1
|
He ZC, Zhang T, Peng W, Ding F. Protonation State Insights into the Influence of Biocatalytic Function for Acetylcholinesterase Mediated by Neonicotinoids. Biochemistry 2025. [PMID: 40252023 DOI: 10.1021/acs.biochem.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
The catalytic efficiency of acetylcholinesterase (AChE) is likely regulated by the protonation states and conformational adaptations of its catalytic residues. While neonicotinoid insecticides are recognized for impairing AChE function through neurotoxic mechanisms, the precise molecular mechanisms governing this inhibition remain poorly characterized. This investigation elucidates how structural variations among neonicotinoids modulate the protonation equilibria of Glu-202 and His-447 in AChE's catalytic triad. Comparative analysis reveals that nitro-substituted neonicotinoids (imidacloprid, clothianidin) induce more pronounced protonation state transitions compared to their cyano-containing counterparts (thiacloprid, acetamiprid). Specifically, the strong electron-withdrawing nitro groups facilitate the conversion of Glu-202 from the deprotonation (GLU) to protonation (GLH) state and His-447 from the δ- (HID) to ε-position protonation (HIE) state through enhanced electrostatic interactions. These electronic perturbations trigger structural reorganization within the active site, evidenced by nitro group-directed residue realignment and subsequent H-bond formation. Energy decomposition analysis identifies electrostatic contributions as the primary determinant of binding affinity differences, with nitro-neonicotinoids exhibiting stronger interactions than cyano-neonicotinoids. QM/MM metadynamics reveals that substantial protonation state alterations disrupt AChE's biocatalytic function, particularly its capacity for acetylcholine hydrolysis. Finally, SH-SY5Y-based cellular assays show that imidacloprid exhibits the strongest inhibitory effect on AChE intracellular activity, while thiacloprid and acetamiprid show weaker inhibitory effects, aligning with the computational predictions. This study provides insights into the protonation-state-induced biocatalytic function for acetylcholinesterase mediated by neonicotinoids, contributing to the assessment of exogenous ligand-induced potential ecological and human health risks.
Collapse
Affiliation(s)
- Zhi-Cong He
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tao Zhang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Wei Peng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fei Ding
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| |
Collapse
|
2
|
Rajak P, Roy S, Podder S, Dutta M, Sarkar S, Ganguly A, Mandi M, Dutta A, Nanda S, Khatun S. Synergistic action of organophosphates and COVID-19 on inflammation, oxidative stress, and renin-angiotensin system can amplify the risk of cardiovascular maladies. Toxicol Appl Pharmacol 2022; 456:116267. [PMID: 36240863 PMCID: PMC9554205 DOI: 10.1016/j.taap.2022.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022]
Abstract
Organophosphates (OPs) are ubiquitous environmental contaminants, widely used as pesticides in agricultural fields. In addition, they serve as flame-retardants, plasticizers, antifoaming or antiwear agents in lacquers, hydraulic fluids, and floor polishing agents. Therefore, world-wide and massive application of these compounds have increased the risk of unintentional exposure to non-targets including the human beings. OPs are neurotoxic agents as they inhibit the activity of acetylcholinesterase at synaptic cleft. Moreover, they can fuel cardiovascular issues in the form of myocardities, cardiac oedema, arrhythmia, systolic malfunction, infarction, and altered electrophysiology. Such pathological outcomes might increase the severity of cardiovascular diseases which are the leading cause of mortality in the developing world. Coronavirus disease-19 (COVID-19) is the ongoing global health emergency caused by SARS-CoV-2 infection. Similar to OPs, SARS-CoV-2 disrupts cytokine homeostasis, redox-balance, and angiotensin-II/AT1R axis to promote cardiovascular injuries. Therefore, during the current pandemic milieu, unintentional exposure to OPs through several environmental sources could escalate cardiac maladies in patients with COVID-19.
Collapse
Affiliation(s)
- Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India,Corresponding author
| | - Sumedha Roy
- Cytogenetics Laboratory, Department of Zoology, The University of Burdwan, West Bengal, India
| | | | - Moumita Dutta
- Departments of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Saurabh Sarkar
- Department of Zoology, Gushkara Mahavidyalaya; Gushkara, Purba Bardhaman, West Bengal, India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Moutushi Mandi
- Toxicology Research Unit, Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Anik Dutta
- Post Graduate Department of Zoology, Darjeeling Govt. College, West Bengal, India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Salma Khatun
- Department of Zoology, Krishna Chandra College, Hetampur, West Bengal, India
| |
Collapse
|
3
|
Madero-Ayala PA, Mares-Alejandre RE, Ramos-Ibarra MA. In Silico Structural Analysis of Serine Carboxypeptidase Nf314, a Potential Drug Target in Naegleria fowleri Infections. Int J Mol Sci 2022; 23:ijms232012203. [PMID: 36293059 PMCID: PMC9603766 DOI: 10.3390/ijms232012203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
Naegleria fowleri, also known as the “brain-eating” amoeba, is a free-living protozoan that resides in freshwater bodies. This pathogenic amoeba infects humans as a casual event when swimming in contaminated water. Upon inhalation, N. fowleri invades the central nervous system and causes primary amoebic meningoencephalitis (PAM), a rapidly progressive and often fatal disease. Although PAM is considered rare, reducing its case fatality rate compels the search for pathogen-specific proteins with a structure–function relationship that favors their application as targets for discovering new or improved drugs against N. fowleri infections. Herein, we report a computational approach to study the structural features of Nf314 (a serine carboxypeptidase that is a virulence-related protein in N. fowleri infections) and assess its potential as a drug target, using bioinformatics tools and in silico molecular docking experiments. Our findings suggest that Nf314 has a ligand binding site suitable for the structure-based design of specific inhibitors. This study represents a further step toward postulating a reliable therapeutic target to treat PAM with drugs specifically aimed at blocking the pathogen proliferation by inhibiting protein function.
Collapse
|