1
|
Hill-Terán G, Petrich J, Falcone Ferreyra ML, Aybar MJ, Coux G. Untangling Zebrafish Genetic Annotation: Addressing Complexities and Nomenclature Issues in Orthologous Evaluation of TCOF1 and NOLC1. J Mol Evol 2024; 92:744-760. [PMID: 39269459 DOI: 10.1007/s00239-024-10200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Treacher Collins syndrome (TCS) is a genetic disorder affecting facial development, primarily caused by mutations in the TCOF1 gene. TCOF1, along with NOLC1, play important roles in ribosomal RNA transcription and processing. Previously, a zebrafish model of TCS successfully recapitulated the main characteristics of the syndrome by knocking down the expression of a gene on chromosome 13 (coding for Uniprot ID B8JIY2), which was identified as the TCOF1 orthologue. However, database updates renamed this gene as nolc1 and the zebrafish database (ZFIN) identified a different gene on chromosome 14 as the TCOF1 orthologue (coding for Uniprot ID E7F9D9). NOLC1 and TCOF1 are large proteins with unstructured regions and repetitive sequences that complicate alignments and comparisons. Also, the additional whole genome duplication of teleosts sets further difficulty. In this study, we present evidence that endorses that NOLC1 and TCOF1 are paralogs, and that the zebrafish gene on chromosome 14 is a low-complexity LisH domain-containing factor that displays homology to NOLC1 but lacks essential sequence features to accomplish TCOF1 nucleolar functions. Our analysis also supports the idea that zebrafish, as has been suggested for other non-tetrapod vertebrates, lack the TCOF1 gene that is associated with tripartite nucleolus. Using BLAST searches in a group of teleost genomes, we identified fish-specific sequences similar to E7F9D9 zebrafish protein. We propose naming them "LisH-containing Low Complexity Proteins" (LLCP). Interestingly, the gene on chromosome 13 (nolc1) displays the sequence features, developmental expression patterns, and phenotypic impact of depletion that are characteristic of TCOF1 functions. These findings suggest that in teleost fish, the nucleolar functions described for both NOLC1 and TCOF1 mediated by their repeated motifs, are carried out by a single gene, nolc1. Our study, which is mainly based on computational tools available as free web-based algorithms, could help to solve similar conflicts regarding gene orthology in zebrafish.
Collapse
Affiliation(s)
- Guillermina Hill-Terán
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina
| | - Julieta Petrich
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina
| | - Maria Lorena Falcone Ferreyra
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), CONICET, Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), CONICET-UNT, San Miguel de Tucumán, Tucumán, Argentina
- Facultad de Bioquímica Química y Farmacia, Instituto de Biología "Dr. Francisco D. Barbieri", Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Gabriela Coux
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), CONICET, CCT-Rosario CONICET, Ocampo y Esmeralda, (S2000EZP), Rosario, Argentina.
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, (S2002LRK), Rosario, Santa Fe., Argentina.
| |
Collapse
|
2
|
Gil Rosas M, Centola C, Torres M, Mouguelar VS, David AP, Piga EJ, Gomez D, Calcaterra NB, Armas P, Coux G. The transcription of the main gene associated with Treacher-Collins syndrome (TCOF1) is regulated by G-quadruplexes and cellular nucleic acid binding protein (CNBP). Sci Rep 2024; 14:7472. [PMID: 38553547 PMCID: PMC10980799 DOI: 10.1038/s41598-024-58255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
Treacle ribosome biogenesis factor 1 (TCOF1) is responsible for about 80% of mandibular dysostosis (MD) cases. We have formerly identified a correlation between TCOF1 and CNBP (CCHC-type zinc finger nucleic acid binding protein) expression in human mesenchymal cells. Given the established role of CNBP in gene regulation during rostral development, we explored the potential for CNBP to modulate TCOF1 transcription. Computational analysis for CNBP binding sites (CNBP-BSs) in the TCOF1 promoter revealed several putative binding sites, two of which (Hs791 and Hs2160) overlap with putative G-quadruplex (G4) sequences (PQSs). We validated the folding of these PQSs measuring circular dichroism and fluorescence of appropriate synthetic oligonucleotides. In vitro studies confirmed binding of purified CNBP to the target PQSs (both folded as G4 and unfolded) with Kd values in the nM range. ChIP assays conducted in HeLa cells chromatin detected the CNBP binding to TCOF1 promoter. Transient transfections of HEK293 cells revealed that Hs2160 cloned upstream SV40 promoter increased transcription of downstream firefly luciferase reporter gene. We also detected a CNBP-BS and PQS (Dr2393) in the zebrafish TCOF1 orthologue promoter (nolc1). Disrupting this G4 in zebrafish embryos by microinjecting DNA antisense oligonucleotides complementary to Dr2393 reduced the transcription of nolc1 and recapitulated the craniofacial anomalies characteristic of Treacher Collins Syndrome. Both cnbp overexpression and Morpholino-mediated knockdown in zebrafish induced nolc1 transcription. These results suggest that CNBP modulates the transcriptional expression of TCOF1 through a mechanism involving G-quadruplex folding/unfolding, and that this regulation is active in vertebrates as distantly related as bony fish and humans. These findings may have implications for understanding and treating MD.
Collapse
Affiliation(s)
- Mauco Gil Rosas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda (S2000EZP), Rosario, Argentina
| | - Cielo Centola
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda (S2000EZP), Rosario, Argentina
| | - Mercedes Torres
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda (S2000EZP), Rosario, Argentina
| | - Valeria S Mouguelar
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda (S2000EZP), Rosario, Argentina
| | - Aldana P David
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda (S2000EZP), Rosario, Argentina
| | - Ernesto J Piga
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda (S2000EZP), Rosario, Argentina
| | - Dennis Gomez
- Institut de Pharmacologie et Biologie Structurale, UMR5089 CNRS-Universite de Toulouse, Equipe Labellisée Ligue Nationale contre le Cancer 2018, 31077, Toulouse, France
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda (S2000EZP), Rosario, Argentina
| | - Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda (S2000EZP), Rosario, Argentina
| | - Gabriela Coux
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda (S2000EZP), Rosario, Argentina.
| |
Collapse
|
3
|
Jerome MS, Nanjappa DP, Chakraborty A, Chakrabarty S. Molecular etiology of defective nuclear and mitochondrial ribosome biogenesis: Clinical phenotypes and therapy. Biochimie 2023; 207:122-136. [PMID: 36336106 DOI: 10.1016/j.biochi.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Ribosomopathies are rare congenital disorders associated with defective ribosome biogenesis due to pathogenic variations in genes that encode proteins related to ribosome function and biogenesis. Defects in ribosome biogenesis result in a nucleolar stress response involving the TP53 tumor suppressor protein and impaired protein synthesis leading to a deregulated translational output. Despite the accepted notion that ribosomes are omnipresent and essential for all cells, most ribosomopathies show tissue-specific phenotypes affecting blood cells, hair, spleen, or skin. On the other hand, defects in mitochondrial ribosome biogenesis are associated with a range of clinical manifestations affecting more than one organ. Intriguingly, the deregulated ribosomal function is also a feature in several human malignancies with a selective upregulation or downregulation of specific ribosome components. Here, we highlight the clinical conditions associated with defective ribosome biogenesis in the nucleus and mitochondria with a description of the affected genes and the implicated pathways, along with a note on the treatment strategies currently available for these disorders.
Collapse
Affiliation(s)
- Maria Sona Jerome
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to Be University), Deralakate, Mangaluru, 575018, India.
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
4
|
Hasan AM, Jyoti MMS, Rana MR, Rezanujjaman M, Tokumoto T. Purification and Identification of the 20S Proteasome Complex from Zebrafish. Zebrafish 2022; 19:18-23. [PMID: 35171713 DOI: 10.1089/zeb.2021.0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The proteasome is a large polymeric protease complex responsible for degradation of intracellular proteins and generation of peptides. In this study, we purified a native 20S proteasome protein complex from zebrafish (Danio rerio) from the whole body. The cytosolic fraction of zebrafish hydrolyzed Suc-Leu-Leu-Val-Tyr-MCA (Suc-LLVY-MCA), a well-known substrate for the proteasome, in the presence of sodium dodecyl sulfate. From the cytosolic fraction, the 20S proteasome was purified using five column chromatography steps: DEAE cellulose, Q-Sepharose, Sephacryl S-300 gel, hydroxylapatite, and phenyl Sepharose. Electrophoresis and Western blot analyses showed that zebrafish 20S proteasome subunits have molecular masses ranging from 22 to 33 kDa. The subunit composition of the purified 20S proteasome was identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis after two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separation. Fourteen kinds of 20S subunits were found. As a special characteristic of zebrafish, two proteins of the α1 subunit were identified. In addition, the results suggested that the α8 subunit is in the 20S complex instead of the α4 subunit. In this study, we demonstrated the subunit composition of the 20S proteasome complex present in zebrafish cells.
Collapse
Affiliation(s)
- Ali Md Hasan
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Maisum Sarwar Jyoti
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Rubel Rana
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Md Rezanujjaman
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| | - Toshinobu Tokumoto
- Integrated Bioscience Section, Graduate School of Science and Technology, National University Corporation, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
5
|
Leask M, Carleton C, Leeke B, Newman T, Antoun J, Farella M, Horsfield J. Riboceine Rescues Auranofin-Induced Craniofacial Defects in Zebrafish. Antioxidants (Basel) 2021; 10:antiox10121964. [PMID: 34943067 PMCID: PMC8750187 DOI: 10.3390/antiox10121964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Craniofacial abnormalities are a common group of congenital developmental disorders that can require intensive oral surgery as part of their treatment. Neural crest cells (NCCs) contribute to the facial structures; however, they are extremely sensitive to high levels of oxidative stress, which result in craniofacial abnormalities under perturbed developmental environments. The oxidative stress-inducing compound auranofin (AFN) disrupts craniofacial development in wildtype zebrafish embryos. Here, we tested whether the antioxidant Riboceine (RBC) rescues craniofacial defects arising from exposure to AFN. RBC rescued AFN-induced cellular apoptosis and distinct defects of the cranial cartilage in zebrafish larvae. Zebrafish embryos exposed to AFN have higher expression of antioxidant genes gstp1 and prxd1, with RBC treatment partially rescuing these gene expression profiles. Our data suggest that antioxidants may have utility in preventing defects in the craniofacial cartilage owing to environmental or genetic risk, perhaps by enhancing cell survival.
Collapse
Affiliation(s)
- Megan Leask
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (M.L.); (C.C.); (B.L.); (T.N.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, The University of Auckland, Auckland 1010, New Zealand; (J.A.); (M.F.)
| | - Catherine Carleton
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (M.L.); (C.C.); (B.L.); (T.N.)
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand
| | - Bryony Leeke
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (M.L.); (C.C.); (B.L.); (T.N.)
| | - Trent Newman
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (M.L.); (C.C.); (B.L.); (T.N.)
| | - Joseph Antoun
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, The University of Auckland, Auckland 1010, New Zealand; (J.A.); (M.F.)
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand
| | - Mauro Farella
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, The University of Auckland, Auckland 1010, New Zealand; (J.A.); (M.F.)
- Department of Oral Sciences, Sir John Walsh Research Institute, University of Otago, Dunedin 9016, New Zealand
| | - Julia Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand; (M.L.); (C.C.); (B.L.); (T.N.)
- Maurice Wilkins Centre for Molecular Biodiscovery, Private Bag 92019, The University of Auckland, Auckland 1010, New Zealand; (J.A.); (M.F.)
- Genetics Otago Research Centre, University of Otago, Dunedin 9016, New Zealand
- Correspondence:
| |
Collapse
|
6
|
Marí-Beffa M, Mesa-Román AB, Duran I. Zebrafish Models for Human Skeletal Disorders. Front Genet 2021; 12:675331. [PMID: 34490030 PMCID: PMC8418114 DOI: 10.3389/fgene.2021.675331] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
In 2019, the Nosology Committee of the International Skeletal Dysplasia Society provided an updated version of the Nosology and Classification of Genetic Skeletal Disorders. This is a reference list of recognized diseases in humans and their causal genes published to help clinician diagnosis and scientific research advances. Complementary to mammalian models, zebrafish has emerged as an interesting species to evaluate chemical treatments against these human skeletal disorders. Due to its versatility and the low cost of experiments, more than 80 models are currently available. In this article, we review the state-of-art of this “aquarium to bedside” approach describing the models according to the list provided by the Nosology Committee. With this, we intend to stimulate research in the appropriate direction to efficiently meet the actual needs of clinicians under the scope of the Nosology Committee.
Collapse
Affiliation(s)
- Manuel Marí-Beffa
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| | - Ana B Mesa-Román
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain
| | - Ivan Duran
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, IBIMA, Málaga, Spain.,Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Málaga, Spain
| |
Collapse
|
7
|
Armas P, Coux G, Weiner AMJ, Calcaterra NB. What's new about CNBP? Divergent functions and activities for a conserved nucleic acid binding protein. Biochim Biophys Acta Gen Subj 2021; 1865:129996. [PMID: 34474118 DOI: 10.1016/j.bbagen.2021.129996] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Cellular nucleic acid binding protein (CNBP) is a conserved single-stranded nucleic acid binding protein present in most eukaryotes, but not in plants. Expansions in the CNBP gene cause myotonic dystrophy type 2. Initially reported as a transcriptional regulator, CNBP was then also identified acting as a translational regulator. SCOPE OF REVIEW The focus of this review was to link the CNBP structural features and newly reported biochemical activities with the recently described biological functions, in the context of its pathological significance. MAJOR CONCLUSIONS Several post-translational modifications affect CNBP subcellular localization and activity. CNBP participates in the transcriptional and translational regulation of a wide range of genes by remodeling single-stranded nucleic acid secondary structures and/or by modulating the activity of trans-acting factors. CNBP is required for proper neural crest and heart development, and plays a role in cell proliferation control. Besides, CNBP has been linked with neurodegenerative, inflammatory, and congenital diseases, as well as with tumor processes. GENERAL SIGNIFICANCE This review provides an insight into the growing functions of CNBP in cell biology. A unique and robust mechanistic or biochemical connection among these roles has yet not been elucidated. However, the ability of CNBP to dynamically integrate signaling pathways and to act as nucleic acid chaperone may explain most of the roles and functions identified so far.
Collapse
Affiliation(s)
- Pablo Armas
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONIeCET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo 531, S2002LRK Rosario, Argentina
| | - Gabriela Coux
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONIeCET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo 531, S2002LRK Rosario, Argentina
| | - Andrea M J Weiner
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONIeCET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo 531, S2002LRK Rosario, Argentina
| | - Nora B Calcaterra
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONIeCET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Esmeralda y Ocampo 531, S2002LRK Rosario, Argentina.
| |
Collapse
|
8
|
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, Sanij E. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther 2021; 6:323. [PMID: 34462428 PMCID: PMC8405630 DOI: 10.1038/s41392-021-00728-8] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/12/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Ribosome biogenesis and protein synthesis are fundamental rate-limiting steps for cell growth and proliferation. The ribosomal proteins (RPs), comprising the structural parts of the ribosome, are essential for ribosome assembly and function. In addition to their canonical ribosomal functions, multiple RPs have extra-ribosomal functions including activation of p53-dependent or p53-independent pathways in response to stress, resulting in cell cycle arrest and apoptosis. Defects in ribosome biogenesis, translation, and the functions of individual RPs, including mutations in RPs have been linked to a diverse range of human congenital disorders termed ribosomopathies. Ribosomopathies are characterized by tissue-specific phenotypic abnormalities and higher cancer risk later in life. Recent discoveries of somatic mutations in RPs in multiple tumor types reinforce the connections between ribosomal defects and cancer. In this article, we review the most recent advances in understanding the molecular consequences of RP mutations and ribosomal defects in ribosomopathies and cancer. We particularly discuss the molecular basis of the transition from hypo- to hyper-proliferation in ribosomopathies with elevated cancer risk, a paradox termed "Dameshek's riddle." Furthermore, we review the current treatments for ribosomopathies and prospective therapies targeting ribosomal defects. We also highlight recent advances in ribosome stress-based cancer therapeutics. Importantly, insights into the mechanisms of resistance to therapies targeting ribosome biogenesis bring new perspectives into the molecular basis of cancer susceptibility in ribosomopathies and new clinical implications for cancer therapy.
Collapse
Affiliation(s)
- Jian Kang
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Natalie Brajanovski
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Keefe T. Chan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Jiachen Xuan
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia
| | - Richard B. Pearson
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, VIC Australia
| | - Elaine Sanij
- grid.1055.10000000403978434Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Clinical Pathology, University of Melbourne, Melbourne, VIC Australia ,grid.1073.50000 0004 0626 201XSt. Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| |
Collapse
|
9
|
Tsai YY, Su CH, Tarn WY. p53 Activation in Genetic Disorders: Different Routes to the Same Destination. Int J Mol Sci 2021; 22:9307. [PMID: 34502215 PMCID: PMC8430931 DOI: 10.3390/ijms22179307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
The tumor suppressor p53 is critical for preventing neoplastic transformation and tumor progression. Inappropriate activation of p53, however, has been observed in a number of human inherited disorders that most often affect development of the brain, craniofacial region, limb skeleton, and hematopoietic system. Genes related to these developmental disorders are essentially involved in transcriptional regulation/chromatin remodeling, rRNA metabolism, DNA damage-repair pathways, telomere maintenance, and centrosome biogenesis. Perturbation of these activities or cellular processes may result in p53 accumulation in cell cultures, animal models, and perhaps humans as well. Mouse models of several p53 activation-associated disorders essentially recapitulate human traits, and inactivation of p53 in these models can alleviate disorder-related phenotypes. In the present review, we focus on how dysfunction of the aforementioned biological processes causes developmental defects via excessive p53 activation. Notably, several disease-related genes exert a pleiotropic effect on those cellular processes, which may modulate the magnitude of p53 activation and establish or disrupt regulatory loops. Finally, we discuss potential therapeutic strategies for genetic disorders associated with p53 misactivation.
Collapse
|
10
|
Martín M, Modenutti CP, Gil Rosas ML, Peyret V, Geysels RC, Bernal Barquero CE, Sobrero G, Muñoz L, Signorino M, Testa G, Miras MB, Masini-Repiso AM, Calcaterra NB, Coux G, Carrasco N, Martí MA, Nicola JP. A Novel SLC5A5 Variant Reveals the Crucial Role of Kinesin Light Chain 2 in Thyroid Hormonogenesis. J Clin Endocrinol Metab 2021; 106:1867-1881. [PMID: 33912899 PMCID: PMC8208674 DOI: 10.1210/clinem/dgab283] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/17/2022]
Abstract
CONTEXT Iodide transport defect (ITD) (Online Mendelian Inheritance in Man No. 274400) is an uncommon cause of dyshormonogenic congenital hypothyroidism due to loss-of-function variants in the SLC5A5 gene, which encodes the sodium/iodide symporter (NIS), causing deficient iodide accumulation in thyroid follicular cells. OBJECTIVE This work aims to determine the molecular basis of a patient's ITD clinical phenotype. METHODS The propositus was diagnosed with dyshormonogenic congenital hypothyroidism with minimal 99mTc-pertechnetate accumulation in a eutopic thyroid gland. The propositus SLC5A5 gene was sequenced. Functional in vitro characterization of the novel NIS variant was performed. RESULTS Sanger sequencing revealed a novel homozygous missense p.G561E NIS variant. Mechanistically, the G561E substitution reduces iodide uptake, because targeting of G561E NIS to the plasma membrane is reduced. Biochemical analyses revealed that G561E impairs the recognition of an adjacent tryptophan-acidic motif by the kinesin-1 subunit kinesin light chain 2 (KLC2), interfering with NIS maturation beyond the endoplasmic reticulum, and reducing iodide accumulation. Structural bioinformatic analysis suggests that G561E shifts the equilibrium of the unstructured tryptophan-acidic motif toward a more structured conformation unrecognizable to KLC2. Consistently, knockdown of Klc2 causes defective NIS maturation and consequently decreases iodide accumulation in rat thyroid cells. Morpholino knockdown of klc2 reduces thyroid hormone synthesis in zebrafish larvae leading to a hypothyroid state as revealed by expression profiling of key genes related to the hypothalamic-pituitary-thyroid axis. CONCLUSION We report a novel NIS pathogenic variant associated with dyshormonogenic congenital hypothyroidism. Detailed molecular characterization of G561E NIS uncovered the significance of KLC2 in thyroid physiology.
Collapse
Affiliation(s)
- Mariano Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas, X5000HUA Córdoba, Argentina
| | - Carlos Pablo Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales–Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| | - Mauco Lucas Gil Rosas
- Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000EZP Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario–Consejo Nacional de Investigaciones Científicas y Técnicas, S2000EZP Rosario, Argentina
| | - Victoria Peyret
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas, X5000HUA Córdoba, Argentina
| | - Romina Celeste Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas, X5000HUA Córdoba, Argentina
| | - Carlos Eduardo Bernal Barquero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas, X5000HUA Córdoba, Argentina
| | - Gabriela Sobrero
- Programa Provincial de Pesquisa Neonatal, Hospital de Niños de la Santísima Trinidad de Córdoba, X5014AKK Córdoba, Argentina
| | - Liliana Muñoz
- Programa Provincial de Pesquisa Neonatal, Hospital de Niños de la Santísima Trinidad de Córdoba, X5014AKK Córdoba, Argentina
| | - Malvina Signorino
- Programa Provincial de Pesquisa Neonatal, Hospital de Niños de la Santísima Trinidad de Córdoba, X5014AKK Córdoba, Argentina
| | - Graciela Testa
- Programa Provincial de Pesquisa Neonatal, Hospital de Niños de la Santísima Trinidad de Córdoba, X5014AKK Córdoba, Argentina
| | - Mirta Beatriz Miras
- Programa Provincial de Pesquisa Neonatal, Hospital de Niños de la Santísima Trinidad de Córdoba, X5014AKK Córdoba, Argentina
| | - Ana María Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas, X5000HUA Córdoba, Argentina
| | - Nora Beatriz Calcaterra
- Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000EZP Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario–Consejo Nacional de Investigaciones Científicas y Técnicas, S2000EZP Rosario, Argentina
| | - Gabriela Coux
- Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000EZP Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario–Consejo Nacional de Investigaciones Científicas y Técnicas, S2000EZP Rosario, Argentina
| | - Nancy Carrasco
- Department of Cellular and Molecular Physiology, Yale School of Medicine, 06510 New Haven, Connecticut, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt School of Medicine, 37232 Nashville, Tennessee, USA
| | - Marcelo Adrián Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales–Consejo Nacional de Investigaciones Científicas y Técnicas, C1428EGA Buenos Aires, Argentina
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas, X5000HUA Córdoba, Argentina
| |
Collapse
|
11
|
Ribosomopathies: New Therapeutic Perspectives. Cells 2020; 9:cells9092080. [PMID: 32932838 PMCID: PMC7564184 DOI: 10.3390/cells9092080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Ribosomopathies are a group of rare diseases in which genetic mutations cause defects in either ribosome biogenesis or function, given specific phenotypes. Ribosomal proteins, and multiple other factors that are necessary for ribosome biogenesis (rRNA processing, assembly of subunits, export to cytoplasm), can be affected in ribosomopathies. Despite the need for ribosomes in all cell types, these diseases result mainly in tissue-specific impairments. Depending on the type of ribosomopathy and its pathogenicity, there are many potential therapeutic targets. The present manuscript will review our knowledge of ribosomopathies, discuss current treatments, and introduce the new therapeutic perspectives based on recent research. Diamond–Blackfan anemia, currently treated with blood transfusion prior to steroids, could be managed with a range of new compounds, acting mainly on anemia, such as L-leucine. Treacher Collins syndrome could be managed by various treatments, but it has recently been shown that proteasomal inhibition by MG132 or Bortezomib may improve cranial skeleton malformations. Developmental defects resulting from ribosomopathies could be also treated pharmacologically after birth. It might thus be possible to treat certain ribosomopathies without using multiple treatments such as surgery and transplants. Ribosomopathies remain an open field in the search for new therapeutic approaches based on our recent understanding of the role of ribosomes and progress in gene therapy for curing genetic disorders.
Collapse
|
12
|
Zhang C, An L, Xue H, Hao S, Yan Y, Zhang Q, Jin X, Li Q, Zhou B, Feng X, Ma P, Wang X, Chen X, Chen C, Cao Z, Ma X. Mutation analysis of TCOF1 gene in Chinese Treacher Collins syndrome patients. J Clin Lab Anal 2020; 35:e23567. [PMID: 32909271 PMCID: PMC7843273 DOI: 10.1002/jcla.23567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
Background Treacher Collins syndrome (TCS) is a rare autosomal dominant or recessive disorder, that involves unique bilateral craniofacial malformations. The phenotypes of TCS are extremely diverse. Interventional surgery can improve hearing loss and facial deformity in TCS patients. Method We recruited seven TCS families. Variant screening in probands was performed by targeted next‐generation sequencing (NGS). The variants identified were confirmed by Sanger sequencing. The pathogenicity of all the mutations was evaluated using the guidelines of the American College of Medical Genetics and Genomics (ACMG) and InterVar software. Results Three frameshift variants, two nonsense variants, one missense variant, and one splicing variant of TCOF1 were identified in the seven TCS probands. Five variants including c.1393C > T, c.4111 + 5G>C, c.1142delC, c.2285_2286delCT, and c.1719delG had not been previously reported. Furthermore, we report the c.149A > G variant for the first time in a Chinese TCS patient. We provided prenatal diagnosis for family 4. Proband 7 chose interventional surgery. Conclusion We identified five novel variants in TCOF1 in Chinese patients with TCS, which expands the mutation spectrum of TCOF1 in TCS. Bone conduction hearing rehabilitation can improve hearing for TCS patients and prenatal diagnosis can provide fertility guidance for TCS families.
Collapse
Affiliation(s)
- Chuan Zhang
- Graduate School of Peking, Union Medical College, Beijing, China.,National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China.,Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Lisha An
- National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China
| | - Huiqin Xue
- Children's Hospital of Shanxi, Women Health Center of Shanxi, Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Shengju Hao
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Yousheng Yan
- National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China
| | - Qinghua Zhang
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Xiaohua Jin
- Graduate School of Peking, Union Medical College, Beijing, China.,National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China
| | - Qian Li
- National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China
| | - Bingbo Zhou
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Xuan Feng
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Panpan Ma
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Xing Wang
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Xue Chen
- Gansu Province Medical Genetics Center, Gansu Province Maternal and Child Health Care Hospital, Lanzhou, China
| | - Cuixia Chen
- National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China
| | - Zongfu Cao
- Graduate School of Peking, Union Medical College, Beijing, China.,National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China
| | - Xu Ma
- Graduate School of Peking, Union Medical College, Beijing, China.,National Research Institute for Family Planning, National Human Genetic Resources Center, Beijing, China
| |
Collapse
|
13
|
Guo P, Pan B, Jiang H, Yang Q, He L, Lin L. Prevention methods for Treacher Collins syndrome: A systematic review. Int J Pediatr Otorhinolaryngol 2020; 134:110062. [PMID: 32361149 DOI: 10.1016/j.ijporl.2020.110062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/18/2020] [Accepted: 04/18/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Treacher Collins syndrome (TCS) is a severe congenital mandibulofacial dysostosis that occurs one in every 50,000 births. The main clinical treatment of this rare disorder is reconstruction surgery. However, the high invasion, low security and long period of surgical intervention make it essential to explore prevention methods to decrease morbidity. The authors' aim is to summarize the prevention methods based on known mechanisms of TCS. METHODS A systematic review was conducted through an electronic search of PubMed, EMBASE and Web of Science databases through November 2019 using the following items: 'Treacher Collins syndrome OR TCS OR Franceschetti-Zwahlein-Klein syndrome OR Berry syndrome', 'gene therapy OR prevention'. Four causative gene names were also used. Articles which published in English language and explored the prevention methods for TCS were included and data concerning animal model, intervention, phenotype, conclusion were gathered. RESULTS Sixty-five studies were reviewed in total, and seven articles were included in this systematic review. Four articles used prevention methods related to the inhibition of p53, and three related to preclusion of oxidative stress-induced DNA damage. CONCLUSIONS This article provides a comprehensive review of the prevention methods for craniofacial abnormalities characteristic of TCS based on known pathogenesis in the current literatures. The craniofacial phenotype could be rescued through several treatment methods experimentally such as p53 inhibition and antioxidant administration.
Collapse
Affiliation(s)
- Peipei Guo
- The Seventh Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Pan
- The Seventh Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Haiyue Jiang
- The Seventh Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qinghua Yang
- The Seventh Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Leren He
- The Seventh Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Lin
- The Seventh Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Farley-Barnes KI, Ogawa LM, Baserga SJ. Ribosomopathies: Old Concepts, New Controversies. Trends Genet 2019; 35:754-767. [PMID: 31376929 PMCID: PMC6852887 DOI: 10.1016/j.tig.2019.07.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022]
Abstract
Ribosomopathies are a diverse subset of diseases caused by reduced expression of, or mutations in, factors necessary for making ribosomes, the protein translation machinery in the cell. Despite the ubiquitous need for ribosomes in all cell types, ribosomopathies manifest with tissue-specific defects and sometimes increased cancer susceptibility, but few treatments target the underlying cause. By highlighting new research in the field, we review current hypotheses for the basis of this tissue specificity. Based on new work, we broaden our understanding of the role of ribosome biogenesis in diverse tissue types throughout embryonic development. We also pose the question of whether previously described human conditions such as aging can be at least partially attributed to defects in making ribosomes.
Collapse
Affiliation(s)
- Katherine I Farley-Barnes
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lisa M Ogawa
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|