorubicin for the suppression of OS cell proliferation, as defined by Chou-Talalay method. The strongest antiproliferative synergism was achieved when both agents were administered simultaneously to the cells at early stage, which was associated with much greater degrees of late apoptosis, necrosis, and G2 cell cycle arrest. Alteration of OS cellular processes and invasion capacity was linked to the reduction of protein levels of miR-34a targeted (proto-)oncogenes including SIRT1, c-MET, and CDK6. Moreover, orthotopic OS xenograft tumor growth was repressed to a significantly greater degree in mouse models when miR-34a prodrug and doxorubicin were co-administered intravenously. In addition, multiple doses of miR-34a prodrug and doxorubicin had no or minimal effects on mouse blood chemistry profiles. The results demonstrate that combination of doxorubicin chemotherapy and miR-34a replacement therapy produces synergistic antiproliferative effects and it is more effective than monotherapy in suppressing OS xenograft tumor growth. These findings support the development of mechanism-based combination therapy to combat OS and bioengineered miR-34a prodrug represents a new natural miRNA agent.
Collapse
Affiliation(s)
- Yong Zhao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, China; Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Mei-Juan Tu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Yi-Feng Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, China
| | - Wei-Peng Wang
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Qiu-Xia Chen
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jing-Xin Qiu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Ai-Xi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430070, China.
| | - Ai-Ming Yu
- Department of Biochemistry & Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
15
|
Novel delivery approaches for cancer therapeutics. J Control Release 2015; 219:248-268. [PMID: 26456750 DOI: 10.1016/j.jconrel.2015.09.067] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/09/2015] [Accepted: 09/30/2015] [Indexed: 02/07/2023]
Abstract
Currently, a majority of cancer treatment strategies are based on the removal of tumor mass mainly by surgery. Chemical and physical treatments such as chemo- and radiotherapies have also made a major contribution in inhibiting rapid growth of malignant cells. Furthermore, these approaches are often combined to enhance therapeutic indices. It is widely known that surgery, chemo- and radiotherapy also inhibit normal cells growth. In addition, these treatment modalities are associated with severe side effects and high toxicity which in turn lead to low quality of life. This review encompasses novel strategies for more effective chemotherapeutic delivery aiming to generate better prognosis. Currently, cancer treatment is a highly dynamic field and significant advances are being made in the development of novel cancer treatment strategies. In contrast to conventional cancer therapeutics, novel approaches such as ligand or receptor based targeting, triggered release, intracellular drug targeting, gene delivery, cancer stem cell therapy, magnetic drug targeting and ultrasound-mediated drug delivery, have added new modalities for cancer treatment. These approaches have led to selective detection of malignant cells leading to their eradication with minimal side effects. Lowering multi-drug resistance and involving influx transportation in targeted drug delivery to cancer cells can also contribute significantly in the therapeutic interventions in cancer.
Collapse
|
16
|
Romano B, Plano D, Encío I, Palop JA, Sanmartín C. In vitro radical scavenging and cytotoxic activities of novel hybrid selenocarbamates. Bioorg Med Chem 2015; 23:1716-27. [PMID: 25792142 DOI: 10.1016/j.bmc.2015.02.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 12/22/2022]
Abstract
Novel selenocyanate and diselenide derivatives containing a carbamate moiety were synthesised and evaluated in vitro to determine their cytotoxic and radical scavenging properties. Cytotoxic activity was tested against a panel of human cell lines including CCRF-CEM (lymphoblastic leukaemia), HT-29 (colon carcinoma), HTB-54 (lung carcinoma), PC-3 (prostate carcinoma), MCF-7 (breast adenocarcinoma), 184B5 (non-malignant, mammary gland derived) and BEAS-2B (non-malignant, derived from bronchial epithelium). Most of the compounds displayed high antiproliferative activity with GI50 values below 10μM in MCF-7, CCRF-CEM and PC-3 cells. Radical scavenging properties of the new selenocompounds were confirmed testing their ability to scavenge DPPH and ABTS radicals. Based on the activity of selenium-based glutathione peroxidases (GPxs), compounds 1a, 2e and 2h were further screened for their capacity to reduce hydrogen peroxide under thiol presence. Results suggest that compound 1a mimics GPxs activity. Cytotoxic parameters, radical scavenging activity and ADME profile point to 1a as promising drug candidate.
Collapse
Affiliation(s)
- Beatriz Romano
- Departamento de Química Orgánica y Farmacéutica, University of Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Irunlarrea, 3, E-31008 Pamplona, Spain
| | - Daniel Plano
- Departamento de Química Orgánica y Farmacéutica, University of Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Irunlarrea, 3, E-31008 Pamplona, Spain
| | - Ignacio Encío
- Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Irunlarrea, 3, E-31008 Pamplona, Spain; Departamento de Ciencias de la Salud, Universidad Pública de Navarra, Avda. Barañain s/n, E-31008 Pamplona, Spain
| | - Juan Antonio Palop
- Departamento de Química Orgánica y Farmacéutica, University of Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Irunlarrea, 3, E-31008 Pamplona, Spain.
| | - Carmen Sanmartín
- Departamento de Química Orgánica y Farmacéutica, University of Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Irunlarrea, 3, E-31008 Pamplona, Spain
| |
Collapse
|