1
|
Paz-García M, Povo-Retana A, Jaén RI, Prieto P, Peraza DA, Zaragoza C, Hernandez-Jimenez M, Pineiro D, Regadera J, García-Bermejo ML, Rodríguez-Serrano EM, Sánchez-García S, Moro MA, Lizasoaín I, Delgado C, Valenzuela C, Boscá L. Beneficial effect of TLR4 blockade by a specific aptamer antagonist after acute myocardial infarction. Biomed Pharmacother 2023; 158:114214. [PMID: 36916435 DOI: 10.1016/j.biopha.2023.114214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023] Open
Abstract
Experimental evidence indicates that the control of the inflammatory response after myocardial infarction is a key strategy to reduce cardiac injury. Cellular damage after blood flow restoration in the heart promotes sterile inflammation through the release of molecules that activate pattern recognition receptors, among which TLR4 is the most prominent. Transient regulation of TLR4 activity has been considered one of the potential therapeutic interventions with greater projection towards the clinic. In this regard, the characterization of an aptamer (4FT) that acts as a selective antagonist for human TLR4 has been investigated in isolated macrophages from different species and in a rat model of cardiac ischemia/reperfusion (I/R). The binding kinetics and biological responses of murine and human macrophages treated with 4FT show great affinity and significant inhibition of TLR4 signaling including the NF-κB pathway and the LPS-dependent increase in the plasma membrane currents (Kv currents). In the rat model of I/R, administration of 4FT following reoxygenation shows amelioration of cardiac injury function and markers, a process that is significantly enhanced when the second dose of 4FT is administered 24 h after reperfusion of the heart. Parameters such as cardiac injury biomarkers, infiltration of circulating inflammatory cells, and the expression of genes associated with the inflammatory onset are significantly reduced. In addition, the expression of anti-inflammatory genes, such as IL-10, and pro-resolution molecules, such as resolvin D1 are enhanced after 4FT administration. These results indicate that targeting TLR4 with 4FT offers new therapeutic opportunities to prevent cardiac dysfunction after infarction.
Collapse
Affiliation(s)
- Marta Paz-García
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Rafael I Jaén
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Patricia Prieto
- Pharmacology, Pharmacognosy and Botany Department, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Diego A Peraza
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - Carlos Zaragoza
- Departamento de Cardiología, Unidad de Investigación Mixta Universidad Francisco de Vitoria, 28223 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
| | | | - David Pineiro
- AptaTargets SL, Av del Cardenal Herrera Oria, 298, 28035 Madrid, Spain
| | - Javier Regadera
- Department of Anatomy, Faculty of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - María L García-Bermejo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), RICORS2040, Ctra de Colmenar Viejo, 28034 Madrid, Spain
| | - E Macarena Rodríguez-Serrano
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), RICORS2040, Ctra de Colmenar Viejo, 28034 Madrid, Spain
| | - Sergio Sánchez-García
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain
| | - María A Moro
- Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro, 28029 Madrid, Spain
| | - Ignacio Lizasoaín
- Departamento de Farmacología y Toxicología, Facultad de Medicina Universidad Complutense Madrid, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
| | - Carmen Valenzuela
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Av. Monforte de Lemos 3-5, P-11, 28029 Madrid, Spain; Unidad de Biomedicina (Unidad Asociada al CSIC) de la Universidad de Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
2
|
Cuadrado I, Oramas-Royo S, González-Cofrade L, Amesty Á, Hortelano S, Estévez-Braun A, de Las Heras B. Labdane conjugates protect cardiomyocytes from doxorubicin-induced cardiotoxicity. Drug Dev Res 2023; 84:84-95. [PMID: 36401841 DOI: 10.1002/ddr.22014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/01/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
The cardiovascular side effects associated with doxorubicin (DOX), a wide spectrum anticancer drug, have limited its clinical application. Therefore, to explore novel strategies with cardioprotective effects, a series of new labdane conjugates were prepared (6a-6c and 8a-8d) from the natural diterpene labdanodiol (1). These hybrid compounds contain anti-inflammatory privileged structures such as naphthalimide, naphthoquinone, and furanonaphthoquinone. Biological activity of these conjugates against DOX-induced cardiotoxicity was tested in vitro and the potential molecular mechanisms of protective effects were explored in H9c2 cardiomyocytes. Three compounds 6c, 8a, and 8b significantly improved cardiomyocyte survival, via inhibition of reactive oxygen species-mediated mitogen-activated protein kinase signaling pathways (extracellular signal-regulated kinase and c-Jun N-terminal kinase) and autophagy mediated by Akt activation. Some structure-activity relationships were outlined, and the best activity was achieved with the labdane-furonaphthoquinone conjugate 8a having an N-cyclohexyl substituent. The findings of this study pave the way for further investigations to obtain more compounds with potential cardioprotective activity.
Collapse
Affiliation(s)
- Irene Cuadrado
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Sandra Oramas-Royo
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Laura González-Cofrade
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Ángel Amesty
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Sonsoles Hortelano
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Estévez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | - Beatriz de Las Heras
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
3
|
Dehydroisohispanolone as a Promising NLRP3 Inhibitor Agent: Bioevaluation and Molecular Docking. Pharmaceuticals (Basel) 2022; 15:ph15070825. [PMID: 35890124 PMCID: PMC9316970 DOI: 10.3390/ph15070825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Dehydroisohispanolone (DIH), is a labdane diterpene that has exhibited anti-inflammatory activity via inhibition of NF-κB activation, although its potential effects on inflammasome activation remain unexplored. This study aims to elucidate whether DIH modulates NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome in macrophages. Our findings show that DIH inhibited NLRP3 activation triggered by Nigericin (Nig), adenosine triphosphate (ATP) and monosodium urate (MSU) crystals, indicating broad inhibitory effects. DIH significantly attenuated caspase-1 activation and secretion of the interleukin-1β (IL-1β) in J774A.1 cells. Interestingly, the protein expressions of NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), pro-caspase-1 and pro-IL-1β were not affected by DIH treatment. Furthermore, we found that DIH pretreatment also inhibited the lipopolysaccharide (LPS)-induced NLRP3 inflammasome priming stage. In addition, DIH alleviated pyroptosis mediated by NLRP3 inflammasome activation. Similar results on IL-1β release were observed in Nig-activated bone marrow-derived macrophages (BMDMs). Covalent molecular docking analysis revealed that DIH fits well into the ATP-binding site of NLRP3 protein, forming a covalent bond with Cys415. In conclusion, our experiments show that DIH is an effective NLRP3 inflammasome inhibitor and provide new evidence for its application in the therapy of inflammation-related diseases.
Collapse
|
4
|
Yu Y, Wang M, Chen R, Sun X, Sun G, Sun X. Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury. J Ginseng Res 2021; 45:642-653. [PMID: 34764719 PMCID: PMC8569261 DOI: 10.1016/j.jgr.2019.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17–induced cardioprotection are also explored. Methods Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.
Collapse
Affiliation(s)
- Yingli Yu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Marco JL. Isolation, reactivity, pharmacological activities and total synthesis of hispanolone and structurally related diterpenes from Labiatae plants. Bioorg Med Chem Lett 2020; 30:127498. [PMID: 32818604 DOI: 10.1016/j.bmcl.2020.127498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 01/12/2023]
Abstract
Hispanolone is a furolabdane diterpene isolated from Ballota hispanica, whose natural product chemistry has been summarized and updated here, including several aspects associated with the isolation, structure determination, hemisynthesis, total synthesis, and pharmacology, and related hispanolone diterpenoids that have attracted the interest of different laboratories from diverse perspective and expertise in the last forty-two years.
Collapse
Affiliation(s)
- José L Marco
- Department of Natural Products (Institute of Organic Chemistry, CSIC), C/ Juan de la Cierva, 3, 28006 Madrid, Spain.
| |
Collapse
|
6
|
González-Cofrade L, Oramas-Royo S, Cuadrado I, Amesty Á, Hortelano S, Estevez-Braun A, de Las Heras B. Dehydrohispanolone Derivatives Attenuate the Inflammatory Response through the Modulation of Inflammasome Activation. JOURNAL OF NATURAL PRODUCTS 2020; 83:2155-2164. [PMID: 32584575 DOI: 10.1021/acs.jnatprod.0c00200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The NLRP3 inflammasome plays a critical role in inflammation-mediated human diseases and represents a promising drug target for novel anti-inflammatory therapies. Hispanolone is a labdane diterpenoid isolated from the aerial parts of Ballota species. This diterpenoid and some derivatives have demonstrated anti-inflammatory effects in classical inflammatory pathways. In the present study, a series of dehydrohispanolone derivatives (1-19) was synthesized, and their anti-inflammatory activities toward NLRP3 inflammasome activation were evaluated. The structures of the dehydrohispanolone analogues produced were elucidated by NMR spectroscopy and mass spectrometry. Four derivatives significantly inhibited IL-1β secretion, with 15 and 18 being the most active (IC50 = 18.7 and 13.8 μM, respectively). Analysis of IL-1β and caspase-1 expression revealed that the new diterpenoids 15 and 18 are selective inhibitors of the NLRP3 inflammasome, reinforcing the previously demonstrated anti-inflammatory properties of hispanolone derivatives.
Collapse
Affiliation(s)
- Laura González-Cofrade
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n-28040, Madrid, Spain
| | - Sandra Oramas-Royo
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Fco. Sánchez 2-38206, La Laguna, Tenerife, Spain
| | - Irene Cuadrado
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n-28040, Madrid, Spain
| | - Ángel Amesty
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Fco. Sánchez 2-38206, La Laguna, Tenerife, Spain
| | - Sonsoles Hortelano
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2-28220, Madrid, Spain
| | - Ana Estevez-Braun
- Departamento de Química Orgánica, Instituto Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Fco. Sánchez 2-38206, La Laguna, Tenerife, Spain
| | - Beatriz de Las Heras
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n-28040, Madrid, Spain
| |
Collapse
|
7
|
Haider N, Boscá L, Zandbergen HR, Kovacic JC, Narula N, González-Ramos S, Fernandez-Velasco M, Agrawal S, Paz-García M, Gupta S, DeLeon-Pennell K, Fuster V, Ibañez B, Narula J. Transition of Macrophages to Fibroblast-Like Cells in Healing Myocardial Infarction. J Am Coll Cardiol 2019; 74:3124-3135. [PMID: 31856969 PMCID: PMC7425814 DOI: 10.1016/j.jacc.2019.10.036] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Macrophages and fibroblasts are 2 major cell types involved in healing after myocardial infarction (MI), contributing to myocardial remodeling and fibrosis. Post-MI fibrosis progression is characterized by a decrease in cardiac macrophage content. OBJECTIVES This study explores the potential of macrophages to express fibroblast genes and the direct role of these cells in post-MI cardiac fibrosis. METHODS Prolonged in vitro culture of human macrophages was used to evaluate the capacity to express fibroblast markers. Infiltrating cardiac macrophages was tracked in vivo after experimental MI of LysM(Cre/+);ROSA26(EYFP/+) transgenic mice. The expression of Yellow Fluorescent Protein (YFP) in these animals is restricted to myeloid lineage allowing the identification of macrophage-derived fibroblasts. The expression in YFP-positive cells of fibroblast markers was determined in myocardial tissue sections of hearts from these mice after MI. RESULTS Expression of the fibroblast markers type I collagen, prolyl-4-hydroxylase, fibroblast specific protein-1, and fibroblast activation protein was evidenced in YFP-positive cells in the heart after MI. The presence of fibroblasts after MI was evaluated in the hearts of animals after depletion of macrophages with clodronate liposomes. This macrophage depletion significantly reduced the number of Mac3+Col1A1+ cells in the heart after MI. CONCLUSIONS The data provide both in vitro and in vivo evidence for the ability of macrophages to transition and adopt a fibroblast-like phenotype. Therapeutic manipulation of this macrophage-fibroblast transition may hold promise for favorably modulating the fibrotic response after MI and after other cardiovascular pathological processes.
Collapse
Affiliation(s)
- Nezam Haider
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Division of Vascular Surgery, University of Arizona, Tucson, Arizona
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Melchor Fernández Almagro, Madrid, Spain.
| | - H Reinier Zandbergen
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Jason C Kovacic
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Navneet Narula
- Department of Pathology, New York University Langone Medical Center, New York, New York
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Melchor Fernández Almagro, Madrid, Spain
| | - María Fernandez-Velasco
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Melchor Fernández Almagro, Madrid, Spain; Instituto de Investigación Biomédica LaPaz, Paseo de la Castellana, Madrid, Spain
| | - Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, University of California, Irvine, California
| | - Marta Paz-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, Madrid, Spain
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, University of California, Irvine, California
| | - Kristine DeLeon-Pennell
- Division of Cardiology, Medical University of South Carolina, Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| | - Valentin Fuster
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Borja Ibañez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Melchor Fernández Almagro, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain. https://twitter.com/Borjaibanez1
| | - Jagat Narula
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
8
|
Hortelano S, González-Cofrade L, Cuadrado I, de Las Heras B. Current status of terpenoids as inflammasome inhibitors. Biochem Pharmacol 2019; 172:113739. [PMID: 31786260 DOI: 10.1016/j.bcp.2019.113739] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
Increasing evidence supports NLRP3 inflammasome as a new target to control inflammation. Dysregulation of NLRP3 inflammasome has been reported to be involved in the pathogenesis of several human inflammatory diseases. However, no NLRP3 inflammasome inhibitors are available in clinic. Terpenoids are natural products with multi-target activities against inflammation. Recent studies have revealed that these compounds are capable of inhibiting the activation of NLRP3 inflammasome in several mouse models of NLRP3 inflammasome-related pathogenesis. Thus, terpenoids represent an interesting pharmacological approach for the treatment of inflammatory diseases as they are endowed with a dual mechanism of inhibition of NF-KB transcription factor and inflammasome activation, both critically involved in their anti-inflammatory effects. This work provides an overview of the current knowledge on the therapeutic potential of terpenoids as NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Sonsoles Hortelano
- Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain.
| | - Laura González-Cofrade
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Irene Cuadrado
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Beatriz de Las Heras
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Tran QT, Wong WF, Chai CL. Labdane diterpenoids as potential anti-inflammatory agents. Pharmacol Res 2017; 124:43-63. [PMID: 28751221 DOI: 10.1016/j.phrs.2017.07.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 01/20/2023]
|
10
|
Islam MT, da Mata AMOF, de Aguiar RPS, Paz MFCJ, de Alencar MVOB, Ferreira PMP, de Carvalho Melo-Cavalcante AA. Therapeutic Potential of Essential Oils Focusing on Diterpenes. Phytother Res 2016; 30:1420-44. [PMID: 27307034 DOI: 10.1002/ptr.5652] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/20/2022]
Abstract
Among all plant derivates, essential oils (EOs) have gained the attention of many scientists. Diterpenes, a family of components present in some EO, are becoming a milestone in the EOs world. The goal of this review is to describe a scenario of diterpenes taking into health-consumption deportment. Previous studies revealed that diterpenes have antioxidant, antimicrobial, antiviral, antiprotozoal, cytotoxic, anticancer, antigenotoxic, antimutagenic, chemopreventive, antiinflammatory, antinociceptive, immunostimulatory, organoprotective, antidiabetic, lipid-lowering, antiallergic, antiplatelet, antithrombotic, and antitoxin activities. In conclusion, diterpenes may be an immense featuring concern in pharmaceutical consumption from a drug discovery point of view. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Md Torequl Islam
- Northeast Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Post-graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Department of Pharmacy, Southern University Bangladesh, 22-Shahid Mirza Lane (E), Academic Building-II, 1st floor, 739/A, Mehedibag Road, Mehedibag-4000, Chittagong, Bangladesh
| | | | - Raí Pablo Sousa de Aguiar
- Post-graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, 64.049-550, Brazil
| | - Marcia Fernanda Correia Jardim Paz
- Northeast Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Post-graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, 64.049-550, Brazil
| | - Marcus Vinícius Oliveira Barros de Alencar
- Northeast Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Post-graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, 64.049-550, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Northeast Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Post-graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Department of Biophysics and Physiology, Federal University of Piauí, Teresina, 64.049-550, Brazil
| | - Ana Amélia de Carvalho Melo-Cavalcante
- Northeast Biotechnology Network (RENORBIO), Post-graduation Program in Biotechnology, Federal University of Piauí, Teresina, 64.049-550, Brazil.,Post-graduation Program in Pharmaceutical Science, Federal University of Piauí, Teresina, 64.049-550, Brazil
| |
Collapse
|