1
|
Liu J, Malekoltojari A, Asokakumar A, Chow V, Li L, Li H, Grimaldi M, Dang N, Campbell J, Barrett H, Sun J, Navarre W, Wilson D, Wang H, Mani S, Balaguer P, Anakk S, Peng H, Krause HM. Diindoles produced from commensal microbiota metabolites function as endogenous CAR/Nr1i3 ligands. Nat Commun 2024; 15:2563. [PMID: 38519460 PMCID: PMC10960024 DOI: 10.1038/s41467-024-46559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
Numerous studies have demonstrated the correlation between human gut bacteria and host physiology, mediated primarily via nuclear receptors (NRs). Despite this body of work, the systematic identification and characterization of microbe-derived ligands that regulate NRs remain a considerable challenge. In this study, we discover a series of diindole molecules produced from commensal bacteria metabolites that act as specific agonists for the orphan constitutive androstane receptor (CAR). Using various biophysical analyses we show that their nanomolar affinities are comparable to those of synthetic CAR agonists, and that they can activate both rodent and human CAR orthologues, which established synthetic agonists cannot. We also find that the diindoles, diindolylmethane (DIM) and diindolylethane (DIE) selectively up-regulate bona fide CAR target genes in primary human hepatocytes and mouse liver without causing significant side effects. These findings provide new insights into the complex interplay between the gut microbiome and host physiology, as well as new tools for disease treatment.
Collapse
Affiliation(s)
- Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ainaz Malekoltojari
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anjana Asokakumar
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Vimanda Chow
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Hao Li
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine; Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, Inserm, U1194, France
| | - Nathanlown Dang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jhenielle Campbell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - William Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Derek Wilson
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine; Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, Inserm, U1194, France
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- School of the Environment, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Mejdrová I, Dušek J, Škach K, Stefela A, Skoda J, Chalupský K, Dohnalová K, Pavkova I, Kronenberger T, Rashidian A, Smutná L, Duchoslav V, Smutny T, Pávek P, Nencka R. Discovery of Novel Human Constitutive Androstane Receptor Agonists with the Imidazo[1,2- a]pyridine Structure. J Med Chem 2023; 66:2422-2456. [PMID: 36756805 PMCID: PMC10017030 DOI: 10.1021/acs.jmedchem.2c01140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The nuclear constitutive androstane receptor (CAR, NR1I3) plays significant roles in many hepatic functions, such as fatty acid oxidation, biotransformation, liver regeneration, as well as clearance of steroid hormones, cholesterol, and bilirubin. CAR has been proposed as a hypothetical target receptor for metabolic or liver disease therapy. Currently known prototype high-affinity human CAR agonists such as CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) have limited selectivity, activating the pregnane X receptor (PXR) receptor, a related receptor of the NR1I subfamily. We have discovered several derivatives of 3-(1H-1,2,3-triazol-4-yl)imidazo[1,2-a]pyridine that directly activate human CAR in nanomolar concentrations. While compound 39 regulates CAR target genes in humanized CAR mice as well as human hepatocytes, it does not activate other nuclear receptors and is nontoxic in cellular and genotoxic assays as well as in rodent toxicity studies. Our findings concerning potent human CAR agonists with in vivo activity reinforce the role of CAR as a possible therapeutic target.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jan Dušek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Kryštof Škach
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Alžbeta Stefela
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Josef Skoda
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Karel Chalupský
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- Czech
Centre for Phenogenomics, Institute of Molecular
Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Klára Dohnalová
- Czech
Centre for Phenogenomics, Institute of Molecular
Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- 1st
Medical Faculty, Charles University, Katerinska 32, 112 08 Prague, Czech Republic
| | - Ivona Pavkova
- Faculty
of Military Health Sciences, University
of Defense, Trebeska
1575, 500 01 Hradec
Kralove, Czech Republic
| | - Thales Kronenberger
- Department
of Internal Medicine VIII, University Hospital
of Tübingen, 72076 Tübingen, Germany
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität, 72076 Tübingen, Germany
| | - Azam Rashidian
- Department
of Internal Medicine VIII, University Hospital
of Tübingen, 72076 Tübingen, Germany
| | - Lucie Smutná
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Vojtěch Duchoslav
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Tomas Smutny
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Petr Pávek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Radim Nencka
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
3
|
Honkakoski P. Searching for Constitutive Androstane Receptor Modulators. Drug Metab Dispos 2022; 50:1002-1009. [PMID: 35184042 DOI: 10.1124/dmd.121.000482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/01/2022] [Indexed: 02/13/2025] Open
Abstract
The constitutive androstane receptor (CAR; NR1I3) has been established as one of the main drug- and xenobiotic-responsive transcriptional regulators, collectively called xenosensors. CAR activates the expression of several oxidative, hydrolytic, and conjugative drug-metabolizing enzymes and drug transporters, and therefore, it contributes to drug and xenobiotic elimination, drug interactions, and toxicological processes. This minireview introduces mechanisms that modulate CAR activity and focuses on the recent approaches used to search and characterize CAR agonists, inverse agonists, and indirect activators. This minireview is dedicated to Dr. Masahiko Negishi to celebrate his scientific achievements during his long service at the National Institutes of Health. SIGNIFICANCE STATEMENT: Discovery and characterization of human constitutive androstane receptor (CAR) modulators is important for drug development, toxicity studies, and in generation of chemical tools to dissect biological functions of CAR. This minireview focuses on the main methods used to search for these compounds and discusses their essential features.
Collapse
Affiliation(s)
- Paavo Honkakoski
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Zhao P, Fan S, Gao Y, Huang M, Bi H. Nuclear Receptor-Mediated Hepatomegaly and Liver Regeneration: An Update. Drug Metab Dispos 2022; 50:636-645. [PMID: 35078806 DOI: 10.1124/dmd.121.000454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/04/2022] [Indexed: 02/13/2025] Open
Abstract
Nuclear receptors (NRs), a superfamily of ligand-activated transcription factors, are critical in cell growth, proliferation, differentiation, metabolism, and numerous biologic events. NRs have been reported to play important roles in hepatomegaly (liver enlargement) and liver regeneration by regulating target genes or interacting with other signals. In this review, the roles and involved molecular mechanisms of NRs in hepatomegaly and liver regeneration are summarized and the future perspectives of NRs in the treatment of liver diseases are discussed. SIGNIFICANCE STATEMENT: NRs play critical roles in hepatomegaly and liver regeneration, indicating the potential of NRs as targets to promote liver repair after liver injury. This paper reviews the characteristics and molecular mechanisms of NRs in regulating hepatomegaly and liver regeneration, providing more evidence for NRs in the treatment of related liver diseases.
Collapse
Affiliation(s)
- Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| |
Collapse
|
5
|
Lynch C, Zhao J, Wang H, Xia M. Identifying CAR Modulators Utilizing a Reporter Gene Assay. Methods Mol Biol 2022; 2474:29-38. [PMID: 35294753 PMCID: PMC9434986 DOI: 10.1007/978-1-0716-2213-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The constitutive androstane receptor (CAR, NR1I3) controls the transcription of numerous hepatic drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both mechanisms require the translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active and spontaneously localized in the nucleus of most immortalized cell lines. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify human CAR modulators through the employment of a double stable cell line. Using this line, we can identify activators, as well as deactivators, of the challenging nuclear receptor, CAR.
Collapse
Affiliation(s)
- Caitlin Lynch
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Wang H. Meet Our Associate Editor. Curr Drug Metab 2021. [DOI: 10.2174/138920022202210302102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hongbing Wang
- University of Maryland School of Pharmacy Baltimore, MD, United States
| |
Collapse
|
7
|
Oliviero F, Lukowicz C, Boussadia B, Forner-Piquer I, Pascussi JM, Marchi N, Mselli-Lakhal L. Constitutive Androstane Receptor: A Peripheral and a Neurovascular Stress or Environmental Sensor. Cells 2020; 9:E2426. [PMID: 33171992 PMCID: PMC7694609 DOI: 10.3390/cells9112426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Xenobiotic nuclear receptors (NR) are intracellular players involved in an increasing number of physiological processes. Examined and characterized in peripheral organs where they govern metabolic, transport and detoxification mechanisms, accumulating data suggest a functional expression of specific NR at the neurovascular unit (NVU). Here, we focus on the Constitutive Androstane Receptor (CAR), expressed in detoxifying organs such as the liver, intestines and kidneys. By direct and indirect activation, CAR is implicated in hepatic detoxification of xenobiotics, environmental contaminants, and endogenous molecules (bilirubin, bile acids). Importantly, CAR participates in physiological stress adaptation responses, hormonal and energy homeostasis due to glucose and lipid sensing. We next analyze the emerging evidence supporting a role of CAR in NVU cells including the blood-brain barrier (BBB), a key vascular interface regulating communications between the brain and the periphery. We address the emerging concept of how CAR may regulate specific P450 cytochromes at the NVU and the associated relevance to brain diseases. A clear understanding of how CAR engages during pathological conditions could enable new mechanistic, and perhaps pharmacological, entry-points within a peripheral-brain axis.
Collapse
Affiliation(s)
- Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| | - Céline Lukowicz
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| | - Badreddine Boussadia
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Isabel Forner-Piquer
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Jean-Marc Pascussi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| |
Collapse
|
8
|
Torres-Vergara P, Ho YS, Espinoza F, Nualart F, Escudero C, Penny J. The constitutive androstane receptor and pregnane X receptor in the brain. Br J Pharmacol 2020; 177:2666-2682. [PMID: 32201941 DOI: 10.1111/bph.15055] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Since their discovery, the orphan nuclear receptors constitutive androstane receptor (CAR;NR1I3) and pregnane X receptor (PXR;NR1I2) have been regarded as master regulators of drug disposition and detoxification mechanisms. They regulate the metabolism and transport of endogenous mediators and xenobiotics in organs including the liver, intestine and brain. However, with proposals of new physiological functions for NR1I3 and NR1I2, there is increasing interest in the role of these receptors in influencing brain function. This review will summarise key findings regarding the expression and function of NR1I3 and NR1I2 in the brain, hereby highlighting the need for further research in this field.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.,Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Yu Siong Ho
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| | - Francisca Espinoza
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Centro de Microscopía Avanzada, CMA-BIO BIO, Laboratorio de Neurobiología y Células Madres NeuroCellT, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos Escudero
- Laboratorio de FisiologíaVascular, Departamento de Ciencias Básicas, Facultad de Ciencias Básicas, Universidad del Bío-Bío, Chillán, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Universidad del Bío Bío, Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Health and Medicine, The University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Nyffeler J, Willis C, Lougee R, Richard A, Paul-Friedman K, Harrill JA. Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling. Toxicol Appl Pharmacol 2020; 389:114876. [PMID: 31899216 PMCID: PMC8409064 DOI: 10.1016/j.taap.2019.114876] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 10/25/2022]
Abstract
The present study adapted an existing high content imaging-based high-throughput phenotypic profiling (HTPP) assay known as "Cell Painting" for bioactivity screening of environmental chemicals. This assay uses a combination of fluorescent probes to label a variety of organelles and measures a large number of phenotypic features at the single cell level in order to detect chemical-induced changes in cell morphology. First, a small set of candidate phenotypic reference chemicals (n = 14) known to produce changes in the cellular morphology of U-2 OS cells were identified and screened at multiple time points in concentration-response format. Many of these chemicals produced distinct cellular phenotypes that were qualitatively similar to those previously described in the literature. A novel workflow for phenotypic feature extraction, concentration-response modeling and determination of in vitro thresholds for chemical bioactivity was developed. Subsequently, a set of 462 chemicals from the ToxCast library were screened in concentration-response mode. Bioactivity thresholds were calculated and converted to administered equivalent doses (AEDs) using reverse dosimetry. AEDs were then compared to effect values from mammalian toxicity studies. In many instances (68%), the HTPP-derived AEDs were either more conservative than or comparable to the in vivo effect values. Overall, we conclude that the HTPP assay can be used as an efficient, cost-effective and reproducible screening method for characterizing the biological activity and potency of environmental chemicals for potential use in in vitro-based safety assessments.
Collapse
Affiliation(s)
- Johanna Nyffeler
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37831, United States of America
| | - Clinton Willis
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America; Oak Ridge Associated Universities (ORAU) National Student Services Contractor, Oak Ridge, TN 37831, United States of America
| | - Ryan Lougee
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America; Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN 37831, United States of America
| | - Ann Richard
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Katie Paul-Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America
| | - Joshua A Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711, United States of America.
| |
Collapse
|