1
|
Zhang M, Lei Z, Yao X, Zhang L, Yan P, Wu N, Chen M, Zhang F, Liu D. Model informed drug development: HSK21542 PBPK model supporting dose decisions in specific populations. Eur J Pharm Sci 2024; 196:106763. [PMID: 38599505 DOI: 10.1016/j.ejps.2024.106763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/28/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
HKS21542, a highly selective activator of peripheral kappa opioid receptor agonists, plays a critical role in antinociception and itch inhibition during clinical development. Due to its indication population and elimination characteristics, it is imperative to evaluate the potential HSK21542 systemic exposure in individuals with renal impairment, hepatic impairment, the elderly, and the geriatric population. Here, a physiologically-based pharmacokinetic (PBPK) model for HSK21542 was developed based on in vitro metabolism and transport characteristics and in vivo elimination mechanism. Meanwhile, the potential systemic exposure of HSK21542 in specific populations was evaluated. The predicted results indicated increased systemic exposure in patients with renal impairment, hepatic impairment and in the elderly. Compared to the healthy volunteers aged 20-60 years, the AUC0-24h increased by 52 %-71 % in population with moderate to severe renal impairment, by 46 %-77 % in those with mild to severe hepatic impairment, and by 45 %-85 % in the elderly population aged 65-95-years. Conversely, the pediatric population demonstrated a potential decrease in systemic exposure, ranging from 20 % to 37 % in patients aged 0-17 years due to the physiological characteristics. Combined with the predicted results and the exposure-response relationship observed for HSK21542 and its analog (CR845), dosage regimens were designed for the target population with renal and hepatic impairment, supporting the successfully conducted trials (CTR20201702 and CTR20211940). Moreover, the observed exposure of HSK21542 in the elderly closely matched the predicted results within the same age group. Additionally, based on the predicted results, potential reductions in systemic exposure in pediatric patients should be carefully considered to avoid potential treatment failure in future clinical trials.
Collapse
Affiliation(s)
- Miao Zhang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China; Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA 02115, United States
| | - Zihan Lei
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China; Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Xueting Yao
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Lei Zhang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China
| | - Pangke Yan
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, China
| | - Nan Wu
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, China
| | - Meixia Chen
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, China
| | - Fengyi Zhang
- Haisco Pharmaceutical Group Co., Ltd., Chengdu, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
2
|
Ni C, Hong M. Oligomerization of drug transporters: Forms, functions, and mechanisms. Acta Pharm Sin B 2024; 14:1924-1938. [PMID: 38799641 PMCID: PMC11119549 DOI: 10.1016/j.apsb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 05/29/2024] Open
Abstract
Drug transporters are essential players in the transmembrane transport of a wide variety of clinical drugs. The broad substrate spectra and versatile distribution pattern of these membrane proteins infer their pharmacological and clinical significance. With our accumulating knowledge on the three-dimensional structure of drug transporters, their oligomerization status has become a topic of intense study due to the possible functional roles carried out by such kind of post-translational modification (PTM). In-depth studies of oligomeric complexes formed among drug transporters as well as their interactions with other regulatory proteins can help us better understand the regulatory mechanisms of these membrane proteins, provide clues for the development of novel drugs, and improve the therapeutic efficacy. In this review, we describe different oligomerization forms as well as their structural basis of major drug transporters in the ATP-binding cassette and solute carrier superfamilies, summarize our current knowledge on the influence of oligomerization for protein expression level and transport function of these membrane proteins, and discuss the regulatory mechanisms of oligomerization. Finally, we highlight the challenges associated with the current oligomerization studies and propose some thoughts on the pharmaceutical application of this important drug transporter PTM.
Collapse
Affiliation(s)
- Chunxu Ni
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Wei Y, Wei H, Tian C, Wu Q, Li D, Huang C, Zhang G, Chen R, Wang N, Li Y, Li B, Chu XM. The Transcriptome Analysis of Circular RNAs Between the Doxorubicin- Induced Cardiomyocytes and Bone Marrow Mesenchymal Stem Cells- Derived Exosomes Treated Ones. Comb Chem High Throughput Screen 2024; 27:1056-1070. [PMID: 38305398 DOI: 10.2174/0113862073261891231115072310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 02/03/2024]
Abstract
AIM To analyze the sequencing results of circular RNAs (circRNAs) in cardiomyocytes between the doxorubicin (DOX)-injured group and exosomes treatment group. Moreover, to offer potential circRNAs possibly secreted by exosomes mediating the therapeutic effect on DOX-induced cardiotoxicity for further study. METHODS The DOX-injured group (DOX group) of cardiomyocytes was treated with DOX, while an exosomes-treated group of injured cardiomyocytes were cocultured with bone marrow mesenchymal stem cells (BMSC)-derived exosomes (BEC group). The high-throughput sequencing of circRNAs was conducted after the extraction of RNA from cardiomyocytes. The differential expression of circRNA was analyzed after identifying the number, expression, and conservative of circRNAs. Then, the target genes of differentially expressed circRNAs were predicted based on the targetscan and Miranda database. Next, the GO and KEGG enrichment analyses of target genes of circRNAs were performed. The crucial signaling pathways participating in the therapeutic process were identified. Finally, a real-time quantitative polymerase chain reaction experiment was conducted to verify the results obtained by sequencing. RESULTS Thirty-two circRNAs are differentially expressed between the two groups, of which twenty-three circRNAs were elevated in the exosomes-treated group (BEC group). The GO analysis shows that target genes of differentially expressed circRNAs are mainly enriched in the intracellular signalactivity, regulation of nucleic acid-templated transcription, Golgi-related activity, and GTPase activator activity. The KEGG analysis displays that they were involved in the autophagy biological process and NOD-like receptor signaling pathway. The verification experiment suggested that mmu_circ_0000425 (ID: 116324210) was both decreased in the DOX group and elevated in BEC group, which was consistent with the result of sequencing. CONCLUSION mmu_circ_0000425 in exosomes derived from bone marrow mesenchymal stem cells (BMSC) may have a therapeutic role in alleviating doxorubicin-induced cardiotoxicity (DIC).
Collapse
Affiliation(s)
- Yanhuan Wei
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Emergency Medicine, Rizhao People's Hospital, Rizhao, China
| | - Haixia Wei
- Qingdao Chengyang People's Hospital, Qingdao, China
| | - Chao Tian
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qinchao Wu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chao Huang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoliang Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruolan Chen
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ni Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yonghong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics, Basic Medicine School, Qingdao University, Qingdao, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
4
|
Wang X, Chen J, Huang J, Hong M. The Double-Leucine Motifs Affect Internalization, Stability, and Function of Organic Anion Transporting Polypeptide 1B1. Pharmaceutics 2023; 15:2279. [PMID: 37765248 PMCID: PMC10536080 DOI: 10.3390/pharmaceutics15092279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Organic anion transporting polypeptide 1B1 (OATP1B1) is specifically expressed at the basolateral membrane of human hepatocytes and plays important roles in the uptake of various endogenous and exogenous compounds including many drugs. The proper functioning of OATP1B1, hence, is essential for the bioavailability of various therapeutic agents and needs to be tightly regulated. Dileucine-based signals are involved in lysosomal targeting, internalization, and trans-Golgi network to endosome transporting of membrane proteins. In the current study, we analyzed the 3 intracellular and 13 transmembrane dileucine motifs (DLMs) within the sequence of OATP1B1. It was found that the simultaneous replacement of I332 and L333 with alanine resulted in a significantly reduced level of the mature form of OATP1B1. The cell surface expression of I332A/L333A could be partially rescued by MG132, as well as agents that prevent clathrin-dependent protein internalization, suggesting that this dileucine motif may be involved in the endocytosis of OATP1B1. On the other hand, I376/L377 and I642/L643, which are localized at transmembrane helices (TM) 8 and 12, respectively, are involved in the interaction of the transporter with its substrates. I642A/L643A exhibited a significantly decreased protein level compared to that of the wild-type, implying that the motif is important for maintaining the stability of OATP1B1 as well.
Collapse
Affiliation(s)
- Xuyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jieru Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiujiu Huang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 510642, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 510642, China
| |
Collapse
|
5
|
Bazzone A, Barthmes M, George C, Brinkwirth N, Zerlotti R, Prinz V, Cole K, Friis S, Dickson A, Rice S, Lim J, Fern Toh M, Mohammadi M, Pau D, Stone DJ, Renger JJ, Fertig N. A Comparative Study on the Lysosomal Cation Channel TMEM175 Using Automated Whole-Cell Patch-Clamp, Lysosomal Patch-Clamp, and Solid Supported Membrane-Based Electrophysiology: Functional Characterization and High-Throughput Screening Assay Development. Int J Mol Sci 2023; 24:12788. [PMID: 37628970 PMCID: PMC10454728 DOI: 10.3390/ijms241612788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The lysosomal cation channel TMEM175 is a Parkinson's disease-related protein and a promising drug target. Unlike whole-cell automated patch-clamp (APC), lysosomal patch-clamp (LPC) facilitates physiological conditions, but is not yet suitable for high-throughput screening (HTS) applications. Here, we apply solid supported membrane-based electrophysiology (SSME), which enables both direct access to lysosomes and high-throughput electrophysiological recordings. In SSME, ion translocation mediated by TMEM175 is stimulated using a concentration gradient at a resting potential of 0 mV. The concentration-dependent K+ response exhibited an I/c curve with two distinct slopes, indicating the existence of two conducting states. We measured H+ fluxes with a permeability ratio of PH/PK = 48,500, which matches literature findings from patch-clamp studies, validating the SSME approach. Additionally, TMEM175 displayed a high pH dependence. Decreasing cytosolic pH inhibited both K+ and H+ conductivity of TMEM175. Conversely, lysosomal pH and pH gradients did not have major effects on TMEM175. Finally, we developed HTS assays for drug screening and evaluated tool compounds (4-AP, Zn as inhibitors; DCPIB, arachidonic acid, SC-79 as enhancers) using SSME and APC. Additionally, we recorded EC50 data for eight blinded TMEM175 enhancers and compared the results across all three assay technologies, including LPC, discussing their advantages and disadvantages.
Collapse
Affiliation(s)
- Andre Bazzone
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Maria Barthmes
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Cecilia George
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Nina Brinkwirth
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Rocco Zerlotti
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
- RIGeL-Regensburg International Graduate School of Life Sciences, University of Regensburg, 93053 Regensburg, Germany
| | - Valentin Prinz
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Kim Cole
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Søren Friis
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| | - Alexander Dickson
- SB Drug Discovery, West of Scotland Science Park, Glasgow G20 0XA, UK; (A.D.); (S.R.)
| | - Simon Rice
- SB Drug Discovery, West of Scotland Science Park, Glasgow G20 0XA, UK; (A.D.); (S.R.)
| | - Jongwon Lim
- Cerevel Therapeutics, 222 Jacobs St, Cambridge, MA 02141, USA; (J.L.); (M.F.T.); (D.J.S.); (J.J.R.)
| | - May Fern Toh
- Cerevel Therapeutics, 222 Jacobs St, Cambridge, MA 02141, USA; (J.L.); (M.F.T.); (D.J.S.); (J.J.R.)
| | | | - Davide Pau
- SB Drug Discovery, West of Scotland Science Park, Glasgow G20 0XA, UK; (A.D.); (S.R.)
| | - David J. Stone
- Cerevel Therapeutics, 222 Jacobs St, Cambridge, MA 02141, USA; (J.L.); (M.F.T.); (D.J.S.); (J.J.R.)
| | - John J. Renger
- Cerevel Therapeutics, 222 Jacobs St, Cambridge, MA 02141, USA; (J.L.); (M.F.T.); (D.J.S.); (J.J.R.)
| | - Niels Fertig
- Nanion Technologies, Ganghoferstr. 70a, 80339 Munich, Germany (V.P.); (S.F.)
| |
Collapse
|
6
|
Yang C, Huang Y, Lu Z, Ma Y, Ran X, Yan X, Zhang M, Qiu X, Luo L, Yue G, Chen H. Sublethal effects of niclosamide on the aquatic snail Pomacea canaliculata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115064. [PMID: 37229873 DOI: 10.1016/j.ecoenv.2023.115064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/15/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Pomacea canaliculata is a malignant invasive aquatic snail found worldwide, and niclosamide (NS) is one of the primary agents used for its control. NS applied to water will exist in non-lethal concentrations for some time due to degradation or water exchange, thus resulting in sublethal effects on environmental organisms. To identify sublethal effects of NS on Pomacea canaliculata, we studied the aspects of histopathology, oxygen-nitrogen ratio (RO∶N), enzyme activity determination, and gene expression. After LC30 NS treatment (0.310 g/L), many muscle fibers of the feet degenerated and some acinar vesicles of the hepatopancreas collapsed and dissolved. The oxygen-nitrogen ratio (RO∶N) decreased significantly from 15.0494 to 11.5183, indicating that NS had changed the metabolic mode of Pomacea canaliculata and shifted it primarily to protein catabolism. Transcriptome analysis identified the sublethal effects of LC30 NS on the snails at the transcriptional level. 386, 322, and 583 differentially expressed genes (DEGs) were identified in the hepatopancreas, gills, and feet, respectively. GO (Gene Ontology) functional analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway annotations showed that DEGs in the hepatopancreas were mainly enriched for sugar metabolism, protein biosynthesis, immune response, and amino acid metabolism functional categories; DEGs in the gills were mainly enriched for ion transport and amino acid metabolism; DEGs in the feet were mainly enriched for transmembrane transport and inositol biosynthesis. In the future, we will perform functional validation of key genes to further explain the molecular mechanism of sublethal effects.
Collapse
Affiliation(s)
- Chunping Yang
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Yuting Huang
- Nankai University, Weijin RD 94, Tianjin 300071, China
| | - Zhaohuan Lu
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Yuqing Ma
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Xiao Ran
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Xiao Yan
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Min Zhang
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Xiaoyan Qiu
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Liya Luo
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China
| | - Guizhou Yue
- Sichuan Agricultural University, Xinkang RD 46, Ya'an 625014, China
| | - Huabao Chen
- Sichuan Agricultural University, Huimin RD 211, Chengdu, Sichuan 611130, China.
| |
Collapse
|
7
|
Branched chain amino acids catabolism as a source of new drug targets in pathogenic protists. Exp Parasitol 2023; 249:108499. [PMID: 36898495 DOI: 10.1016/j.exppara.2023.108499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Leucine, isoleucine, and valine, collectively termed Branched Chain Amino Acids (BCAA), are hydrophobic amino acids (AAs) and are essential for most eukaryotes since in these organisms they cannot be biosynthesized and must be supplied by the diet. These AAs are structurally relevant for muscle cells and, of course, important for the protein synthesis process. The metabolism of BCAA and its participation in different biological processes in mammals have been relatively well described. However, for other organisms as pathogenic parasites, the literature is really scarce. Here we review the BCAA catabolism, compile evidence on their relevance for pathogenic eukaryotes with special emphasis on kinetoplastids and highlight unique aspects of this underrated pathway.
Collapse
|
8
|
Nies AT, Schaeffeler E, Schwab M. Hepatic solute carrier transporters and drug therapy: Regulation of expression and impact of genetic variation. Pharmacol Ther 2022; 238:108268. [DOI: 10.1016/j.pharmthera.2022.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
|
9
|
Molina V, von Plessing C, Romero A, Benavides S, Troncoso JM, Pérez-Correa JR, Franco W. Determination of the Dissolution/Permeation and Apparent Solubility for Microencapsulated Emamectin Benzoate Using In Vitro and Ex Vivo Salmo salar Intestine Membranes. Pharmaceuticals (Basel) 2022; 15:ph15060652. [PMID: 35745571 PMCID: PMC9227562 DOI: 10.3390/ph15060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
In this work, two microencapsulation techniques were used to protect and improve the absorption of emamectin benzoate (EB), which is an antiparasitic drug used to control Caligus rogercresseyi. EB has a low aqueous solubility, which affects its absorption in the intestine of Salmo salar. Microparticles were produced by spray drying and ionic gelation, using Soluplus® (EB−SOL) and sodium alginate (EB−ALG) as polymers, respectively. Studies were conducted on dissolution/permeation, apparent permeability (Papp), apparent solubility (Sapp), and absorption using synthetic and biological membranes. Based on these results, the amount of EB in the microparticles needed to achieve a therapeutic dose was estimated. The EB−ALG microparticles outperformed both EB−SOL and free EB, for all parameters analyzed. The results show values of 0.45 mg/mL (80.2%) for dissolution/permeation, a Papp of 6.2 mg/mL in RS−L, an absorption of 7.3% in RS, and a Sapp of 53.1% in EM medium. The EB−ALG microparticles decrease the therapeutic dose necessary to control the parasite, with values of 3.0−2 mg/mL and 1.1−2 mg/mL for EB in EM and RS, respectively. The Korsmeyer−Peppas kinetic model was the best model to fit the EB−ALG and EB−SOL dissolution/permeation experiments. In addition, some of our experimental results using synthetic membranes are similar to those obtained with biological membranes, which suggests that, for some parameters, it is possible to replace biological membranes with synthetic membranes. The encapsulation of EB by ionic gelation shows it is a promising formulation to increase the absorption of the poorly soluble drug. In contrast, the spray-dried microparticles produced using Soluplus® result in even less dissolution/permeation than free EB, so the technique cannot be used to improve the solubility of EB.
Collapse
Affiliation(s)
- Victoria Molina
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile; (V.M.); (J.R.P.-C.)
| | | | - Alex Romero
- Laboratory of Immunology and Stress of Aquatic Organisms, Animal Pathology Institute, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Interdisciplinary Center for Aquaculture Research (INCAR), Centro FONDAP, Valdivia 5090000, Chile
| | - Sergio Benavides
- Research Center in Agri-Food and Applied Nutrition, Universidad Adventista de Chile, Chillán 3820572, Chile;
- Faculty of Sciences for Health Care, Universidad San Sebastián, Concepción 4080871, Chile
| | | | - José Ricardo Pérez-Correa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile; (V.M.); (J.R.P.-C.)
| | - Wendy Franco
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile; (V.M.); (J.R.P.-C.)
- Department of Health Sciences, Nutrition and Dietetics Career, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile
- Correspondence: ; Tel.: +56-223-545-983
| |
Collapse
|
10
|
Yin J, Li F, Li Z, Yu L, Zhu F, Zeng S. Feature, Function, and Information of Drug Transporter-Related Databases. Drug Metab Dispos 2022; 50:76-85. [PMID: 34426411 DOI: 10.1124/dmd.121.000419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022] Open
Abstract
With the rapid progress in pharmaceutical experiments and clinical investigations, extensive knowledge of drug transporters (DTs) has accumulated, which is valuable data for the understanding of drug metabolism and disposition. However, such data are largely dispersed in the literature, which hampers its utility and significantly limits its possibility for comprehensive analysis. A variety of databases have, therefore, been constructed to provide DT-related data, and they were reviewed in this study. First, several knowledge bases providing data regarding clinically important drugs and their corresponding transporters were discussed, which constituted the most important resources of DT-centered data. Second, some databases describing the general transporters and their functional families were reviewed. Third, various databases offering transporter information as part of their entire data collection were described. Finally, customized database functions that are available to facilitate DT-related research were discussed. This review provided an overview of the whole collection of DT-related databases, which might facilitate research on precision medicine and rational drug use. SIGNIFICANCE STATEMENT: A collection of well established databases related to drug transporters were comprehensively reviewed, which were organized according to their importance in drug absorption, distribution, metabolism, and excretion research. These databases could collectively contribute to the research on rational drug use.
Collapse
Affiliation(s)
- Jiayi Yin
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Fengcheng Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Zhaorong Li
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Feng Zhu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China (J.Y., F.L., L.Y., F.Z., S.Z.); Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China (Z.L., F.Z.); Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China (F.Z.); and Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Cancer Center of Zhejiang University, Hangzhou 310058, China (S.Z.)
| |
Collapse
|
11
|
Kotlyar M, Pastrello C, Ahmed Z, Chee J, Varyova Z, Jurisica I. IID 2021: towards context-specific protein interaction analyses by increased coverage, enhanced annotation and enrichment analysis. Nucleic Acids Res 2021; 50:D640-D647. [PMID: 34755877 PMCID: PMC8728267 DOI: 10.1093/nar/gkab1034] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
Improved bioassays have significantly increased the rate of identifying new protein-protein interactions (PPIs), and the number of detected human PPIs has greatly exceeded early estimates of human interactome size. These new PPIs provide a more complete view of disease mechanisms but precise understanding of how PPIs affect phenotype remains a challenge. It requires knowledge of PPI context (e.g. tissues, subcellular localizations), and functional roles, especially within pathways and protein complexes. The previous IID release focused on PPI context, providing networks with comprehensive tissue, disease, cellular localization, and druggability annotations. The current update adds developmental stages to the available contexts, and provides a way of assigning context to PPIs that could not be previously annotated due to insufficient data or incompatibility with available context categories (e.g. interactions between membrane and cytoplasmic proteins). This update also annotates PPIs with conservation across species, directionality in pathways, membership in large complexes, interaction stability (i.e. stable or transient), and mutation effects. Enrichment analysis is now available for all annotations, and includes multiple options; for example, context annotations can be analyzed with respect to PPIs or network proteins. In addition to tabular view or download, IID provides online network visualization. This update is available at http://ophid.utoronto.ca/iid.
Collapse
Affiliation(s)
- Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Zuhaib Ahmed
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Justin Chee
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Zofia Varyova
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON M5S 1A4, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
12
|
Ni C, Wang X, Chen J, Xu S, Ye W, Hong M. Leucine heptad motifs within transmembrane domains affect function and oligomerization of human organic anion transporting polypeptide 1B1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183554. [PMID: 33428894 DOI: 10.1016/j.bbamem.2021.183554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 01/07/2023]
Abstract
Organic anion transporting polypeptides (OATPs) are transmembrane proteins responsible for the uptake of a wide range of endogenous compounds and clinically important drugs. The liver-specific OATP1B1 serves crucial roles in the removal of many orally administered drugs. The proper function of the transporter hence is essential for the pharmacokinetics of various therapeutic agents. Membrane proteins tend to form oligomers that are important for their stability, targeting and/or interactions with the substrates. Previous study in our laboratory revealed that OATP1B1 may form homo-oligomers and that a GXXXG motif localized at transmembrane domain 8 (TM8) may affect its oligomerization. In the current study, three short-form leucine heptad repeats within the transmembrane domains of OATP1B1 were investigated. It was found that the disruption of leucine heptad repeats within TM3 dramatically reduced the uptake function and protein-protein association of OATP1B1; while within TM8, only L378 is essential for the function of OATP1B1 and alanine replacement of L378 exhibited no effect on the oligomerization. The fragmental expression of TM3 interfered with the association of OATP1B1 homo-oligomers as well as its association with OATP1B3, which is also selectively expressed at human hepatocytes, suggesting that the region may be shared by both transporters for their protein-protein interactions.
Collapse
Affiliation(s)
- Chunxu Ni
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xuyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jie Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Su Xu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Wenjing Ye
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
13
|
Lee W, Ha JM, Sugiyama Y. Post-translational regulation of the major drug transporters in the families of organic anion transporters and organic anion-transporting polypeptides. J Biol Chem 2020; 295:17349-17364. [PMID: 33051208 PMCID: PMC7863896 DOI: 10.1074/jbc.rev120.009132] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/13/2020] [Indexed: 12/16/2022] Open
Abstract
The organic anion transporters (OATs) and organic anion-transporting polypeptides (OATPs) belong to the solute carrier (SLC) transporter superfamily and play important roles in handling various endogenous and exogenous compounds of anionic charge. The OATs and OATPs are often implicated in drug therapy by impacting the pharmacokinetics of clinically important drugs and, thereby, drug exposure in the target organs or cells. Various mechanisms (e.g. genetic, environmental, and disease-related factors, drug-drug interactions, and food-drug interactions) can lead to variations in the expression and activity of the anion drug-transporting proteins of OATs and OATPs, possibly impacting the therapeutic outcomes. Previous investigations mainly focused on the regulation at the transcriptional level and drug-drug interactions as competing substrates or inhibitors. Recently, evidence has accumulated that cellular trafficking, post-translational modification, and degradation mechanisms serve as another important layer for the mechanisms underlying the variations in the OATs and OATPs. This review will provide a brief overview of the major OATs and OATPs implicated in drug therapy and summarize recent progress in our understanding of the post-translational modifications, in particular ubiquitination and degradation pathways of the individual OATs and OATPs implicated in drug therapy.
Collapse
Affiliation(s)
- Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.
| | - Jeong-Min Ha
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Kroll T, Prescher M, Smits SHJ, Schmitt L. Structure and Function of Hepatobiliary ATP Binding Cassette Transporters. Chem Rev 2020; 121:5240-5288. [PMID: 33201677 DOI: 10.1021/acs.chemrev.0c00659] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The liver is beyond any doubt the most important metabolic organ of the human body. This function requires an intensive crosstalk within liver cellular structures, but also with other organs. Membrane transport proteins are therefore of upmost importance as they represent the sensors and mediators that shuttle signals from outside to the inside of liver cells and/or vice versa. In this review, we summarize the known literature of liver transport proteins with a clear emphasis on functional and structural information on ATP binding cassette (ABC) transporters, which are expressed in the human liver. These primary active membrane transporters form one of the largest families of membrane proteins. In the liver, they play an essential role in for example bile formation or xenobiotic export. Our review provides a state of the art and comprehensive summary of the current knowledge of hepatobiliary ABC transporters. Clearly, our knowledge has improved with a breath-taking speed over the last few years and will expand further. Thus, this review will provide the status quo and will lay the foundation for new and exciting avenues in liver membrane transporter research.
Collapse
Affiliation(s)
- Tim Kroll
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Martin Prescher
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.,Center for Structural Studies, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Rodrigues AD, Lai Y, Shen H, Varma MVS, Rowland A, Oswald S. Induction of Human Intestinal and Hepatic Organic Anion Transporting Polypeptides: Where Is the Evidence for Its Relevance in Drug-Drug Interactions? Drug Metab Dispos 2020; 48:205-216. [PMID: 31879282 DOI: 10.1124/dmd.119.089615] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 02/13/2025] Open
Abstract
Organic anion transporting polypeptides (OATPs), expressed in human liver (OATP1B1, OATP1B3, and OATP2B1) and intestine (OATP2B1), govern the pharmacokinetics (PK) of drugs (e.g., statins) and endogenous substrates (e.g., coproporphyrin I [CPI]). Their expression is known to be modulated (e.g., disease, age, and environmental factors), and they also present as the loci of clinically relevant polymorphisms and drug interactions involving inhibition. In comparison, relatively few clinical reports describe the induction of OATPs, although the effect of inducers (e.g., rifampicin [RIF], carbamazepine [CBZ]) on OATP biomarker plasma levels and statin PK has been reported. Of note, available human tissue (e.g., biopsy) protein and messenger RNA expression profiling data indicate that OATPs in gut and liver are not induced by prototypical inducers such as RIF when compared with cytochrome P450 3A4 (CYP3A4), P-glycoprotein (Pgp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP). Such results are consistent with in vitro human hepatocyte data. Therefore, the observed impact of RIF, and possibly CBZ, on statin PK (>20% decrease in the area under the plasma concentration vs. time curve) cannot be ascribed to OATP induction with certainty. In fact, most statins and CPI have been shown to present variously as substrates of RIF-inducible proteins such as CYP3A4, Pgp, MRP2, and BCRP. Interpretation of multidose RIF data is further complicated by its autoinduction, which likely leads to decreased inhibition of OATP. In the absence of more conclusive OATP induction data, caution is needed when modeling drug-drug interactions involving multidose inducers such as RIF. SIGNIFICANCE STATEMENT: Presently, there is limited direct clinical evidence supporting the notion that human liver and gut organic anion transporting polypeptides (OATPs) are inducible by agents like rifampicin (RIF). Such data need to be reconciled and will pose challenges for attempting to incorporate OATP induction into physiologically based pharmacokinetics models. Although disparate sets of tissue biopsy (atorvastatin and carbamazepine) and in vitro hepatocyte (phenobarbital, chenodeoxycholate, and amprenavir) data present OATP messenger RNA induction (≥2-fold) by agents beyond RIF, the clinical relevance of such data needs to be determined.
Collapse
Affiliation(s)
- A David Rodrigues
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (A.D.R., M.V.S.V.); Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (Y.L.); Department of Metabolism & Pharmacokinetics, Bristol-Myers Squibb Research & Development, Princeton, New Jersey (H.S.); College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia (A.R.); and Department of Clinical Pharmacology, Center of Drug Absorption & Transport, University Medicine of Greifswald, Greifswald, Germany (S.O.)
| | - Yurong Lai
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (A.D.R., M.V.S.V.); Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (Y.L.); Department of Metabolism & Pharmacokinetics, Bristol-Myers Squibb Research & Development, Princeton, New Jersey (H.S.); College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia (A.R.); and Department of Clinical Pharmacology, Center of Drug Absorption & Transport, University Medicine of Greifswald, Greifswald, Germany (S.O.)
| | - Hong Shen
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (A.D.R., M.V.S.V.); Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (Y.L.); Department of Metabolism & Pharmacokinetics, Bristol-Myers Squibb Research & Development, Princeton, New Jersey (H.S.); College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia (A.R.); and Department of Clinical Pharmacology, Center of Drug Absorption & Transport, University Medicine of Greifswald, Greifswald, Germany (S.O.)
| | - Manthena V S Varma
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (A.D.R., M.V.S.V.); Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (Y.L.); Department of Metabolism & Pharmacokinetics, Bristol-Myers Squibb Research & Development, Princeton, New Jersey (H.S.); College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia (A.R.); and Department of Clinical Pharmacology, Center of Drug Absorption & Transport, University Medicine of Greifswald, Greifswald, Germany (S.O.)
| | - Andrew Rowland
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (A.D.R., M.V.S.V.); Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (Y.L.); Department of Metabolism & Pharmacokinetics, Bristol-Myers Squibb Research & Development, Princeton, New Jersey (H.S.); College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia (A.R.); and Department of Clinical Pharmacology, Center of Drug Absorption & Transport, University Medicine of Greifswald, Greifswald, Germany (S.O.)
| | - Stefan Oswald
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc., Groton, Connecticut (A.D.R., M.V.S.V.); Drug Metabolism Department, Gilead Sciences Inc., Foster City, California (Y.L.); Department of Metabolism & Pharmacokinetics, Bristol-Myers Squibb Research & Development, Princeton, New Jersey (H.S.); College of Medicine & Public Health, Flinders University, Adelaide, South Australia, Australia (A.R.); and Department of Clinical Pharmacology, Center of Drug Absorption & Transport, University Medicine of Greifswald, Greifswald, Germany (S.O.)
| |
Collapse
|
16
|
Brosseau N, Ramotar D. The human organic cation transporter OCT1 and its role as a target for drug responses. Drug Metab Rev 2019; 51:389-407. [PMID: 31564168 DOI: 10.1080/03602532.2019.1670204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human organic cation uptake transporter OCT1, encoded by the SLC22A1 gene, is highly expressed in the liver and reported to possess a broad substrate specificity. OCT1 operates by facilitated diffusion and allows the entry of nutrients into cells. Recent findings revealed that OCT1 can mediate the uptake of drugs for treating various diseases such as cancers. The levels of OCT1 expression correlate with the responses towards many drugs and functionally defective OCT1 lead to drug resistance. It has been recently proposed that OCT1 should be amongst the crucial drug targets used for pharmacogenomic analyses. Several single nucleotide polymorphisms exist and are distributed across the entire OCT1 gene. While there are differences in the OCT1 gene polymorphisms between populations, there are at least five variants that warrant consideration in any genetic screen. To date, and despite two decades of research into OCT1 functional role, it still remains uncertain what are the define substrates for this uptake transporter, although studies from mice revealed that one of the substrates is vitamin B1. It is also unclear how OCT1 recognizes a broad array of ligands and whether this involves specific modifications and interactions with other proteins. In this review, we highlight the current findings related to OCT1 with the aim of propelling further studies on this key uptake transporter.
Collapse
Affiliation(s)
- Nicolas Brosseau
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Dindial Ramotar
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|