1
|
Zhang SY, Yang N, Hao PH, Wen R, Zhang TN. Targeting sirtuins in neurological disorders: A comprehensive review. Int J Biol Macromol 2025; 292:139258. [PMID: 39736297 DOI: 10.1016/j.ijbiomac.2024.139258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
The sirtuin (SIRT) family is a group of seven conserved nicotinamide adenine dinucleotide-dependent histone deacetylases (SIRT1-SIRT7), which play crucial roles in various fundamental biological processes, including metabolism, aging, stress responses, inflammation, and cell survival. The role of SIRTs in neuro-pathophysiology has recently attracted significant attention. Notably, SIRT1-SIRT3 have been identified as key players in neuroprotection as they reduce neuroinflammation and regulate mitochondrial function. This review summarizes the latest research advancements in the role of the SIRT family in neurological diseases, mainly including neurodegenerative diseases, ischemia-related diseases, bleeding-related diseases, nervous system injury and other nervous system diseases, emphasizing their critical functions and associated signaling pathways, (e.g., AMPK/SIRT1/PGC-1α, AMPK/SIRT1/IL-1β/NF-κB, STAT2-SIRT4-mTOR, SIRT3/FOXO3α, and other signaling pathways in disease progression, particularly their protective roles in neurodegenerative diseases, ischemic injuries, and neural damage. Additionally, this review discusses progress in clinical studies targeting SIRT-specific small-molecule agonists and inhibitors. Further research on SIRTs may provide new insights into potential therapeutic strategies for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sen-Yu Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
2
|
Lokesh M, Bandaru LJM, Rajanna A, Dhayal VS, Challa S. M1 polarization induction by lead and amyloid peptides in microglial cells: Implications for neurodegeneration process. ENVIRONMENTAL TOXICOLOGY 2024; 39:4267-4277. [PMID: 38700421 DOI: 10.1002/tox.24305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/19/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
Neurodegeneration in conditions like Alzheimer's and Parkinson's disease is influenced by genetic and environmental factors. This study explores the potential neurodegenerative effects of lead (Pb) toxicity and amyloid beta peptides (Aβp 1-40 and Aβp 25-35) by promoting M1 polarization in microglial cells. To this end, we investigated and observed that IC50 concentrations of Pb (22.8 μM) and Aβp 25-35(29.6 μM). Our results demonstrated significant Pb uptake (31.13% at 25 μM Pb) and increased intracellular ROS levels (77.1%) upon treatment with Pb in combination of both Aβp 1-40 and Aβp 25-35. Protein carbonylation significantly increased (73.12 nmol/mL) upon treatment with Pb in combination of both Aβp 1-40 and Aβp 25-35, indicating oxidative damage and compromised cellular defenses against oxidative stress along with elevated DNA oxidative damage (164.9 pg/mL of 8-OH-dG) upon treatment with Pb in combination with both Aβp 1-40 and Aβp 25-35. Microglial polarization showed elevated M1 markers (inducible nitric oxide synthase and cyclooxygenase 2) and reduced M2 markers (arginase-1 and cluster of differentiation 206), suggesting Pb's role in inducing neurodegenerative microglial polarization. These findings provide insights into the complex molecular events contributing to Pb-induced neurotoxicity and neurodegenerative diseases.
Collapse
Affiliation(s)
- Murumulla Lokesh
- Cell Biology Division, National Institute of Nutrition, Hyderabad, India
| | | | - Ajumeera Rajanna
- Cell Biology Division, National Institute of Nutrition, Hyderabad, India
| | | | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Hyderabad, India
| |
Collapse
|
3
|
Lam A, Kong S, Naismith SL. Recent advances in understanding of sleep disorders and disturbances for dementia risk and prevention. Curr Opin Psychiatry 2024; 37:94-100. [PMID: 38226546 DOI: 10.1097/yco.0000000000000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
PURPOSE OF REVIEW To synthesise the recent work examining the relationship between sleep disturbances and dementia, emphasising studies involving individuals with mild cognitive impairment (MCI) or Alzheimer's disease (AD) and/or those investigating AD biomarkers. Additionally, we provide an update on recent interventions targeting sleep-related issues in older adults with MCI or AD. RECENT FINDINGS Various studies have examined obstructive sleep apnoea, sleep duration, and circadian alterations in relation to Alzheimer's pathology and dementia risk, with an emerging body of evidence suggesting that cardiovascular disease, hypertension, glymphatic function, and inflammation might serve as plausible pathophysiological mechanisms contributing to dementia during critical brain periods. Conversely, recent studies investigating insomnia have produced disparate results. Regarding intervention studies, the scarcity of prospective randomised control trials poses a challenge in establishing the benefits of addressing sleep disorders and disturbances. SUMMARY Recent work examining the pathophysiological links between sleep and dementia is strongest for obstructive sleep apnoea and sleep duration, while findings in insomnia studies exhibit inconsistency, possibly due to varied associations with dementia among different insomnia subtypes. It is apparent that more longitudinal studies examining the underlying pathophysiological mechanisms are necessary, alongside more rigorous clinical trials. Although some trials are underway in this field, there is still scarcity in trials examining interventions for circadian disturbances.
Collapse
Affiliation(s)
- Aaron Lam
- Healthy Brain Ageing Program, Brain and Mind Centre
- School of Psychology, Faculty of Science
- Charles Perkins Centre, The University of Sydney, Camperdown
- The Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Shawn Kong
- Healthy Brain Ageing Program, Brain and Mind Centre
- School of Psychology, Faculty of Science
- Charles Perkins Centre, The University of Sydney, Camperdown
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain and Mind Centre
- School of Psychology, Faculty of Science
- Charles Perkins Centre, The University of Sydney, Camperdown
| |
Collapse
|
4
|
Ni H, Liao Y, Zhang Y, Lu H, Huang Z, Huang F, Zhang Z, Dong Y, Wang Z, Huang Y. Levistilide A ameliorates neuroinflammation via inhibiting JAK2/STAT3 signaling for neuroprotection and cognitive improvement in scopolamine-induced Alzheimer's disease mouse model. Int Immunopharmacol 2023; 124:110783. [PMID: 37619415 DOI: 10.1016/j.intimp.2023.110783] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease associated with cognitive impairment and dementia, which has become a major public health problem. There are no effective therapeutic agents used to treat AD in clinic for the extremely complex pathogenesis. Here we identify Levistilide A (LA), one of the major active natural terpene lactone constituents from Chinese herbal medicine Angelicae sinensis and Chuanxiong Rhizoma, as a potent neuroinflammation inhibitor for neuroprotection and cognitive improvement of AD. We show that LA suppresses neuronal apoptosis, restores cholinergic system function, and lowers neuroinflammation in vivo to improve scopolamine (SCOP)-induced learning and memory deficits. In addition, LA inhibits the release of IL-1β, IL-6 and TNF-α, while increasing the production of IL-4 and IL-10 for anti-inflammatory effects in LPS or Aβ-induced BV2 and HMC3 cells. Furthermore, the conditioned medium (CM) from LA-treated BV2 or HMC3 cells enhances the viability of SH-SY5Y and HT-22 cells, and LA reverses M1 to M2 phenotype transformation of BV2 and HMC3 cells accompanied by the inhibited Iba-1 expression and mRNA level of IL-1β, IL-6, TNF-α and NOS2, and the increased expression of ARG1, CD206 and CD163. Mechanistically, we analyze JAK2/STAT3 signaling as possible targets of LA using network pharmacology approaches, and further experimentally validate that LA inhibits the phosphorylation of JAK2 and STAT3, and STAT3 expression within nucleus both in vitro and in vivo. Collectively, we identify LA as a potential neuroinflammation inhibitor for neuroprotection and cognitive improvement, which is expected to be a candidate for AD therapy.
Collapse
Affiliation(s)
- Haojie Ni
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yanfang Liao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yifan Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huinian Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhiju Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Fengming Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Zhende Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zihao Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| | - Yujie Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
5
|
Melatonin Activates Anti-Inflammatory Features in Microglia in a Multicellular Context: Evidence from Organotypic Brain Slices and HMC3 Cells. Biomolecules 2023; 13:biom13020373. [PMID: 36830742 PMCID: PMC9952958 DOI: 10.3390/biom13020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Melatonin (MEL) is a neurohormone endowed with neuroprotective activity, exerted both directly on neuronal cells and indirectly through modulation of responsive glial cells. In particular, MEL's effects on microglia are receptor-mediated and in part dependent on SIRT1 activation. In the present study, we exploited the highly preserved cytoarchitecture of organotypic brain cultures (OC) to explore the effects of MEL on hippocampal microglia in a 3D context as compared to a single cell type context represented by the human HMC3 cell line. We first evaluated the expression of MEL receptor MT1 and SIRT1 and then investigated MEL action against an inflammatory stimulation with LPS: OCs were cultured for a total of 2 weeks and during this time exposed to 0.1 μg/mL of LPS for 24 h either on day 1 (LPS 1°) or on day 11 (LPS 11°). MEL was added immediately after plating and kept for the entire experiment. Under these conditions, both MEL and LPS induced amoeboid microglia. However, the same round phenotype matched different polarization features. LPS increased the number of nuclear-NF-kB+ round cells and MEL alone or in combination with LPS increased BDNF+ round microglia. In addition, MEL contrasted LPS effects on NF-kB expression. Data from HMC3 microglia confirmed MEL's anti-inflammatory effects against LPS in terms of CASP1 induction and BDNF release, identifying SIRT1 as a mediator. However, no effects were evident for MEL alone on HMC3 microglia. Overall, our results point to the importance of the multicellular context for full MEL activity, especially in a preventive view, and support the use of OCs as a favorable model to explore inflammatory responses.
Collapse
|
6
|
Microglia Contributes to BAF-312 Effects on Blood–Brain Barrier Stability. Biomolecules 2022; 12:biom12091174. [PMID: 36139013 PMCID: PMC9496388 DOI: 10.3390/biom12091174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Microglia, together with astrocytes and pericytes, cooperate to ensure blood–brain barrier (BBB) stability, modulating endothelial responses to inflammatory insults. Agonists of the sphingosine 1 phosphate (S1P) receptors, such as siponimod (BAF-312), are important pharmacological tools in multiple sclerosis and other inflammatory diseases. Modulation of S1P receptors may result in a reduced inflammatory response and increased BBB stability. An in vitro BBB model was reproduced using human-derived endothelial cells, astrocytes and microglia. Co-cultures were exposed to inflammatory cytokines (TNFα, 10 UI and IFNγ, 5 UI) in the presence of BAF-312 (100 nM), and the BBB properties and microglia role were evaluated. The drug facilitated microglial migration towards endothelial/astrocyte co-cultures, involving the activity of the metalloprotease 2 (MMP2). Microglia actively cooperated with astrocytes in the maintenance of endothelial barrier stability: in the triple co-culture, selective treatment of microglial cells with BAF-312 significantly prevented cytokines’ effects on the endothelial barrier. In conclusion, BAF-312, modulating S1P receptors in microglia, may contribute to the reinforcement of the endothelial barrier at the BBB, suggesting an additional effect of the drug in the treatment of multiple sclerosis.
Collapse
|