1
|
Zhu Y, Yang J, Zhang JL, Liu H, Yan XJ, Ge JY, Wang FF. Dapagliflozin activates the RAP1B/NRF2/GPX4 signaling and promotes mitochondrial biogenesis to alleviate vascular endothelial ferroptosis. Cell Signal 2025; 132:111824. [PMID: 40280228 DOI: 10.1016/j.cellsig.2025.111824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/25/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Vascular endothelial ferroptosis is a key mechanism underlying endothelial injury and atherosclerotic plaque formation. Dapagliflozin, an essential medication in the management of heart failure, has been shown to delay atherosclerosis progression. However, the underlying mechanisms remain unclear. This study aimed to elucidate the molecular pathways whereby dapagliflozin inhibits vascular endothelial ferroptosis. We utilized human umbilical vein endothelial cells (HUVECs) to construct a cell model of atherosclerosis combined with ferroptosis. Dapagliflozin significantly decreased the iron and malondialdehyde levels and the release of inflammatory factors in HUVECs treated with oxidized low-density lipoprotein or Erastin but increased the superoxide dismutase activity and the reduced glutathione / oxidized glutathione ratio. Results from transmission electron microscopy indicated that dapagliflozin alleviated the mitochondrial shrinkage and the reduction in the number of cristae in these HUVECs. RNA sequencing revealed that dapagliflozin upregulates RAP1B. In vitro experiments showed that RAP1B upregulates NRF2 and promotes its nuclear translocation, activating the xCT/GPX4 signaling pathway and inhibiting lipid peroxidation. Additionally, dapagliflozin induces mitochondrial biogenesis and enhances oxidative phosphorylation through the RAP1B/NRF2 pathway, reducing iron overload and excessive production of mitochondrial reactive oxygen species, ultimately mitigating ferroptosis. At the animal level, we constructed an atherosclerosis model by using Apoe-/-; Rap1b-/- double-knockout mice. Rap1b knockout blocked the inhibitory effects of dapagliflozin on atherosclerotic plaque formation and ferroptosis activation. We confirmed in vivo that dapagliflozin upregulates GPX4 and key factors of mitochondrial biogenesis via RAP1B, promoting oxidative phosphorylation. When mitochondrial oxidative phosphorylation was pharmacologically inhibited, ferroptosis was reactivated, promoting atherosclerotic plaque formation. In conclusion, this study demonstrated that dapagliflozin activates the RAP1B/NRF2/GPX4 signaling pathway and promotes mitochondrial biogenesis, thereby alleviating vascular endothelial ferroptosis.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, PR China
| | - Jin Yang
- Pfizer, Inc., Cambridge, MA, USA
| | - Jia-Li Zhang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, PR China
| | - Hao Liu
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, PR China
| | - Xue-Jiao Yan
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, PR China
| | - Ji-Yong Ge
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, PR China
| | - Fang-Fang Wang
- Department of Cardiology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, PR China.
| |
Collapse
|
2
|
Shi Z, Han S. Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins. Heliyon 2025; 11:e41629. [PMID: 39866414 PMCID: PMC11761934 DOI: 10.1016/j.heliyon.2025.e41629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Statins are widely used for treating lipid disorders and cardiovascular diseases. However, the therapeutic efficiency and adverse effects of statins vary among different patients, which numerous clinical and epidemiological studies have attributed to genetic polymorphisms in statin-metabolizing enzymes and transport proteins. The metabolic processes of statins are relatively complex, involving spontaneous or enzyme-catalyzed interconversion between more toxic lactone metabolites and active acid forms in the liver and bloodstream, influenced by multiple factors, including the expression levels of many metabolic enzymes and transporters. Addressing the variable statin therapeutic outcomes is a pressing clinical challenge. Transcription factors and epigenetic modifications regulate the metabolic enzymes and transporters involved in statin metabolism and disposition and, therefore, hold promise as 'personalized' targets for achieving optimized statin therapy. In this review, we explore the potential for customizing therapy by targeting the metabolism of statin medications. The biochemical bases of adverse reactions to statin drugs and their correlation with polymorphisms in metabolic enzymes and transporters are summarized. Next, we mainly focus on the regulatory roles of transcription factors and epigenetic modifications in regulating the gene expression of statin biochemical machinery. The recommendations for future therapies are finally proposed by targeting the central regulatory factors of statin metabolism.
Collapse
Affiliation(s)
- Zhuangqi Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
3
|
Zhang Z, Deng X, Chen R, Li Q, Sun L, Cao J, Lai Z, Lai X, Wang Z, Sun S, Zhang L. Effect of Black Tea Polysaccharides on Alleviating Type 2 Diabetes Mellitus by Regulating PI3K/Akt/GLUT2 Pathway. Foods 2024; 13:1908. [PMID: 38928848 PMCID: PMC11203343 DOI: 10.3390/foods13121908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The bioactivity of tea polysaccharides (TPs) has been widely reported, but studies to date have focused on green tea. Some human health investigations have implied that black tea may possess potential antidiabetic effects, but less is known about their potential role and related antidiabetic mechanism. The present study was, therefore, conducted to investigate the chemical properties and antidiabetic activity of TPs from black tea. Monosaccharide composition revealed that Alduronic acid (77.8 mol%) considerably predominated in the fraction. TP conformation analysis indicated that three components in TPs were all typical of high-branching structures. Oral administration of TPs could effectively alleviate fasting blood glucose in type 2 diabetes mellitus (T2D) mice, with the values 23.6 ± 1.42, 19.6 ± 2.25, and 16.4 ± 2.07 mmol/L in the 200, 400, and 800 mg/kg·BW groups, respectively. Among these TPs groups, the 800 mg/kg·BW groups significantly decreased by 37.88% when compared with the T2D+water group (p < 0.05). Further studies demonstrated that TP treatment upregulated the expression of p-Akt/p-PI3K (p < 0.001). Additionally, TP treatment significantly promoted glucose transporter protein 2 (GLUT2) translocation in the liver (p < 0.001). These findings suggest that TPs from black tea protect against T2D by activating PI3K/Akt/GLUT2 signaling and might serve as a novel therapeutic candidate for T2D.
Collapse
Affiliation(s)
- Zhenbiao Zhang
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou 510641, China; (Z.Z.); (X.D.)
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (L.S.); (J.C.); (Z.L.); (X.L.)
| | - Xuming Deng
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou 510641, China; (Z.Z.); (X.D.)
| | - Ruohong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (L.S.); (J.C.); (Z.L.); (X.L.)
| | - Qiuhua Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (L.S.); (J.C.); (Z.L.); (X.L.)
| | - Lingli Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (L.S.); (J.C.); (Z.L.); (X.L.)
| | - Junxi Cao
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (L.S.); (J.C.); (Z.L.); (X.L.)
| | - Zhaoxiang Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (L.S.); (J.C.); (Z.L.); (X.L.)
| | - Xingfei Lai
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (L.S.); (J.C.); (Z.L.); (X.L.)
| | - Zaihua Wang
- Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Guangzhou 510640, China;
| | - Shili Sun
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China; (R.C.); (Q.L.); (L.S.); (J.C.); (Z.L.); (X.L.)
| | - Lingzhi Zhang
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou 510641, China; (Z.Z.); (X.D.)
| |
Collapse
|
4
|
Garrett TJ, Puchowicz MA, Park EA, Dong Q, Farage G, Childress R, Guingab J, Simpson CL, Sen S, Brogdon EC, Buchanan LM, Raghow R, Elam MB. Effect of statin treatment on metabolites, lipids and prostanoids in patients with Statin Associated Muscle Symptoms (SAMS). PLoS One 2023; 18:e0294498. [PMID: 38100464 PMCID: PMC10723679 DOI: 10.1371/journal.pone.0294498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Between 5-10% of patients discontinue statin therapy due to statin-associated adverse reactions, primarily statin associated muscle symptoms (SAMS). The absence of a clear clinical phenotype or of biomarkers poses a challenge for diagnosis and management of SAMS. Similarly, our incomplete understanding of the pathogenesis of SAMS hinders the identification of treatments for SAMS. Metabolomics, the profiling of metabolites in biofluids, cells and tissues is an important tool for biomarker discovery and provides important insight into the origins of symptomatology. In order to better understand the pathophysiology of this common disorder and to identify biomarkers, we undertook comprehensive metabolomic and lipidomic profiling of plasma samples from patients with SAMS who were undergoing statin rechallenge as part of their clinical care. METHODS AND FINDINGS We report our findings in 67 patients, 28 with SAMS (cases) and 39 statin-tolerant controls. SAMS patients were studied during statin rechallenge and statin tolerant controls were studied while on statin. Plasma samples were analyzed using untargeted LC-MS metabolomics and lipidomics to detect differences between cases and controls. Differences in lipid species in plasma were observed between cases and controls. These included higher levels of linoleic acid containing phospholipids and lower ether lipids and sphingolipids. Reduced levels of acylcarnitines and altered amino acid profile (tryptophan, tyrosine, proline, arginine, and taurine) were observed in cases relative to controls. Pathway analysis identified significant increase of urea cycle metabolites and arginine and proline metabolites among cases along with downregulation of pathways mediating oxidation of branched chain fatty acids, carnitine synthesis, and transfer of acetyl groups into mitochondria. CONCLUSIONS The plasma metabolome of patients with SAMS exhibited reduced content of long chain fatty acids and increased levels of linoleic acid (18:2) in phospholipids, altered energy production pathways (β-oxidation, citric acid cycle and urea cycles) as well as reduced levels of carnitine, an essential mediator of mitochondrial energy production. Our findings support the hypothesis that alterations in pro-inflammatory lipids (arachidonic acid pathway) and impaired mitochondrial energy metabolism underlie the muscle symptoms of patients with statin associated muscle symptoms (SAMS).
Collapse
Affiliation(s)
- Timothy J. Garrett
- Southeast Center for Integrated Metabolomics (SECIM), Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Michelle A. Puchowicz
- Pediatrics-Obesity, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Edwards A. Park
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Qingming Dong
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Gregory Farage
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Richard Childress
- Endocrine Section, Memphis Veteran’s Affairs Medical Center, Memphis, Tennessee, United States of America
| | - Joy Guingab
- Southeast Center for Integrated Metabolomics (SECIM), Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Claire L. Simpson
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Saunak Sen
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Elizabeth C. Brogdon
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Logan M. Buchanan
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Rajendra Raghow
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Marshall B. Elam
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
- Cardiology Section, Memphis Veteran’s Affairs Medical Center, Memphis, Tennessee, United States of America
| |
Collapse
|
5
|
Tan B, Chin KY. Potential role of geranylgeraniol in managing statin-associated muscle symptoms: a COVID-19 related perspective. Front Physiol 2023; 14:1246589. [PMID: 38046949 PMCID: PMC10691100 DOI: 10.3389/fphys.2023.1246589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Myopathy is the most common side effect of statins, but it has not been addressed effectively. In anticipation of its wider use as a small molecule to complement the current COVID-19 management, a pharmacological solution to statin-associated muscle symptoms (SAMS) is warranted. Statins act by suppressing the mevalonate pathway, which in turn affects the downstream synthesis of isoprenoids required for normal physiological functions. CoQ10 and geranylgeraniol (GG) syntheses are reduced by statin use. However, CoQ10 supplementation has not been shown to reverse SAMS. GG is an obligatory substrate for CoQ10 synthesis, an endogenous nutrient critical for skeletal muscle protein synthesis. Multiple studies showed GG supplementation is effective in reversing SAMS. This opinion paper proposes employing GG to prevent SAMS in pleiotropic statin use, including usage in the post-COVID-19 pandemic era.
Collapse
Affiliation(s)
- Barrie Tan
- American River Nutrition, Hadley, MA, United States
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Mammalian Target of Rapamycin (mTOR) Signaling at the Crossroad of Muscle Fiber Fate in Sarcopenia. Int J Mol Sci 2022; 23:ijms232213823. [PMID: 36430301 PMCID: PMC9696247 DOI: 10.3390/ijms232213823] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a major regulator of skeletal myocyte viability. The signaling pathways triggered by mTOR vary according to the type of endogenous and exogenous factors (e.g., redox balance, nutrient availability, physical activity) as well as organismal age. Here, we provide an overview of mTOR signaling in skeletal muscle, with a special focus on the role played by mTOR in the development of sarcopenia. Intervention strategies targeting mTOR in sarcopenia (e.g., supplementation of plant extracts, hormones, inorganic ions, calorie restriction, and exercise) have also been discussed.
Collapse
|
7
|
Karanikola T, Cheva A, Sarafidou K, Myronidou-Tzouveleki M, Tsavdaridis I, Kontonasaki E, Tsirlis A. Effect of Diclofenac and Simvastatin on Bone Defect Healing-An In Vivo Animal Study. Biomimetics (Basel) 2022; 7:143. [PMID: 36278700 PMCID: PMC9589953 DOI: 10.3390/biomimetics7040143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 08/12/2023] Open
Abstract
Non-steroidal, anti-inflammatory drugs and statins are two widely prescribed drug classes that affect bone formation. The aim of this study was to elucidate the effect of diclofenac and simvastatin in artificial bone defect healing. One hundred and forty-four male Wistar rats were used, and the specimens were divided into groups, with respect to the route of drug administration and the type of defect healing (with or without collagen membrane), and subgroups, with respect to the study duration (2, 4 or 8 weeks). Diclofenac was intramuscularly administered while simvastatin was administered both systemically and locally. Animals were euthanized and specimens were histomorphometrically analyzed to evaluate the percentage of new bone formation (%). Bone healing that occurred without any intervention developed more steadily than that of all other groups. Diclofenac exerted a clear, direct inhibitory effect on bone healing and its systemic administration should be avoided. The systemic administration of simvastatin was related to severe myopathy, while the solvent for the local administration of simvastatin seemed to play significant role in bone growth, as simvastatin, when it is administered intraperitoneally in a DMSO solution, appeared to promote bone healing. Local administration may have a significant impact on bone healing and it should be further investigated with the type of solvent or carrier that is used, which both may play a significant role in bone repair induction.
Collapse
Affiliation(s)
- Theodora Karanikola
- Department of Oral Surgery, Implantology and Dental Radiology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| | - Angeliki Cheva
- Pathology Department, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| | - Katia Sarafidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| | - Maria Myronidou-Tzouveleki
- 1st Laboratory of Pharmacology, School of Health Sciences, Faculty of Medicine, Aristotle University of Thessaloniki, 56224 Thessaloniki, Greece
| | - Ioannis Tsavdaridis
- 1st Laboratory of Pharmacology, School of Health Sciences, Faculty of Medicine, Aristotle University of Thessaloniki, 56224 Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| | - Anastasios Tsirlis
- Department of Oral Surgery, Implantology and Dental Radiology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| |
Collapse
|
8
|
Salucci S, Bartoletti-Stella A, Bavelloni A, Aramini B, Blalock WL, Fabbri F, Vannini I, Sambri V, Stella F, Faenza I. Extra Virgin Olive Oil (EVOO), a Mediterranean Diet Component, in the Management of Muscle Mass and Function Preservation. Nutrients 2022; 14:nu14173567. [PMID: 36079827 PMCID: PMC9459997 DOI: 10.3390/nu14173567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 12/25/2022] Open
Abstract
Aging results in a progressive decline in skeletal muscle mass, strength and function, a condition known as sarcopenia. This pathological condition is due to multifactorial processes including physical inactivity, inflammation, oxidative stress, hormonal changes, and nutritional intake. Physical therapy remains the standard approach to treat sarcopenia, although some interventions based on dietary supplementation are in clinical development. In this context, thanks to its known anti-inflammatory and antioxidative properties, there is great interest in using extra virgin olive oil (EVOO) supplementation to promote muscle mass and health in sarcopenic patients. To date, the molecular mechanisms responsible for the pathological changes associated with sarcopenia remain undefined; however, a complete understanding of the signaling pathways that regulate skeletal muscle protein synthesis and their behavior during sarcopenia appears vital for defining how EVOO might attenuate muscle wasting during aging. This review highlights the main molecular players that control skeletal muscle mass, with particular regard to sarcopenia, and discusses, based on the more recent findings, the potential of EVOO in delaying/preventing loss of muscle mass and function, with the aim of stimulating further research to assess dietary supplementation with EVOO as an approach to prevent or delay sarcopenia in aging individuals.
Collapse
Affiliation(s)
- Sara Salucci
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
- Correspondence:
| | - Anna Bartoletti-Stella
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Alberto Bavelloni
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - William L. Blalock
- “Luigi Luca Cavalli-Sforza” Istituto di Genetica Molecolare-Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Francesco Fabbri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Ivan Vannini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Vittorio Sambri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
- Unit of Microbiology, Greater Romagna Hub Laboratory, 47522 Pievesestina, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Experimental, Diagnostic and Specialty Medicine-DIMES of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, 47121 Forlì, Italy
| | - Irene Faenza
- Cellular Signalling Laboratory, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Lin H, Chen X, Pan J, Ke J, Zhang A, Liu Y, Wang C, Chang ACY, Gu J. Secretion of miRNA-326-3p by senescent adipose exacerbates myocardial metabolism in diabetic mice. J Transl Med 2022; 20:278. [PMID: 35729559 PMCID: PMC9210699 DOI: 10.1186/s12967-022-03484-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Adipose tissue homeostasis is at the heart of many metabolic syndromes such as diabetes. Previously it has been demonstrated that adipose tissues from diabetic patients are senescent but whether this contributes to diabetic cardiomyopathy (DCM) remains to be elucidated. METHODS The streptozotocin (STZ) type 1 diabetic mice were established as animal model, and adult mouse ventricular myocytes (AMVMs) isolated by langendorff perfusion as well as neonatal mouse ventricular myocytes (NMVMs) were used as cell models. Senescent associated β galactosidase (SA-β-gal) staining and RT-qPCR were used to identify the presence of adipose senescence in diabetic adipose tissue. Senescent adipose were removed either by surgery or by senolytic treatment. Large extracellular vesicles (LEVs) derived from adipose tissue and circulation were separated by ultracentrifugation. Cardiac systolic and diastolic function was evaluated through cardiac ultrasound. Cardiomyocytes contraction function was evaluated by the Ionoptix HTS system and live cell imaging, mitochondrial morphology and functions were evaluated by transmission electron microscope, live cell fluorescent probe and seahorse analysis. RNA-seq for AMVMs and miRNA-seq for LEVs were performed, and bioinformatic analysis combined with RT-qPCR and Western blot were used to elucidate underlying mechanism that senescent adipose derives LEVs exacerbates myocardial metabolism. RESULTS SA-β-gal staining and RT-qPCR identified the presence of adipose tissue senescence in STZ mice. Through surgical as well as pharmacological means we show that senescent adipose tissue participates in the pathogenesis of DCM in STZ mice by exacerbates myocardial metabolism through secretion of LEVs. Specifically, expression of miRNA-326-3p was up-regulated in LEVs isolated from senescent adipose tissue, circulation, and cardiomyocytes of STZ mice. Up-regulation of miRNA-326-3p coincided with myocardial transcriptomic changes in metabolism. Functionally, we demonstrate that miRNA-326-3p inhibited the expression of Rictor and resulted in impaired mitochondrial and contractile function in cardiomyocytes. CONCLUSION We demonstrate for the first time that senescent adipose derived LEVs exacerbates myocardial metabolism through up-regulated miRNA-326-3p which inhibits Rictor in cardiomyocytes. Furthermore, reducing senescence burden in adipose tissue is capable of relieving myocardial metabolism disorder in diabetes mellitus.
Collapse
Affiliation(s)
- Hao Lin
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaonan Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jianan Pan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jiahan Ke
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alian Zhang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yangyang Liu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Changqian Wang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Alex Chia Yu Chang
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| | - Jun Gu
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Nsaibia MJ, Devendran A, Goubaa E, Bouitbir J, Capoulade R, Bouchareb R. Implication of Lipids in Calcified Aortic Valve Pathogenesis: Why Did Statins Fail? J Clin Med 2022; 11:jcm11123331. [PMID: 35743402 PMCID: PMC9225514 DOI: 10.3390/jcm11123331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Calcific Aortic Valve Disease (CAVD) is a fibrocalcific disease. Lipoproteins and oxidized phospholipids play a substantial role in CAVD; the level of Lp(a) has been shown to accelerate the progression of valve calcification. Indeed, oxidized phospholipids carried by Lp(a) into the aortic valve stimulate endothelial dysfunction and promote inflammation. Inflammation and growth factors actively promote the synthesis of the extracellular matrix (ECM) and trigger an osteogenic program. The accumulation of ECM proteins promotes lipid adhesion to valve tissue, which could initiate the osteogenic program in interstitial valve cells. Statin treatment has been shown to have the ability to diminish the death rate in subjects with atherosclerotic impediments by decreasing the serum LDL cholesterol levels. However, the use of HMG-CoA inhibitors (statins) as cholesterol-lowering therapy did not significantly reduce the progression or the severity of aortic valve calcification. However, new clinical trials targeting Lp(a) or PCSK9 are showing promising results in reducing the severity of aortic stenosis. In this review, we discuss the implication of lipids in aortic valve calcification and the current findings on the effect of lipid-lowering therapy in aortic stenosis.
Collapse
Affiliation(s)
- Mohamed J. Nsaibia
- Department of Cell Biology and Molecular Medicine, Rutgers University, Newark, NJ 07103, USA;
| | - Anichavezhi Devendran
- Department of Medicine, Cardiovascular Research Institute, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Eshak Goubaa
- Thomas Jefferson University East Falls, Philadelphia, PA 19144, USA;
| | - Jamal Bouitbir
- Department of Pharmaceutical Sciences, Division of Molecular and Systems Toxicology, University of Basel, 4056 Basel, Switzerland;
| | - Romain Capoulade
- L’institut Du Thorax, Nantes Université, CNRS, INSERM, F-44000 Nantes, France;
| | - Rihab Bouchareb
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: or ; Tel.: +1-(212)-241-8471
| |
Collapse
|