1
|
Bana S, Daffara S, Dagar A, Tiwari AK, Medhi K, Mukherjee S, Uttam V, Ansari MR, Tuli HS, Yadav V, Jain A. Clinical Significance of LINC00261 in the Pathogenesis of Pancreatic, Colorectal, Hepatocellular, and Gallbladder Cancer. Diseases 2025; 13:89. [PMID: 40136629 PMCID: PMC11941650 DOI: 10.3390/diseases13030089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Pancreatic (PC), colorectal (CRC), hepatocellular (HCC), and gallbladder (GC) cancers together account for nearly 20% of all cancer cases. However, specific biomarkers and therapeutic targets for these cancers are lacking. Diagnosing these cancers early and providing timely, appropriate treatment to improve patient outcomes is crucial. In this context, previous studies, including ours, have highlighted the potential of non-coding RNAs, particularly long non-coding RNAs (lncRNAs), in diagnosing and prognosis of various cancers. This review focuses on the mechanistic role of the recently identified lncRNA LINC00261 in PC, CRC, HCC, and GC. Our comprehensive literature analysis revealed that LINC00261 functions as a tumor suppressor, and its reduced expression is associated with larger tumor size, advanced tumor-node-metastasis (TNM) stages, lymphatic metastasis, and poorer overall survival rates. Additionally, we discovered that LINC00261 acts as a molecular sponge for miRNAs, such as miR-550a-3p, miR-23a-3p, miR-148a, miR-324-3p, and miR-105-5p, regulating critical cancer-related signaling pathways, including PI3K/Akt/mTOR, Protein kinase B, and Mammalian target of rapamycin (mTOR). Further bioinformatic analysis revealed that LINC00261 regulates key cellular processes, such as protein-DNA complex formation, ribonuclease complex activity, histone deacetylase complexes, and nuclear matrix interactions. Overall, we believe that LINC00261 holds significant promise as a future biomarker and, when combined with existing treatment strategies, may enhance cancer patient care and survival.
Collapse
Affiliation(s)
- Sanjana Bana
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Sia Daffara
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Aastha Dagar
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Ashutosh Kumar Tiwari
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Kanupriya Medhi
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Sagarika Mukherjee
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| | - Md Rizwan Ansari
- GD Research Center, 3rd Floor, Jyoti Pinnacle Building, Survey No.11, Kondapur Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500081, Telangana, India;
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India;
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, 20213 Malmö, Sweden
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (S.B.); (S.D.); (A.D.); (A.K.T.); (K.M.); (S.M.); (V.U.)
| |
Collapse
|
2
|
Medhi K, Mukherjee S, Dagar A, Tiwari AK, Daffara S, Bana S, Uttam V, Ansari MR, Yadav V, Tuli HS, Jain A. MYOSLID: A Critical Modulator of Cancer Hallmarks. Genes (Basel) 2025; 16:341. [PMID: 40149492 PMCID: PMC11942567 DOI: 10.3390/genes16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Despite being the leading cause of death worldwide, cancer still lacks precise biomarkers for effective targeting, limiting efforts to reduce mortality rates. This review explores the role and clinical significance of a newly identified long non-coding RNA, MYOSLID, in cancer progression. MYOSLID has emerged as a critical modulator in cancer progression by influencing key hallmarks such as proliferation, immune evasion, metastasis, and metabolic reprogramming. It promotes tumor cell growth by stabilizing hypoxia-inducible factor 1 and acting as a competing endogenous RNA (ceRNA) to sequester tumor-suppressive microRNAs like miR-29c-3p, thereby enhancing oncogene expression. It facilitates immune evasion by upregulating PD-L1, suppressing T cell activation, and modulating necroptosis pathways involving RIPK1 and RIPK3. Additionally, MYOSLID drives metastasis by regulating epithelial-mesenchymal transition markers such as LAMB3 and Slug while promoting RAB13-mediated cytoskeletal remodeling and enhancing cancer cell invasion. We have obtained the expression of MYOSLID from TCGA and the ENCORI database. The expression of colorectal adenocarcinoma (COAD) and head and neck squamous cell carcinoma (HNSCC) is associated with poor prognosis and lower survival rate. Given its significant potential as a diagnostic biomarker and therapeutic target, further research is required to elucidate its precise molecular mechanisms and therapeutic applications in cancer treatment.
Collapse
Affiliation(s)
- Kanupriya Medhi
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Sagarika Mukherjee
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Aastha Dagar
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Ashutosh Kumar Tiwari
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Sia Daffara
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Sanjana Bana
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| | - Md Rizwan Ansari
- 3rd Floor, Jyoti Pinnacle Building, Survey No.11, Kondapur Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500081, Telangana, India;
| | - Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skåne University Hospital, Lund University, 20213 Malmö, Sweden;
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India; (K.M.); (S.M.); (A.D.); (A.K.T.); (S.D.); (S.B.); (V.U.)
| |
Collapse
|
3
|
SINGH RAHULKUMAR, MANDAL SUROJIT, MOHANTA ADRIJA, YADAV RITU, KUMAR RAJIVRANJAN, KHATKAR RINKU, UTTAM VIVEK, SHARMA UTTAM, RANA MANJITKAUR, JAIN MANJU, TULI HARDEEPSINGH, JAIN AKLANK. The regulatory role of ZFAS1/miRNAs/mRNAs axis in cancer: a systematic review. Oncol Res 2025; 33:591-604. [PMID: 40109869 PMCID: PMC11915068 DOI: 10.32604/or.2024.050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/16/2024] [Indexed: 03/22/2025] Open
Abstract
Objectives Recently, we and others have demonstrated the involvement of Zinc Finger Antisense 1 (ZFAS1) in cancer development. However, the intricate interplay of ZFAS1 with miRNAs and mRNAs remains to be fully understood. Materials and methods We followed PRISMA guidelines to retrieve and assess the available literature on the topic "ZFAS1/miRNA/mRNA axis" and "Cancer" from databases such as PubMed, Google Scholar, and ScienceDirect. We also used bioinformatic webtools for analyzing the potential miRNA targets of ZFAS1 and its role in survival of cancer patients along with their role in various biological functions and pathways. Results Our literature search and bioinformatic analysis reveals that ZFAS1 serves as a sponge for numerous miRNAs. Among the various targeted miRNAs, miR-150-5p stands out as significantly correlated with ZFAS1 across multiple databases (p-value = 3.27e-16, R-value = -0.346). Additionally, our Kaplan-Meier survival analysis indicates a noteworthy association between ZFAS1 expression levels and overall poor prognosis and survival rates in ovarian, sarcoma, and pancreatic cancers. We also underscore the involvement of various signaling pathways, including Signal Transducer and Activator of Transcription 3 (STAT3), Spindle and Kinetochore-associated Protein 1 (SKA1), Lysophosphatidic acid receptor 1 (LPAR1), and Wnt β-catenin, in cancer development through the ZFAS1/miRNAs/mRNAs axis. Furthermore, we identify ZFAS1's pivotal roles in diverse molecular processes, such as RNA binding and ribonucleoprotein formation. Conclusion In conclusion, this review comprehensively summarizes the latest advancements in understanding the regulatory relationships among ZFAS1, miRNAs, and mRNAs, emphasizing their collective role in cancer development to propose innovative avenues for cancer treatment. We believe that the intricate relationship among the ZFAS1-miRNA-mRNA axis may yield potential therapeutic targets for effective cancer management.
Collapse
Affiliation(s)
- RAHUL KUMAR SINGH
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - SUROJIT MANDAL
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - ADRIJA MOHANTA
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - RITU YADAV
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - RAJIV RANJAN KUMAR
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - RINKU KHATKAR
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - VIVEK UTTAM
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - UTTAM SHARMA
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - MANJIT KAUR RANA
- Department of Pathology/Lab Medicine, All India Institute of Medical Sciences, Bathinda, 151001, India
| | - MANJU JAIN
- Department of Biochemistry, Central University of Punjab, Ghudda, Bathinda, 151401, India
| | - HARDEEP SINGH TULI
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - AKLANK JAIN
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Ghudda, Bathinda, 151401, India
| |
Collapse
|
4
|
Kumar RR, Mohanta A, Rana MK, Uttam V, Tuli HS, Jain A. LncRNAs SOX2-OT and NEAT1 act as a potential biomarker for esophageal squamous cell carcinoma. Discov Oncol 2024; 15:693. [PMID: 39576275 PMCID: PMC11584831 DOI: 10.1007/s12672-024-01589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
Despite strides in diagnostic and therapeutic approaches for ESCC, patient survival rates remain relatively low. Recent studies highlight the pivotal role of long non-coding RNAs (lncRNAs) in regulating diverse cellular activities in humans. Dysregulated lncRNAs have emerged as potential diagnostic indicators across various cancers, including ESCC. However, further research is necessary to effectively leverage ESCC-associated lncRNAs in clinical settings. Understanding their clinical significance for ESCC diagnosis and their mechanisms can pave the way for more effective therapeutic strategies. Our qRT-PCR analysis revealed significant downregulation of SOX2-OT (~ 2.02-fold) and NEAT1 (~ 1.53-fold) in ESCC blood samples. These lncRNAs show potential as biomarkers for distinguishing ESCC patients from healthy individuals, with ROC curves and AUC values of 0.736 for SOX2-OT and 0.621 for NEAT1. Further analysis examined the correlation between SOX2-OT and NEAT1 expression and various clinicopathological factors, including age, gender, smoking, alcohol use, hot beverage intake, tumor grade, and TNM stages. In-silico studies highlighted their roles in miRNA sponging via mTOR and MAPK pathways, while co-expression network analysis identified associated genes. This research paves the way for future studies on ESCC prognosis using SOX2-OT and NEAT1 as predictive markers. By thoroughly investigating the functions of these lncRNAs, we aim to deepen our understanding of their potential as diagnostic markers and their role in facilitating effective therapeutic interventions for esophageal squamous cell carcinoma (ESCC) within clinical contexts.
Collapse
Affiliation(s)
- Rajiv Ranjan Kumar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151401, India
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Adrija Mohanta
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Manjit Kaur Rana
- Department of Pathology/Laboratory Medicine, All India Institute of Medical Sciences, Bathinda, India
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | | | - Aklank Jain
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
5
|
Wu N, Cai J, Jiang J, Lin Y, Wang X, Zhang W, Kang M, Zhang P. Biomarkers of lymph node metastasis in esophageal cancer. Front Immunol 2024; 15:1457612. [PMID: 39399490 PMCID: PMC11466839 DOI: 10.3389/fimmu.2024.1457612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Esophageal cancer (EC) is among the most aggressive malignancies, ranking as the seventh most prevalent malignant tumor worldwide. Lymph node metastasis (LNM) indicates localized spread of cancer and often correlates with a poorer prognosis, emphasizing the necessity for neoadjuvant systemic therapy before surgery. However, accurate identification of LNM in EC presents challenges due to the lack of satisfactory diagnostic techniques. Imaging techniques, including ultrasound and computerized tomography scans, have low sensitivity and accuracy in assessing LNM. Additionally, the existing serological detection lacks precise biomarkers. The intricate and not fully understood molecular processes involved in LNM of EC contribute to current detective limitations. Recent research has shown potential in using various molecules, circulating tumor cells (CTCs), and changes in the microbiota to identify LNM in individuals with EC. Through summarizing potential biomarkers associated with LNM in EC and organizing the underlying mechanisms involved, this review aims to provide insights that facilitate biomarker development, enhance our understanding of the underlying mechanisms, and ultimately address the diagnostic challenges of LNM in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital,
Fuzhou, China
| |
Collapse
|
6
|
Uttam V, Kapoor HS, Rana MK, Yadav R, Prakash H, Jain M, Tuli HS, Jain A. Immune-Related Long Non-Coding RNA Signature Determines Prognosis and Immunotherapeutic Coherence in Esophageal Cancer. Cancer Inform 2024; 23:11769351241276757. [PMID: 39282627 PMCID: PMC11401149 DOI: 10.1177/11769351241276757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives Aim of this study was to explore the immune-related lncRNAs having prognostic role and establishing risk score model for better prognosis and immunotherapeutic coherence for esophageal cancer (EC) patients. Methods To determine the role of immune-related lncRNAs in EC, we analyzed the RNA-seq expression data of 162 EC patients and 11 non-cancerous individuals and their clinically relevant information from the cancer genome atlas (TCGA) database. Bioinformatic and statistical analysis such as Differential expression analysis, co-expression analysis, Kaplan Meier survival analysis, Cox proportional hazards model, ROC analysis of risk model was employed. Results Utilizing a cutoff criterion (log2FC > 1 + log2FC < -1 and FDR < 0.01), we identified 3737 RNAs were significantly differentially expressed in EC patients. Among these, 2222 genes were classified as significantly differentially expressed mRNAs (demRNAs), and 966 were significantly differentially expressed lncRNAs (delncRNA). Through Pearson correlation analysis between differentially expressed lncRNAs and immune related-mRNAs, we identified 12 immune-related lncRNAs as prognostic signatures for EC. Notably, through Kaplan-Meier analysis on these lncRNAs, we found the low-risk group patients showed significantly improved survival compared to the high-risk group. Moreover, this prognostic signature has consistent performance across training, testing and entire validation cohort sets. Using ESTIMATE and CIBERSORT algorithm we further observed significant enriched infiltration of naive B cells, regulatory T cells resting CD4+ memory T cells, and, plasma cells in the low-risk group compared to high-risk EC patients group. On the contrary, tumor-associated M2 macrophages were highly enriched in high-risk patients. Additionally, we confirmed immune-related biological functions and pathways such as inflammatory, cytokines, chemokines response and natural killer cell-mediated cytotoxicity, toll-like receptor signaling pathways, JAK-STAT signaling pathways, chemokine signaling pathways significantly associated with identified IRlncRNA signature and their co-expressed immune genes. Furthermore, we assessed the predictive potential of the lncRNA signature in immune checkpoint inhibitors; we found that programed cell death ligand 1 (PD-L1; P-value = .048), programed cell death ligand 2 (PD-L2; P-value = .002), and T cell immunoglobulin and mucin-domain containing-3 (TIM-3; P-value = .045) expression levels were significantly higher in low-risk patients compared to high-risk patients. Conclusion We believe this study will contribute to better prognosis prediction and targeted treatment of EC in the future.
Collapse
Affiliation(s)
- Vivek Uttam
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Punjab, India
| | | | - Manjit Kaur Rana
- Department of Pathology/Lab Medicine, AIIMS, Bathinda, Punjab, India
| | - Ritu Yadav
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Punjab, India
| | | | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Ghudda, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Lab, Department of Zoology, Central University of Punjab, Ghudda, Punjab, India
| |
Collapse
|
7
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
8
|
Campos-Melo D, Droppelmann CA, Zhu LQ. Editorial: MiRNAs as pivotal components of ncRNA networks associated with CNS injuries and neurodegeneration, and their therapeutic potential. Front Mol Neurosci 2023; 16:1166943. [PMID: 36993783 PMCID: PMC10040871 DOI: 10.3389/fnmol.2023.1166943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Affiliation(s)
- Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
- *Correspondence: Danae Campos-Melo
| | - Cristian A. Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Western University, London, ON, Canada
| | - Ling Q. Zhu
- Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|