1
|
Chai Y, Yu S, Lin G, Luo C, Wang X, Zhang R, Peng J, Zhu Y, Zhang J. Polyphyllin I Inhibits the Metastasis of Cervical Cancer Through the Regulation of the β-Catenin Signaling Pathway. Int J Mol Sci 2025; 26:4630. [PMID: 40429774 PMCID: PMC12110821 DOI: 10.3390/ijms26104630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Cervical cancer ranks as the fourth most prevalent cancer and cause of cancer-related mortality among women globally. It exhibits a recurrence/metastasis rate of approximately 30% and a dismal 5-year survival of only 17% in metastatic cases. Despite significant advancements in surgical techniques, chemoradiotherapy, and targeted therapies, effective treatment options for metastatic cervical cancer remain limited. This study explored Polyphyllin I (PPI), which is a monomeric compound derived from the Rhizoma of Paris Polyphyllin, as a potential inhibitor of cervical cancer metastasis. Mechanistically, PPI directly interacted with β-catenin at the Ser552 site, inhibiting its phosphorylation and subsequent nuclear translocation, thereby suppressing TCF/LEF transcriptional activity and downstream EMT transcription factors (ZEB1, Slug, Snail, and Twist). Notably, PPI promoted β-catenin degradation via the autophagy-lysosomal pathway, as confirmed by CHX chase assays and the detection of the p62 and LC3 proteins, without altering the mRNA levels of β-catenin. In vitro experiments demonstrated that PPI effectively suppressed the migration and invasion of HO-8910PM cells by reversing the process of EMT. Additionally, PPI effectively inhibited TCF/LEF signaling, leading to a reduction in the transcription levels of EMT-associated transcription factors (EMT-TFs), which was mediated by the TCF/LEF family downstream of β-catenin. Furthermore, PPI exhibited inhibitory effects on proliferation, migration, and invasion in both HPV-positive (SiHa) and HPV-negative (C33A) cervical cancer cells. In vivo, PPI significantly suppressed peritoneal metastasis in a luciferase-labeled HO-8910PM xenograft mouse model. These findings reveal the dual role of PPI in blocking β-catenin signaling and inducing β-catenin depletion, thereby effectively restraining metastatic progression. This study underscores the potential of PPI as a promising therapeutic candidate for targeting cervical cancer metastasis through autophagy-mediated β-catenin regulation, offering a novel strategy to address current treatment limitations.
Collapse
Affiliation(s)
- Yingbin Chai
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.C.); (S.Y.); (G.L.); (C.L.); (R.Z.); (J.P.)
| | - Shaopeng Yu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.C.); (S.Y.); (G.L.); (C.L.); (R.Z.); (J.P.)
| | - Guoqiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.C.); (S.Y.); (G.L.); (C.L.); (R.Z.); (J.P.)
| | - Chunying Luo
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.C.); (S.Y.); (G.L.); (C.L.); (R.Z.); (J.P.)
| | - Xu Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Rui Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.C.); (S.Y.); (G.L.); (C.L.); (R.Z.); (J.P.)
| | - Jiawen Peng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.C.); (S.Y.); (G.L.); (C.L.); (R.Z.); (J.P.)
| | - Yuying Zhu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.C.); (S.Y.); (G.L.); (C.L.); (R.Z.); (J.P.)
| | - Jiange Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (Y.C.); (S.Y.); (G.L.); (C.L.); (R.Z.); (J.P.)
| |
Collapse
|
2
|
Santoro F, Merlino F, Brancaccio D, Camerino I, Belli S, Cimmino A, Grieco P, Colucci-D’Amato L, Stoppelli MP, Franco P, Carotenuto A. Glioblastoma Cell Migration, Invasion and Vasculogenic Mimicry Downmodulated by Novel uPAcyclin Derivatives. Cells 2025; 14:259. [PMID: 39996732 PMCID: PMC11853379 DOI: 10.3390/cells14040259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Despite extensive efforts to develop new treatments, the prognosis for glioblastoma multiforme (GBM) is extremely unfavorable, urging the identification of new chemotherapeutics. A previous work identified the cyclic decapeptide uPAcyclin as a potent inhibitor of GBM cell migration, matrix invasion and vascular-like structures' formation, acting through binding to αV integrins and not interfering with cell proliferation or survival. These clearcut activities prompted us to design and test novel derivatives on cultured U87-MG and U251 GBM-MG human cells. With the exception of the residues involved in peptide cyclization, residues were Ala-substituted one by one and the single peptides tested for binding affinity for the αV target integrin, the inhibition of migration, invasion and vasculogenic mimicry. The first screening highlighted peptides with a low binding affinity and low inhibitory ability (Ala4,7,9 derivatives) and peptides with affinity and inhibitory capacity higher than uPAcyclin (Ala2,5,6,8 derivatives). The integration of these results with conformational studies led to the design of the di-substituted variant uPAcyclin. Intriguingly, at least ten-fold greater anti-migratory and anti-invasive effects of the [Ala2,Ala5]uPAcyclin variant compared to uPAcyclin were found. The latter variant also exhibited a greater inhibitory potential for vascular-like structures' formation by matrix-seeded GBM cells. These studies shed light on the functional relevance of single amino acid residues in uPAcyclin and lead to the identification of therapeutically interesting new variants as promising candidates for anti-GBM therapies.
Collapse
Affiliation(s)
- Federica Santoro
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (F.S.); (F.M.); (D.B.); (P.G.)
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi “Carlo Pedone” (CIRPeB), University of Naples Federico II, 80134 Naples, Italy
| | - Francesco Merlino
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (F.S.); (F.M.); (D.B.); (P.G.)
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi “Carlo Pedone” (CIRPeB), University of Naples Federico II, 80134 Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (F.S.); (F.M.); (D.B.); (P.G.)
| | - Iolanda Camerino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (I.C.); (L.C.-D.)
| | - Stefania Belli
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council, 80131 Naples, Italy; (S.B.); (A.C.); (M.P.S.); (P.F.)
| | - Amelia Cimmino
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council, 80131 Naples, Italy; (S.B.); (A.C.); (M.P.S.); (P.F.)
| | - Paolo Grieco
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (F.S.); (F.M.); (D.B.); (P.G.)
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi “Carlo Pedone” (CIRPeB), University of Naples Federico II, 80134 Naples, Italy
| | - Luca Colucci-D’Amato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (I.C.); (L.C.-D.)
- InterUniversity Center for Research in Neurosciences (CIRN), 80131 Naples, Italy
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council, 80131 Naples, Italy; (S.B.); (A.C.); (M.P.S.); (P.F.)
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Paola Franco
- Institute of Genetics and Biophysics “A. Buzzati Traverso” (IGB-ABT), National Research Council, 80131 Naples, Italy; (S.B.); (A.C.); (M.P.S.); (P.F.)
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (F.S.); (F.M.); (D.B.); (P.G.)
- Centro Interuniversitario di Ricerca sui Peptidi Bioattivi “Carlo Pedone” (CIRPeB), University of Naples Federico II, 80134 Naples, Italy
| |
Collapse
|