1
|
Bianchi E, Ruggeri M, Vigani B, Aguzzi C, Rossi S, Sandri G. Synthesis and use of thermoplastic polymers for tissue engineering purposes. Int J Pharm X 2025; 9:100313. [PMID: 39807177 PMCID: PMC11729033 DOI: 10.1016/j.ijpx.2024.100313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Thermoplastic polymers provide a versatile platform to mimic various aspects of physiological extracellular matrix properties such as chemical composition, stiffness, and topography for use in cell and tissue engineering applications. In this review, we provide a brief overview of the most promising thermoplastic polymers, and in particular the thermoplastic polyesters, such as poly(lactic acid), poly(glycolic acid), and polycaprolactone, and the thermoplastic elastomers, such as polyurethanes, polyhydroxyalkanoates, and poly(butyl cyanoacrylate). A particular focus has been made on the synthesis processes, the processability and the biocompatibility. We also discuss how these materials can be applied in tissue engineering, mimicking tissues' structure and function, and stimulate mesenchymal stem cells differentiation and mechanotransduction.
Collapse
Affiliation(s)
- Eleonora Bianchi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, University of Granada, Cartuja Campus, Granada 18071, Spain
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
2
|
Silva SS, Rodrigues LC, Fernandes EM, Soares da Costa D, Villalva DG, Loh W, Reis RL. Chitosan/Virgin-Coconut-Oil-Based System Enriched with Cubosomes: A 3D Drug-Delivery Approach. Mar Drugs 2023; 21:394. [PMID: 37504925 PMCID: PMC10381190 DOI: 10.3390/md21070394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Emulsion-based systems that combine natural polymers with vegetable oils have been identified as a promising research avenue for developing structures with potential for biomedical applications. Herein, chitosan (CHT), a natural polymer, and virgin coconut oil (VCO), a resource obtained from coconut kernels, were combined to create an emulsion system. Phytantriol-based cubosomes encapsulating sodium diclofenac, an anti-inflammatory drug, were further dispersed into CHT/VCO- based emulsion. Then, the emulsions were frozen and freeze-dried to produce scaffolds. The scaffolds had a porous structure ranging from 20.4 to 73.4 µm, a high swelling ability (up to 900%) in PBS, and adequate stiffness, notably in the presence of cubosomes. Moreover, a well-sustained release of the entrapped diclofenac in the cubosomes into the CHT/VCO-based system, with an accumulated release of 45 ± 2%, was confirmed in PBS, compared to free diclofenac dispersed (80 ± 4%) into CHT/VCO-based structures. Overall, the present approach opens up new avenues for designing porous biomaterials for drug delivery through a sustainable pathway.
Collapse
Affiliation(s)
- Simone S Silva
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Luísa C Rodrigues
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Emanuel M Fernandes
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Diana Soares da Costa
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Denise G Villalva
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas 13083-970, Brazil
| | - Rui L Reis
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| |
Collapse
|
3
|
End-to-end prediction of multimaterial stress fields and fracture patterns using cycle-consistent adversarial and transformer neural networks. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|