1
|
Ahmed ZSO, Khan E, Elias N, Elshebiny A, Dou Q. Updated Review on Natural Polyphenols: Molecular Mechanisms, Biological Effects, and Clinical Applications for Cancer Management. Biomolecules 2025; 15:629. [PMID: 40427522 PMCID: PMC12108987 DOI: 10.3390/biom15050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/29/2025] Open
Abstract
Polyphenols, naturally occurring compounds found exclusively in plants, have gained significant attention for their potential in cancer prevention and treatment. These compounds are known for their antioxidant properties and are abundant in various plant-based foods, such as vegetables, fruits, grains, and beverages. Recent studies have highlighted the broad spectrum of health benefits of polyphenols, including their antiviral, anti-inflammatory, and anticancer properties. In addition, these naturally derived compounds are increasingly important for drug discovery due to their high molecular diversity and novel biofunctionalities. This review provides an in-depth analysis of the current research and knowledge on the potential use of dietary polyphenols as bioactive compounds for the prevention and treatment of various cancers. This review aims to provide valuable insights into the mechanisms underlying the anticancer properties of phenolic compounds in both laboratory and clinical settings. Furthermore, this review highlights the positive clinical outcomes associated with the use of polyphenols as anticancer agents and offers guidance for future research to advance this promising field.
Collapse
Affiliation(s)
- Zainab Sabry Othman Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr 46612, Egypt
| | - Elyas Khan
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; (E.K.); (N.E.); (A.E.)
| | - Nathan Elias
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; (E.K.); (N.E.); (A.E.)
| | - Alhussein Elshebiny
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; (E.K.); (N.E.); (A.E.)
| | - Qingping Dou
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; (E.K.); (N.E.); (A.E.)
| |
Collapse
|
2
|
Teixeira J, Benfeito S, Carreira R, Barbosa A, Amorim R, Tavares LC, Jones JG, Raimundo N, Cagide F, Oliveira C, Borges F, Koopman WJH, Oliveira PJ. The mitochondriotropic antioxidants AntiOxBEN 2 and AntiOxCIN 4 are structurally-similar but differentially alter energy homeostasis in human skin fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149535. [PMID: 39788276 DOI: 10.1016/j.bbabio.2025.149535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Mitochondrial dysfunction and increased reactive oxygen species (ROS) generation play an import role in different human pathologies. In this context, mitochondrial targeting of potentially protective antioxidants by their coupling to the lipophilic triphenylphosphonium cation (TPP) is widely applied. Employing a six‑carbon (C6) linker, we recently demonstrated that mitochondria-targeted phenolic antioxidants derived from gallic acid (AntiOxBEN2) and caffeic acid (AntiOxCIN4) counterbalance oxidative stress in primary human skin fibroblasts by activating ROS-protective mechanisms. Here we demonstrate that C6-TPP (but not AntiOxBEN2 and AntiOxCIN4) induce cell death in human skin fibroblasts. This indicates that C6-TPP cytoxocity is counterbalanced by the antioxidant moieties of AntiOxBEN2 and AntiOxCIN4. Remarkably, C6-TPP and AntiOxBEN2 (but not AntiOxCIN4) induced a glycolytic switch, as exemplified by a reduced cellular oxygen consumption rate (OCR), increased extracellular acidification rate (ECAR), elevated extracellular lactate levels, and higher protein levels of glucose transporter 1 (GLUT-1). This switch involved activation of AMP-activated protein kinase (AMPK) and fully compensated for the loss in mitochondrial ATP production by sustaining cellular ATP content. When glycolytic switch induction was prevented (i.e. by using a glucose-free, galactose-containing medium), AntiOxBEN2 induced cell death whereas AntiOxCIN4 did not. We conclude that, despite their similar chemical structure and antioxidant capacity, AntiOxBEN2 and AntiOxCIN4 display both common (redox-adaptive) and specific (bioenergetic-adaptive) effects.
Collapse
Affiliation(s)
- José Teixeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rodrigo Carreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - André Barbosa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ludgero C Tavares
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIVG - Vasco da Gama Research Center, University School Vasco da Gama - EUVG, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal; Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Catarina Oliveira
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Werner J H Koopman
- Cellular Bioenergetics Group, Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands; Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
3
|
Yang K, Wang X, Zhang C, Liu D, Tao L. Metformin improves HPRT1-targeted purine metabolism and repairs NR4A1-mediated autophagic flux by modulating FoxO1 nucleocytoplasmic shuttling to treat postmenopausal osteoporosis. Cell Death Dis 2024; 15:795. [PMID: 39500875 PMCID: PMC11538437 DOI: 10.1038/s41419-024-07177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Osteoporosis is a major degenerative metabolic bone disease that threatens the life and health of postmenopausal women. Owing to limitations in detection methods and prevention strategy awareness, the purpose of osteoporosis treatment is more to delay further deterioration rather than to fundamentally correct bone mass. We aimed to clarify the pathogenesis of postmenopausal osteoporosis and optimize treatment plans. Our experiments were based on previous findings that oxidative stress mediates bone metabolism imbalance after oestrogen deficiency. Through energy metabolism-targeted metabolomics, we revealed that purine metabolism disorder is the main mechanism involved in inducing oxidative damage in bone tissue, which was verified via the use of machine-learning data from human databases. Xanthine and xanthine oxidase were used to treat osteoblasts to construct a purine metabolism disorder model. The activity and differentiation ability of osteoblasts decreased after X/XO treatment. Transcriptomic sequencing indicated that autophagic flux damage was involved in purine metabolism-induced oxidative stress in osteoblasts. Additionally, we performed serum metabolomics combined with network pharmacology to determine the pharmacological mechanism of metformin in the treatment of postmenopausal osteoporosis. HPRT1 was the potential target filtered from the hub genes, and FoxO1 signalling was the key pathway mediating the effect of metformin in osteoblasts. We also revealed that SIRT3-mediated deacetylation promoted the nuclear localization of FoxO1 to increase the expression of HPRT1. HPRT1 upregulation promoted purine anabolism and prevented the accumulation of ROS caused by purine catabolism to reverse oxidative damage in osteoblasts. We propose that purine metabolism disorder-induced oxidative stress is important for the pathogenesis of postmenopausal osteoporosis. The therapeutic mechanism of metformin should be confirmed through subsequent drug optimization and development studies to improve bone health in postmenopausal women.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xiaochuan Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Dian Liu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Cortez N, Villegas C, Burgos V, Cabrera-Pardo JR, Ortiz L, González-Chavarría I, Nchiozem-Ngnitedem VA, Paz C. Adjuvant Properties of Caffeic Acid in Cancer Treatment. Int J Mol Sci 2024; 25:7631. [PMID: 39062873 PMCID: PMC11276737 DOI: 10.3390/ijms25147631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Caffeic acid (CA) is a polyphenol belonging to the phenylpropanoid family, commonly found in plants and vegetables. It was first identified by Hlasiwetz in 1867 as a breakdown product of caffetannic acid. CA is biosynthesized from the amino acids tyrosine or phenylalanine through specific enzyme-catalyzed reactions. Extensive research since its discovery has revealed various health benefits associated with CA, including its antioxidant, anti-inflammatory, and anticancer properties. These effects are attributed to its ability to modulate several pathways, such as inhibiting NFkB, STAT3, and ERK1/2, thereby reducing inflammatory responses, and activating the Nrf2/ARE pathway to enhance antioxidant cell defenses. The consumption of CA has been linked to a reduced risk of certain cancers, mitigation of chemotherapy and radiotherapy-induced toxicity, and reversal of resistance to first-line chemotherapeutic agents. This suggests that CA could serve as a useful adjunct in cancer treatment. Studies have shown CA to be generally safe, with few adverse effects (such as back pain and headaches) reported. This review collates the latest information from Google Scholar, PubMed, the Phenol-Explorer database, and ClinicalTrials.gov, incorporating a total of 154 articles, to underscore the potential of CA in cancer prevention and overcoming chemoresistance.
Collapse
Affiliation(s)
- Nicole Cortez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| | - Viviana Burgos
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega, Temuco 4780000, Chile;
| | - Jaime R. Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4081112, Chile;
| | - Leandro Ortiz
- Instituto de Ciencias Químicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5110566, Chile;
| | - Iván González-Chavarría
- Departamento de Fisiopatología, Facultad de Ciencias Biológicas Universidad de Concepción, Concepción 4030000, Chile;
| | | | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile; (N.C.); (C.V.)
| |
Collapse
|