1
|
Zhao L, Zhou Y, Jiang Z, Jiang J, Yang X, Gu L, Feng X, Gong Q, Liu K, Chen Y, Yang C, Jiang T. Selenide-modified hyaluronic acid hydrogel promotes scleral remodeling during the recovery phase of form-deprivation myopia by inhibiting HIF-1α-mediated inflammation. Int J Biol Macromol 2025; 311:143385. [PMID: 40268015 DOI: 10.1016/j.ijbiomac.2025.143385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 04/09/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
This study investigates the molecular mechanisms by which selenide-modified hyaluronic acid hydrogel (Se-HA gel) promotes scleral remodeling during the recovery phase of form-deprivation myopia (FDM). The Se-HA gel was synthesized and characterized, exhibiting an average hydrodynamic diameter of 191.72 nm, a polydispersity index (PDI) of 0.19, and a zeta potential of -7.96 mV, indicating a monodisperse state in PBS. Both in vitro experiments and the FDM mouse model confirmed its therapeutic efficacy. At a concentration of 250 μg/mL, Se-HA gel significantly promoted fibroblast proliferation, inhibited apoptosis, and prevented transdifferentiation. A 200 mg/kg subtenon injection improved key ocular biometric parameters in FDM mice. Single-cell and transcriptomic sequencing analyses revealed that Se-HA gel facilitated scleral remodeling by downregulating Hypoxia-Inducible Factor 1 Alpha (HIF-1α) expression and regulating inflammation-related gene expression. Notably, HIF-1α overexpression reversed the beneficial effects of Se-HA gel, reinforcing its pivotal role in mediating these therapeutic outcomes. This study introduces a novel biomaterial-based strategy and identifies new molecular targets for myopia treatment. Furthermore, it addresses a critical gap in understanding how Se-HA gel promotes scleral remodeling through HIF-1α-mediated signaling pathways, with important scientific and translational potential in the field of myopia management.
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yang Zhou
- Zhengda Guangming International Eye Research Center, Qingdao University, Qingdao 266012, China
| | - Zhenyu Jiang
- School of Integrated Circuits, Shandong University, Jinan 250101, China
| | - Jing Jiang
- The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xi Yang
- Qingdao Hospital, Peking University People's Hospital, Qingdao 266111, China
| | - Lingwen Gu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Xiao Feng
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Qianqian Gong
- Ophthalmology Center, the Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong Province 261031, China
| | - Kaiqi Liu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Yiming Chen
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Chao Yang
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Tao Jiang
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| |
Collapse
|
2
|
Ma Z, Hao J, Yang Z, Zhang M, Zhang R, Xin J, Bao B, Yin X, Bi H, Guo D. Elevated thiamine level is associated with activating interaction between HIF-1α and SLC19A3 in experimental myopic guinea pigs. Front Med (Lausanne) 2025; 12:1503527. [PMID: 40351473 PMCID: PMC12061867 DOI: 10.3389/fmed.2025.1503527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 04/07/2025] [Indexed: 05/14/2025] Open
Abstract
Background The SLC19 gene family of solute carriers is a family of three transporter proteins with similar structures, of which SLC19A2 and SLC19A3 mediate thiamin transport; HIF is a transcriptionally active nuclear protein that is a key factor activated in hypoxic environments. Myopia is the most common eye disease that damages the visual health of adolescents, and currently, choroidal hypoxia is one of the prevailing doctrines of myopia, as well as the choroid as an ocular nutrient-supporting tissue, in which thiamine may play a role. This study aimed to investigate the process of thiamine changes in choroidal tissue of guinea pigs with negative lens-induced myopia (LIM). Methods The right eyes of guinea pigs in the LIM group wore -6.0D lenses to model experimental myopia. Biological measurements of ocular parameters and choroidal thickness (ChT) were measured after 2, 4, and 6 weeks of modeling. Real-time fluorescence quantitative PCR and Western blot were used to detect the expression of SLC19A2, SLC19A3, and HIF-1α in the choroidal tissues of each guinea pig, ELISA was used to detect the changes of thiamine content in the choroidal tissues, and HE staining was used to observe the morphological changes of the choroidal tissues. Immunofluorescence and immunohistochemistry detected the expression of SLC19A3 and SLC19A3 in choroidal tissues at different modeling times, and protein immunoprecipitation and molecular docking verified the interactions between HIF-1α and SLC19A3. Results Compared with the normal control (NC) group, the LIM group guinea pigs showed a significant increase in axial length and decrease in refractive error, as well as a thinning of choroidal thickness and loosening of tissue structure. In addition, the expression of SLC19A3 was higher than that of the NC group at 2 and 4 weeks, SLC19A2 was higher than that of the NC group at 4 weeks, and HIF-1α was higher than that of the NC group at 2, 4, and 6 weeks. Moreover, protein immunoprecipitation revealed a reciprocal relationship between HIF-1α and SLC19A3, and molecular docking showed their sites of action. Conclusion The current study suggests that the choroidal tissue in myopic eyes is hypoxic and has metabolic abnormalities. Thiamine, a critical molecule for metabolism, may play a significant role in the process. Our findings indicate that changes in thiamine levels within the choroidal tissue are associated with elevated choroidal HIF-1α and activation of SLC19A3, which enhances thiamine transport. This suggests an adaptive regulatory mechanism for thiamine in myopia. Our research highlights thiamine as a potential target for pharmacological inhibitors and could lead to new insights into the study of the molecular mechanisms of myopia, as well as novel strategies for treating the disease.
Collapse
Affiliation(s)
- Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bo Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, China
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dadong Guo
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, China
| |
Collapse
|
3
|
Du Y, Pang M, Chen H, Zhou X, Geng R, Zhang Y, Yang L, Li J, Han Y, Liu J, Zhang R, Bi H, Guo D. Inhibitory effect of Zhujing Pill on myopia progression: Mechanistic insights based on metabonomics and network pharmacology. PLoS One 2024; 19:e0312379. [PMID: 39625993 PMCID: PMC11614212 DOI: 10.1371/journal.pone.0312379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/02/2024] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVES This study endeavored to uncover the mechanisms by which Zhujing pill (ZJP) slows myopia progression. METHODS We employed biometric analyses to track diopter and axial length changes in guinea pigs with negative lens-induced myopia (LIM). Through integrating metabonomics and network pharmacology, we aimed to predict the anti-myopic targets and active ingredients of ZJP. Subsequent analysis, including real-time fluorescent quantitative PCR (qPCR) and Western blotting (WB), assessed the expression levels of CHRNA7, LPCAT1, and NOS2 in retinal tissues. KEY FINDINGS Our findings demonstrate that ZJP significantly mitigates diopter increase and axial elongation in LIM guinea pigs. Metabonomic analysis revealed significant changes in 13 serum metabolites, with ZJP reversing the expression of 5 key metabolites. By integrating metabonomics with network pharmacology, we identified core targets of ZJP against myopia and constructed a compound-gene-disease-metabolite network. The expressions of LPCAT1 and CHRNA7 were found to decrease in the LIM group but increase with ZJP treatment, whereas NOS2 expression showed the opposite pattern. CONCLUSIONS This investigation provides the first evidence of ZJP's multifaceted effectiveness in managing myopia, highlighting its impact on multiple components, targets, and pathways, including the novel involvement of LPCAT1 and CHRNA7 in myopia pathogenesis.
Collapse
Affiliation(s)
- Yongle Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengran Pang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haoyu Chen
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangkun Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruyue Geng
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yanan Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linqi Yang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiawen Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufeng Han
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, China
- Shandong Academy of Eye Disease Prevention and Therapy, Jinan, China
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Zheng L, Liao Z, Zou J. Animal modeling for myopia. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2024; 4:173-181. [PMID: 39263386 PMCID: PMC11385420 DOI: 10.1016/j.aopr.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 09/13/2024]
Abstract
Background Myopia is one of the most common eye diseases globally, and has become an increasingly serious health concern among adolescents. Understanding the factors contributing to the onset of myopia and the strategies to slow its progression is critical to reducing its prevalence. Main text Animal models are key to understanding of the etiology of human diseases. Various experimental animal models have been developed to mimic human myopia, including chickens, rhesus monkeys, marmosets, mice, tree shrews, guinea pigs and zebrafish. Studies using these animal models have provided evidences and perspectives on the regulation of eye growth and refractive development. This review summarizes the characteristics of these models, the induction methods, common indicators of myopia in animal models, and recent findings on the pathogenic mechanism of myopia. Conclusions Investigations using experimental animal models have provided valuable information and insights into the pathogenic mechanisms of human myopia and its treatment strategies.
Collapse
Affiliation(s)
- Lingman Zheng
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jian Zou
- Eye Center of the Second Affiliated Hospital, Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Liu Y, Hao Q, Lu X, Wang P, Guo D, Zhang X, Pan X, Wu Q, Bi H. Electroacupuncture improves retinal function in myopia Guinea pigs probably via inhibition of the RhoA/ROCK2 signaling pathway. Heliyon 2024; 10:e35750. [PMID: 39170407 PMCID: PMC11337061 DOI: 10.1016/j.heliyon.2024.e35750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Objective To investigate the effect of electroacupuncture (EA) on retinal function in guinea pigs with negative lens-induced myopia (LIM) by inhibiting the RhoA/ROCK2 signaling pathway. Methods Guinea pigs were randomly divided into normal control (NC) group, LIM group, EA group, SHAM acupoint (SHAM) group, and electro-acupuncture + ROCK pathway inhibitor Y27632 (EA + Y27632) group. The refraction, axial length, retinal blood flow density, choroidal vascular index, retinal physiological function, the contents of total antioxidant capacity (T-AOC), catalase (CAT), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) of each group were determined. The changes in retinal tissue structure were observed by hematoxylin and eosin (H&E) staining, and the expression of the RhoA/ROCK2 signaling pathway-related molecules in the retina was measured by real-time quantitative polymerase chain reaction (qPCR) and Western blot. Results Myopic refraction, AL, and MDA content in the LIM and SHAM groups were significantly increased, retinal blood flow density and CVI, SOD, GSH, CAT, T-AOC content were decreased. After EA intervention, myopic refraction, AL, and MDA content decreased, retinal blood flow density and CVI, SOD, GSH, CAT, T-AOC content were increased. H&E staining showed that the thickness of the guinea pig retina, the thickness of the inner and outer layers of the nucleus, and the number of cells were significantly increased after EA intervention. qPCR and western blot analyses showed that the expression of RhoA、ROCK2、MLC、CollagenⅠ、MMP-2、TIMP-2 and α-SMA were elevated in the LIM and SHAM group than those in the NC group. Compared with the LIM group, the expression of EA group was significantly decreased. Conclusions Electroacupuncture can improve retinal function by improving retinal blood flow, reducing retinal oxidative damage, inhibiting RhoA/ROCK2 signaling pathway and controlling extracellular matrix remodeling, thus delaying the occurrence and development of myopia.
Collapse
Affiliation(s)
- Yijie Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250014, China
| | - Qi Hao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250014, China
| | - Xiuzhen Lu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, Shandong Province, 250002, China
| | - Pubo Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250014, China
| | - Dadong Guo
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, Shandong Province, 250002, China
| | - Xiuyan Zhang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, Shandong Province, 250002, China
| | - Xuemei Pan
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, Shandong Province, 250002, China
| | - Qiuxin Wu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, Shandong Province, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, Shandong Province, 250002, China
| |
Collapse
|
6
|
Zhuang Z, Li L, Yu Y, Su X, Lin S, Hu J. Targeting MicroRNA in myopia: Current insights. Exp Eye Res 2024; 243:109905. [PMID: 38642599 DOI: 10.1016/j.exer.2024.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Myopia, the most prevalent eye condition, has sparked notable interest regarding its origin and prevention. MicroRNAs (miRNAs) are short, non-coding RNA strands typically consisting of 18-24 nucleotides. They play a central role in post-transcriptional gene regulation and are closely associated with both normal and pathological processes in organisms. Recent advances in next-generation sequencing and bioinformatics have provided novel insights into miRNA expression and its regulatory role in myopia. This review discusses the distinct expression patterns, regulatory functions, and potential pathways of miRNAs involved in the onset and progression of myopia. The primary objective of this review was to provide valuable insights into molecular mechanisms underlying myopia and the contribution of miRNAs. These insights are expected to pave the way for further exploration of the molecular mechanisms, diagnosis, treatment, and clinical applications of myopia.
Collapse
Affiliation(s)
- Zihao Zhuang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian, China
| | - Licheng Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian, China
| | - Yang Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian, China
| | - Xuemei Su
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China; Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Jianmin Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian, China; The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
7
|
Liu J, Bao B, Li T, Yang Z, Du Y, Zhang R, Xin J, Hao J, Wang G, Bi H, Guo D. miR-92b-3p protects retinal tissues against DNA damage and apoptosis by targeting BTG2 in experimental myopia. J Transl Med 2024; 22:511. [PMID: 38807184 PMCID: PMC11134754 DOI: 10.1186/s12967-024-05288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Myopia is one of the eye diseases that can damage the vision of young people. This study aimed to explore the protective role of miR-92b-3p against DNA damage and apoptosis in retinal tissues of negative lens-induced myopic (LIM) guinea pigs by targeting BTG2. METHODS Biometric measurements of ocular parameters, flash electroretinogram (FERG), and retinal thickness (RT) were performed after miR-92b-3p intravitreal injection in LIM guinea pigs. The apoptotic rate was detected by Annexin V-FITC/PI double staining, and the change in mitochondrial membrane potential was measured by JC-1 staining. Retinal apoptosis and expression of p53, BTG2, and CDK2 were explored by TdT-mediated dUTP-biotin nick labeling (TUNEL) and immunofluorescence staining assays, respectively. BTG2 and its upstream and downstream molecules at gene and protein levels in retinal tissues were measured by real-time quantitative PCR (qPCR) and Western blotting. RESULTS Compared with normal controls (NC), the ocular axial length of LIM guinea pig significantly increased, whereas refraction decreased. Meanwhile, dMax-a and -b wave amplitudes of ERG declined, retinal thickness was decreased, the number of apoptotic cells and apoptotic rate in LIM eyes was exaggerated, and the mitochondrial membrane potential significantly decreased. In addition, results of qPCR and Western blot assays showed that the expression levels of p53, BTG2, CDK2, and BAX in LIM guinea pigs were higher than the levels of the NC group, whereas the BCL-2 expression level was decreased. By contrast, the miR-92b-3p intravitreal injection in LIM guinea pigs could significantly inhibit axial elongation, alleviate DNA damage and apoptosis, and thus protect guinea pigs against myopia. CONCLUSION In conclusion, p53 and BTG2 were activated in the retinal tissue of myopic guinea pigs, and the activated BTG2 could elevate the expression of CDK2 and BAX, and attenuate the expression of BCL-2, which in turn promote apoptosis and eventually lead to retinal thinning and impaired visual function in myopic guinea pigs. The miR-92b-3p intravitreal injection can attenuate the elongation of ocular length and retinal thickness, and inhibit the CDK2, BAX, and p53 expression by targeting BTG2, thereby ameliorating DNA damage and apoptosis in LIM guinea pigs and protecting ocular tissues.
Collapse
Affiliation(s)
- Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Bo Bao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Tuling Li
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Zhaohui Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Yongle Du
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruixue Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Jiawen Hao
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Guimin Wang
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine,No. 48#, Yingxiongshan Road, Jinan, Shandong, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital, Shandong University of Traditional Chinese Medicine,No. 48#, Yingxiongshan Road, Jinan, Shandong, 250002, China.
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Experimental Center, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong, 250002, China.
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Experimental Center, Shandong Academy of Eye Disease Prevention and Therapy, Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, Shandong, 250002, China.
| |
Collapse
|
8
|
Zhang L, Yu X, Hong N, Xia Y, Zhang X, Wang L, Xie C, Dong F, Tong J, Shen Y. CircRNA expression profiles and regulatory networks in the vitreous humor of people with high myopia. Exp Eye Res 2024; 241:109827. [PMID: 38354945 DOI: 10.1016/j.exer.2024.109827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Myopia is a global health and economic issue. Circular RNAs (circRNAs) have been shown to play an important role in the pathogenesis of many ocular diseases. We first evaluated the circRNA profiles and possible roles in vitreous humor samples of individuals with high myopia by a competitive endogenous RNA (ceRNA) array. Vitreous humor samples were collected from 15 high myopic (5 for ceRNA array, and 10 for qPCR) and 15 control eyes (5 for ceRNA array, and 10 for qPCR) with idiopathic epiretinal membrane (ERM) and macular hole (MH). 486 circRNAs (339 upregulated and 147 downregulated) and 264 mRNAs (202 upregulated and 62 downregulated) were differentially expressed between the high myopia and control groups. The expression of hsa_circ_0033079 (hsa-circDicer1), hsa_circ_0029989 (hsa-circNbea), hsa_circ_0019072 (hsa-circPank1) and hsa_circ_0089716 (hsa-circEhmt1) were validated by qPCR. Pearson analysis and multivariate regression analysis showed positive and significant correlations for axial length with hsa-circNbea and hsa-circPank1. KEGG analysis showed that the target genes of circRNAs were enriched in the mTOR, insulin, cAMP, and VEGF signaling pathways. GO analysis indicated that circRNAs mainly targeted transcription, cytoplasm, and protein binding. CircRNA-associated ceRNA network analysis and PPI network analysis identified several critical genes for myopia. The expression of circNbea, circPank1, miR-145-5p, miR-204-5p, Nras, Itpr1 were validated by qPCR in the sclera of form-deprivation myopia (FDM) mice model. CircPank1/miR-145-5p/NRAS and circNbea/miR-204-5p/ITPR1 were identified and may be important in the progression of myopia. Our findings suggest that circRNAs may contribute to the pathogenesis of myopia and may serve as potential biomarkers.
Collapse
Affiliation(s)
- Liyue Zhang
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Yu
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Nan Hong
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Yutong Xia
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xuhong Zhang
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liyin Wang
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Chen Xie
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Feng Dong
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Jianping Tong
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Ye Shen
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Jiang B, Hong N, Zhang L, Xu B, He Q, Qian X, Li F, Dong F. MiR-181a-5p may regulate cell proliferation and autophagy in myopia and the associated retinopathy. Exp Eye Res 2024; 241:109829. [PMID: 38354943 DOI: 10.1016/j.exer.2024.109829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/01/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The mechanism of myopia and the associated retinopathy remains unclear, and dysregulated microRNAs (miRNAs) are implicated in this disease. In this research, we purposed to find out the regulatory function that miRNAs play in myopia and the associated retinopathy. We first performed miRNA microarray analysis in a lens-induced myopia mouse model and found that miR-9-5p, miR-96-5p, miR-182-5p, miR-183-5p, and miR-181a-5p were elevated in the myopic retina. Then, we examined the functions and regulatory mechanisms of miR-181a-5p utilizing the human retinal pigment epithelium (RPE) cell line ARPE-19 by overexpressing miR-181a-5p. RNA sequencing (RNA-Seq) and qRT-PCR analysis were employed to identify differentially expressed genes after transfection. The qRT‒PCR outcomes, immunoblotting, and immunofluorescence indicated that the SGSH expression was significantly hindered through miR-181a-5p overexpression. MiR-181a-5p overexpression has the ability to elevate RPE cell proliferation and induce autophagy by targeting SGSH. We validated the negative influence of miR-181a-5p on the SGSH expression through luciferase reporter assays, which demonstrated its ability to target the 3' untranslated region of SGSH. The reversal of implications of miR-181a-5p overexpression was achieved through SGSH upregulation. We provided novel perspectives into the miR-181a-5p function in regulating myopia development and may serve as a target for therapy and molecular biomarker for myopia.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Nan Hong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Liyue Zhang
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Baisheng Xu
- Department of Ophthalmology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, Zhejiang, China
| | - Qin He
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Xilin Qian
- Department of Clinical Medicine, Capital Medical University, Beijing, 100069, China
| | - Feidi Li
- Department of Ophthalmology, Beilun People's Hospital of Ningbo City, Ningbo, 315826, Zhejiang, China
| | - Feng Dong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
10
|
Li T, Bao B, Hao Y, Liu J, Bi H, Guo D. Suppressive effect of nitric oxide synthase (NOS) inhibitor L-NMMA acetate on choroidal fibrosis in experimental myopic guinea pigs through the nitric oxide signaling pathway. Eur J Pharmacol 2023; 960:176111. [PMID: 37863413 DOI: 10.1016/j.ejphar.2023.176111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Myopia is one of the most prevalent eye diseases that seriously threaten the eyesight of children and adolescents worldwide. However, the pathogenesis is still unclear, and effective drugs are still scarce. In the present study, the guinea pigs were randomly divided into a normal control (NC) group, a lens-induced myopia (LIM) group, a NOS inhibitor (L-NMMA) injection group, and a NOS inhibitor solvent phosphate-buffered saline (PBS) group and the animals received relevant treatments. After 2- and 4-week different treatments, we noted that the refraction and choroidal thickness in the LIM group decreased compared with the NC group, whereas the ocular axial length increased significantly, and the choroid showed a fibrotic trend. The expression of NOS1, NOS3, TGF-β1, COLI, and α-SMA at gene and protein levels was increased significantly in the choroid (all P < 0.05). After intravitreal injection of NOS inhibitor L-NMMA, we found that compared with the LIM group, the refraction and the choroidal thickness significantly increased, whereas the axial length reduced significantly, accompanied by an increase of choroidal thickness and an improvement of choroidal fibrosis. The expression levels of choroidal NOS1, NOS3, TGF-β, COLI, and α-SMA were significantly reduced (all P < 0.05). In conclusion, the trend of choroidal fibrosis in LIM guinea pigs is positively correlated with the increase in axial length. The NOS inhibitor L-NMMA can alleviate the process of choroidal fibrosis in myopic guinea pigs by inhibiting NO signaling pathway.
Collapse
Affiliation(s)
- Tuling Li
- Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China
| | - Bo Bao
- Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China
| | - Yixian Hao
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China; Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, No. 48#, Yingxiongshan Road, Jinan, 250002, China.
| | - Dadong Guo
- Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, No. 48#, Yingxiongshan Road, Jinan, 250002, China; Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, No. 48#, Yingxiongshan Road, Jinan, 250002, China.
| |
Collapse
|