1
|
Liu H, Liang J, Wang X, Xiong W, Zhang L, Dai X, Wang X, Wang X, Xu Y, Liu Y. ALKBH5 promotes autophagy and progression by mediating m6A methylation of lncRNA UBOX5-AS1 in endometriosis. Am J Physiol Cell Physiol 2025; 328:C639-C656. [PMID: 39761976 DOI: 10.1152/ajpcell.00790.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025]
Abstract
Long noncoding RNA (lncRNA) and N6-methyladenosine (m6A) methylation modification have recently been suggested as potential functional modulators in ovarian endometriosis, however, the function and mechanism of m6A-modified lncRNA in ovarian endometriosis remain poorly understood. In this study, we demonstrated that lncRNA UBOX5-AS1 expression was significantly elevated in ovarian endometriosis tissue and primary ectopic endometrial stromal cells. The expression of lncRNA UBOX5-AS1, which has m6A modifications, was highly positively correlated with demethylase Alk B homologous protein 5 (ALKBH5) expression and autophagy. Functional studies revealed that increased ALKBH5 and lncRNA UBOX5-AS1 expression promoted cell autophagy, proliferation, and invasion in endometriosis in vitro. LncRNA UBOX5-AS1 mediates ALKBH5-regulated autophagy, proliferation, and invasion. ALKBH5-mediated autophagy facilitates cell proliferation, migration, and invasion. In vivo, the knockdown of ALKBH5 inhibited endometriotic lesion growth. Mechanistically, we observed that ALKBH5 mediated the m6A demethylation of lncRNA UBOX5-AS1 and promoted its expression. Thus, our findings highlight that ALKBH5/lncRNA UBOX5-AS1 might serve as potential targets for ovarian endometriosis therapy in the future.NEW & NOTEWORTHY In the present study, we investigated the role and potential molecular mechanism of long noncoding RNA (lncRNA) UBOX5-AS1 in ovarian endometriosis progression. Combined with the aforementioned, we proposed the hypothesis that lncRNA UBOX5-AS1 regulated by Alk B homologous protein 5 (ALKBH5)-mediated N6-methyladenosine (m6A) modification contributes to the progression of ovarian endometriosis progression.
Collapse
Affiliation(s)
- Hengwei Liu
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jiaxin Liang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoli Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xin Dai
- Shandong Key Laboratory of Reproductive Medicine, Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Xiuping Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiwen Wang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ying Xu
- Department of Reproductive Medicine, Wuhan No.1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
2
|
Anchan MM, Kalthur G, Datta R, Majumdar K, P K, Dutta R. Unveiling the fibrotic puzzle of endometriosis: An overlooked concern calling for prompt action. F1000Res 2024; 13:721. [PMID: 39669683 PMCID: PMC11635194 DOI: 10.12688/f1000research.152368.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
Endometriosis is a benign, estrogen-dependent, persistent chronic inflammatory heterogeneous condition that features fibrotic adhesions caused by periodic bleeding. The characteristic ectopic lesions are marked by a widely spread dense fibrotic interstitium comprising of fibroblasts, myofibroblasts, collagen fibers, extracellular proteins, inflammatory cells, and active angiogenesis. Fibrosis is now recognized as a critical component of endometriosis because of which current treatments, such as hormonal therapy and surgical excision of lesions are largely ineffective with severe side effects, high recurrence rates, and significant morbidity. The symptoms include dysmenorrhea (cyclic or noncyclic), dyspareunia, abdominal discomfort, and infertility. The significant lack of knowledge regarding the underlying root causes, etiology, and complex pathogenesis of this debilitating condition, hinders early diagnosis and implement effective therapeutic approaches with minimal side effects presenting substantial hurdles in endometriosis management. Emerging research offer a close relationship between endometriosis and fibrosis, which is believed to be tightly linked to pain, a primary contributor to the deterioration of the patient's quality of life. However, the underlying pathophysiological cellular and molecular signaling pathways behind endometriosis-associated fibrosis are poorly addressed. The available experimental disease models have tremendous challenges in reproducing the human characteristics of the disease limiting the treatment effectiveness. Future translational research on the topic has been hindered by the lack of an adequate fibrotic model of endometriosis emphasizing the necessity of etiological exploration. This review article focuses on recent developments in the field and highlight the necessity for novel fibrotic models for early diagnosis, a better understanding the disease's etiology and develop effective anti-fibrotic treatments. By addressing these knowledge gaps, we want to open fresh avenues for a thorough investigation and extended research in the field of endometriosis.
Collapse
Affiliation(s)
- Megha M Anchan
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | | - Kabita Majumdar
- Gauhati Medical College & Hospital IVF centre, Bhangagarh, Gauhati Medical College, Assam, 781032, India
| | - Karthikeyan P
- Department of General Surgery, Government Kallakurichi Medical College, Government Kallakurichi Medical College, Kallakurichi, Tamil Nadu, India
| | - Rahul Dutta
- Division of Reproductive Biology, Department of Reproductive Science, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
3
|
Liao Z, Monsivais D, Matzuk MM. The long road of drug development for endometriosis - Pains, gains, and hopes. J Control Release 2024; 376:429-440. [PMID: 39427778 PMCID: PMC11884332 DOI: 10.1016/j.jconrel.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Endometriosis, defined by the growth of endometrial tissues outside of the uterine cavity, is a global health burden for ∼200 million women. Patients with endometriosis usually present with chronic pain and are often diagnosed with infertility. The pathogenesis of endometriosis is still an open question; however, tissue stemness and immunological and genetic factors have been extensively discussed in the establishment of endometriotic lesions. Current treatments for endometriosis can be categorized into pharmacological management of hormone levels and surgical removal of the lesions. Both approaches have limited efficacy, with recurrences often encountered; thus, there is no complete cure for the disease or its symptoms. We review the current knowledge of the etiology of endometriosis and summarize the advancement of pharmacological management of endometriosis. We also discuss our efforts in applying DNA-encoded chemistry technology (DEC-Tec) to identify bioactive molecules for the treatment of endometriosis, offering new avenues for developing non-hormonal treatment options for those patients who seek spontaneous pregnancies.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin M Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Whitaker LHR, Page C, Morgan C, Horne AW, Saunders PTK. Endometriosis: cannabidiol therapy for symptom relief. Trends Pharmacol Sci 2024; 45:1150-1161. [PMID: 39547915 DOI: 10.1016/j.tips.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Endometriosis is a common, chronic, incurable condition the hallmark of which is the presence of lesions (tissue resembling endometrium) in sites outside the womb, with symptoms including chronic debilitating pain and fatigue. However, current therapeutic options are limited. Recent advances in our understanding of the mechanisms that contribute to the development of lesions and pain experience in endometriosis as well as surveys of patients have increased interest in testing recently approved formulations containing cannabidiol (CBD) in this patient group. In this review, we summarise data from patient samples and animals models focussed on the pathophysiology of endometriosis, including pathways where CBD has activity. We consider the available formulations of CBD-containing products, their pharmacokinetics (PK), and their use in ongoing clinical trials in endometriosis and other pain conditions.
Collapse
Affiliation(s)
- Lucy H R Whitaker
- EXPPECT, Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Clive Page
- Institute of Pharmaceutical Science, King's College, London, SE1 9NH, UK
| | - Charles Morgan
- MRX Medical Ltd, C/o Ananda Developments plc, 42 Upper Berkeley Street, London, W1H 5QL, UK
| | - Andrew W Horne
- EXPPECT, Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Philippa T K Saunders
- EXPPECT, Centre for Reproductive Health, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
5
|
Xu Y, Deng Z, Fei F, Zhou S. An overview and comprehensive analysis of interdisciplinary clinical research in endometriosis based on trial registry. iScience 2024; 27:109298. [PMID: 38455973 PMCID: PMC10918267 DOI: 10.1016/j.isci.2024.109298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/27/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Endometriosis is a chronic multisystem disease associated with immunological, genetic, hormonal, psychological, and neuroscientific factors, leading to a significant socioeconomic impact worldwide. Though multidisciplinary management is the ideal approach, there remains a scarcity of published interdisciplinary clinical trials at present. Here, we have conducted a comprehensive analysis of the characteristics and issues of interdisciplinary trials on endometriosis based on the clinical registration database ClinicalTrials.gov. Among all 387 endometriosis trials, 30% (116) were identified as interdisciplinary, mostly conducted in Europe and North America, and fully funded by non-industrial sources. We documented growth in both patient-centered multidisciplinary comprehensive management and collaboration between fundamental biomedical science and applied medicine. However, compared to traditional obstetric-gynecological trials, interdisciplinary studies exhibited negative characteristics such as less likely to be randomized and less likely to report results. Our study provides insights for future trial investigators and may contribute to fostering greater collaboration in medical research.
Collapse
Affiliation(s)
- Yicong Xu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P.R. China
| | - Zhengrong Deng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P.R. China
| | - Fan Fei
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital; School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P.R. China
| |
Collapse
|
6
|
Giudice LC, Horne AW, Missmer SA. Time for global health policy and research leaders to prioritize endometriosis. Nat Commun 2023; 14:8028. [PMID: 38049392 PMCID: PMC10696045 DOI: 10.1038/s41467-023-43913-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Affiliation(s)
- Linda C Giudice
- Distinguished Professor, Center for Reproductive Sciences, Center for Reproductive Health, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Andrew W Horne
- Professor of Gynaecology and Reproductive Sciences, EXPPECT Edinburgh and Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - Stacey A Missmer
- Professor of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, Grand Rapids, MI, USA
- Adjunct Professor of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
7
|
Tan Z, Gong X, Wang CC, Zhang T, Huang J. Diminished Ovarian Reserve in Endometriosis: Insights from In Vitro, In Vivo, and Human Studies-A Systematic Review. Int J Mol Sci 2023; 24:15967. [PMID: 37958954 PMCID: PMC10647261 DOI: 10.3390/ijms242115967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Endometriosis, a prevalent disorder in women of reproductive age, is often associated with undesired infertility. Ovarian reserve, an essential measure of ovarian function that is crucial for maintaining fecundity, is frequently diminished in women with endometriosis. Though the causative relationship between endometriosis and reduced ovarian reserve is not fully understood due to the lack of standardized and precise measurements of ovarian reserve, there is ongoing discussion regarding the impact of interventions for endometriosis on ovarian reserve. Therefore, in this review, we investigate articles that have related keywords and which were also published in recent years. Thereafter, we provide a comprehensive summary of evidence from in vitro, in vivo, and human studies, thereby shedding light on the decreased ovarian reserve in endometriosis. This research consolidates evidence from in vitro, in vivo, and human studies on the diminished ovarian reserve associated with endometriosis, as well as enhances our understanding of whether and how endometriosis, as well as its interventions, contribute to reductions in ovarian reserve. Furthermore, we explore potential strategies to modify existing therapy options that could help prevent diminished ovarian reserve in patients with endometriosis.
Collapse
Affiliation(s)
- Zhouyurong Tan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
| | - Xue Gong
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Chinese University of Hong Kong-Sichuan University Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
| | - Jin Huang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (Z.T.); (X.G.); (C.C.W.)
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
8
|
Ellis K, Wood R. The Comparative Invasiveness of Endometriotic Cell Lines to Breast and Endometrial Cancer Cell Lines. Biomolecules 2023; 13:1003. [PMID: 37371583 DOI: 10.3390/biom13061003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Endometriosis is an invasive condition that affects 10% of women (and people assigned as female at birth) worldwide. The purpose of this study was to characterize the relative invasiveness of three available endometriotic cell lines (EEC12Z, iEc-ESCs, tHESCs) to cancer cell lines (MDA-MB-231, SW1353 and EM-E6/E7/TERT) and assess whether the relative invasiveness was consistent across different invasion assays. All cell lines were subjected to transwell, spheroid drop, and spheroid-gel invasion assays, and stained for vimentin, cytokeratin, E-Cadherin and N-Cadherin to assess changes in expression. In all assays, endometriotic cell lines showed comparable invasiveness to the cancer cell lines used in this study, with no significant differences in invasiveness identified. EEC12Z cells that had invaded within the assay periods showed declines in E-Cadherin expression compared to cells that had not invaded within the assay period, without significant changes in N-Cadherin expression, which may support the hypothesis that an epithelial-to-mesenchymal transition is an influence on the invasiveness shown by this peritoneal endometriosis cell line.
Collapse
Affiliation(s)
- Katherine Ellis
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand
- Endometriosis New Zealand, Christchurch 8041, New Zealand
| | - Rachael Wood
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand
- The Biomolecular Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
9
|
Nunez-Badinez P, Laux-Biehlmann A, Hayward MD, Buiakova O, Zollner TM, Nagel J. Anxiety-related behaviors without observation of generalized pain in a mouse model of endometriosis. Front Behav Neurosci 2023; 17:1118598. [PMID: 36844654 PMCID: PMC9947402 DOI: 10.3389/fnbeh.2023.1118598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Endometriosis is a chronic, hormone-dependent, inflammatory disease, characterized by the presence and growth of endometrial tissue outside the uterine cavity. It is associated with moderate to severe pelvic and abdominal pain symptoms, subfertility and a marked reduction in health-related quality of life. Furthermore, relevant co-morbidities with affective disorders like depression or anxiety have been described. These conditions have a worsening effect on pain perception in patients and might explain the negative impact on quality of life observed in those suffering from endometriosis-associated pain. Whereas several studies using rodent models of endometriosis focused on biological and histopathological similarities with the human situation, the behavioral characterization of these models was never performed. This study investigated the anxiety-related behaviors in a syngeneic model of endometriosis. Using elevated plus maze and the novel environment induced feeding suppression assays we observed the presence of anxiety-related behaviors in endometriosis-induced mice. In contrast, locomotion or generalized pain did not differ between groups. These results indicate that the presence of endometriosis lesions in the abdominal cavity could, similarly to patients, induce profound psychopathological changes/impairments in mice. These readouts might provide additional tools for preclinical identification of mechanisms relevant for development of endometriosis-related symptoms.
Collapse
Affiliation(s)
- Paulina Nunez-Badinez
- Exploratory Pathobiology, Research and Early Development, Research and Development, Bayer AG, Wuppertal, Germany
| | - Alexis Laux-Biehlmann
- Exploratory Pathobiology, Research and Early Development, Research and Development, Bayer AG, Wuppertal, Germany
| | | | | | - Thomas M. Zollner
- Endocrinology, Metabolism and Reproductive Health, Research and Early Development, Research and Development, Bayer AG, Berlin, Germany
| | - Jens Nagel
- Exploratory Pathobiology, Research and Early Development, Research and Development, Bayer AG, Wuppertal, Germany
| |
Collapse
|
10
|
Tan Z, Hung SW, Zheng X, Wang CC, Chung JPW, Zhang T. What We Have Learned from Animal Models to Understand the Etiology and Pathology of Endometrioma-Related Infertility. Biomedicines 2022; 10:biomedicines10071483. [PMID: 35884788 PMCID: PMC9313443 DOI: 10.3390/biomedicines10071483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Endometrioma (OMA) is the most common subtype of endometriosis, in which the endometriotic lesions are implanted in the ovary. Women with OMA are usually associated with infertility, presenting with reduced ovarian reserve, low oocyte quantity and quality, and poor fertility outcomes. However, the underlying pathological mechanisms in OMA-related infertility are still unclear. Due to the limitations and ethical issues of human studies in reproduction, animal models that recapitulate OMA characteristics and its related infertility are critical for mechanistic studies and subsequent drug development, preclinical testing, and clinical trials. This review summarized the investigations of OMA-related infertility based on previous and latest endometrioma models, providing the possible pathogenesis and potential therapeutic targets for further studies.
Collapse
Affiliation(s)
- Zhouyurong Tan
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
| | - Sze-Wan Hung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
| | - Xu Zheng
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
| | - Chi-Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
- Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
- Sichuan University-Chinese University of Hong Kong Joint Laboratory in Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Jacqueline Pui-Wah Chung
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
| | - Tao Zhang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong; (Z.T.); (S.-W.H.); (X.Z.); (C.-C.W.); (J.P.-W.C.)
- Correspondence: ; Tel.: +852-3505-3099
| |
Collapse
|
11
|
Li LP, Li ZM, Wang ZZ, Cheng YF, He DM, Chen G, Cao BN, Zou Y, Luo Y. A novel nude mouse model for studying the pathogenesis of endometriosis. Exp Ther Med 2022; 24:498. [PMID: 35837067 PMCID: PMC9257831 DOI: 10.3892/etm.2022.11425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Endometriosis is a common female gynecological disease that is characterized by the presence of functional endometrial tissue outside the uterine cavity. At present, many animal models have been established. However, previous studies consistently use human endometrial tissue implanted in the subcutaneous or abdominal cavity for modeling and rarely use endometrial cells. In the present study, we ascertained whether immortalized stromal and/or epithelial endometrial cells are able to induce subcutaneous endometriosis in nude mice. Mixed human immortalized endometriosis stromal and epithelial cells, but not the cells of Group 1 or Group 2, were successfully constructed and led to endometriotic-like lesions. The endometriosis-like lesions observed in nude mice consisted of endometriosis-like glands lined with columnar epithelial cells and surrounded by stromal cells in the fibrous fatty connective tissue. Immunofluorescence analysis showed that glandular epithelial cells were intensely stained for E-cadherin and cytokeratin 7, and surrounding stromal cells were mildly stained for neprilysin (CD10) and vimentin. Moreover, the cells present in the endometriosis-like lesions were of human origin. Our data indicate that the mixture of human immortalized endometriosis stromal cells and epithelial cells is able to establish subcutaneous endometriosis lesions in nude mice. This model could be used to understand the molecular mechanisms involved in the occurrence and development of endometriosis.
Collapse
Affiliation(s)
- Li-Ping Li
- Prenatal Diagnosis Center, Nanchang, Jiangxi 330006, P.R. China
| | - Zeng-Ming Li
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zhao-Zhen Wang
- Department of Clinical Medicine, Jiangxi Health Vocational College, Nanchang, Jiangxi 330052, P.R. China
| | - Yu-Fen Cheng
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - De-Ming He
- Department of Pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Ge Chen
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Bian-Na Cao
- Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Luo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
12
|
Marquardt RM, Nafiujjaman M, Kim TH, Chung SJ, Hadrick K, Kim T, Jeong JW. A Mouse Model of Endometriosis with Nanoparticle Labeling for In Vivo Photoacoustic Imaging. Reprod Sci 2022; 29:2947-2959. [PMID: 35641854 DOI: 10.1007/s43032-022-00980-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
Endometriosis is a condition of the female reproductive tract characterized by endometrium-like tissue growing outside the uterus. Though it is a common cause of pelvic pain and infertility, there is currently no reliable noninvasive method to diagnose the presence of endometriosis without surgery, and the pathophysiological mechanisms that lead to the occurrence of symptoms require further inquiry. Due to patient heterogeneity and delayed diagnosis, animal models are commonly used to study the development of endometriosis, but these are costly due to the large number of animals needed to test various treatments and experimental conditions at multiple endpoints. Here, we describe a method for synthesis of multimodal imaging gold-fluorescein isothiocyanate (FITC) nanoparticles with preclinical application via induction of nanoparticle-labeled endometriosis-like lesions in mice. Labeling donor endometrial tissue fragments with gold-FITC nanoparticles prior to induction of endometriosis in recipients enables in vivo detection of the gold-labeled lesions with photoacoustic imaging. The same imaging method can be used to visualize embryos noninvasively in pregnant mice. Furthermore, the conjugated FITC dye on the gold nanoparticles allows easy isolation of labeled lesion tissue under a fluorescence dissection microscope. After dissection, the presence of gold-FITC nanoparticles and endometrium-like histology of lesions can be verified through fluorescence imaging, gold enhancement, and immunostaining. This method for in vivo imaging of endometriosis-like lesions and fluorescence-guided dissection will permit new experimental possibilities for the longitudinal study of endometriosis development and progression as well as endometriosis-related infertility.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Cell and Molecular Biology Program, Michigan State University, College of Natural Science, East Lansing, MI, USA
| | - Md Nafiujjaman
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Seock-Jin Chung
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Kay Hadrick
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Taeho Kim
- Department of Biomedical Engineering, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
13
|
Endometrium as Control of Endometriosis in Experimental Research: Assessment of Sample Suitability. Diagnostics (Basel) 2022; 12:diagnostics12040970. [PMID: 35454018 PMCID: PMC9032605 DOI: 10.3390/diagnostics12040970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022] Open
Abstract
Endometriosis is a chronic gynecological disease that causes numerous severe symptoms in affected women. Revealing alterations of the molecular processes in ectopic endometrial tissue is the current policy for understanding the pathomechanisms and discovering potential novel therapeutic targets. Examining molecular processes of eutopic endometrium is likely to be a convenient method to compare it with the molecular alterations observed in ectopic tissues. The aim of the present study was to determine what proportion of the surgically resected eutopic endometrial samples is suitable for further experiments so that these can be comparable with endometriosis. Final hospital reports and histopathology reports of a 3-year-long period (1162 cases) were analysed. The application of a retrospective screening method promoted the categorization of these cases, and quantification of the categorized cases was accomplished. In addition, results obtained from cultured endometrium samples were also detailed. Only a small number of the harvested endometrial samples was suitable for further molecular analysis, while preoperative screening protocol could enlarge this fraction. Applying clinical and histopathological selection and exclusion criteria for tissue screening and histopathological examination of samples could ensure the comparability of healthy endometrium with endometriosis. The present study could be useful for researchers who intend to perform molecular experiments to compare endometriosis with the physiological processes of the endometrium.
Collapse
|
14
|
Tejada MA, Santos-Llamas AI, Escriva L, Tarin JJ, Cano A, Fernández-Ramírez MJ, Nunez-Badinez P, De Leo B, Saunders PTK, Vidal V, Barthas F, Vincent K, Sweeney PJ, Sillito RR, Armstrong JD, Nagel J, Gomez R. Identification of Altered Evoked and Non-Evoked Responses in a Heterologous Mouse Model of Endometriosis-Associated Pain. Biomedicines 2022; 10:501. [PMID: 35203710 PMCID: PMC8962432 DOI: 10.3390/biomedicines10020501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to develop and refine a heterologous mouse model of endometriosis-associated pain in which non-evoked responses, more relevant to the patient experience, were evaluated. Immunodeficient female mice (N = 24) were each implanted with four endometriotic human lesions (N = 12) or control tissue fat (N = 12) on the abdominal wall using tissue glue. Evoked pain responses were measured biweekly using von Frey filaments. Non-evoked responses were recorded weekly for 8 weeks using a home cage analysis (HCA). Endpoints were distance traveled, social proximity, time spent in the center vs. outer areas of the cage, drinking, and climbing. Significant differences between groups for von Frey response, climbing, and drinking were detected on days 14, 21, and 35 post implanting surgery, respectively, and sustained for the duration of the experiment. In conclusion, a heterologous mouse model of endometriosis-associated evoked a non-evoked pain was developed to improve the relevance of preclinical models to patient experience as a platform for drug testing.
Collapse
Affiliation(s)
- Miguel A. Tejada
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
| | - Ana I. Santos-Llamas
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
| | - Lesley Escriva
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
| | - Juan J. Tarin
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
- Department of Cellular Biology, Functional Biology and Physical Anthropology, University of Valencia, 46100 Burjassot, Spain
| | - Antonio Cano
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
- Department of Pediatrics and Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain;
| | - Maria J. Fernández-Ramírez
- Department of Pediatrics and Obstetrics and Gynecology, University of Valencia, 46010 Valencia, Spain;
- Department of Obstetrics and Gynecology, Hospital Clínico Universitario, 46010 Valencia, Spain
| | - Paulina Nunez-Badinez
- Bayer AG. Research & Early Development, Pharmaceuticals, Reproductive Health, Müllerstr. 178, 13342 Berlin, Germany; (P.N.-B.); (B.D.L.)
| | - Bianca De Leo
- Bayer AG. Research & Early Development, Pharmaceuticals, Reproductive Health, Müllerstr. 178, 13342 Berlin, Germany; (P.N.-B.); (B.D.L.)
| | - Philippa T. K. Saunders
- Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK;
| | - Victor Vidal
- Faculty of Science, International University of La Rioja, Avda de la paz 137, 26006 Logrono, Spain;
| | | | - Katy Vincent
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;
| | - Patrick J. Sweeney
- Actual Analytics, 99 Giles Street, Edinburgh EH6 6BZ, UK; (P.J.S.); (R.R.S.); (J.D.A.)
| | - Rowland R. Sillito
- Actual Analytics, 99 Giles Street, Edinburgh EH6 6BZ, UK; (P.J.S.); (R.R.S.); (J.D.A.)
| | - James Douglas Armstrong
- Actual Analytics, 99 Giles Street, Edinburgh EH6 6BZ, UK; (P.J.S.); (R.R.S.); (J.D.A.)
- School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK
| | - Jens Nagel
- Bayer AG. Research & Early Development, Pharmaceuticals, Exploratory Pathobiology, Aprather Weg 18a, 42096 Wuppertal, Germany;
| | - Raúl Gomez
- Research Unit on Women’s Health-INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (M.A.T.); (A.I.S.-L.); (L.E.); (J.J.T.); (A.C.)
- Department of Pathology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
15
|
Nunez-Badinez P, De Leo B, Laux-Biehlmann A, Hoffmann A, Zollner TM, Saunders PT, Simitsidellis I, Charrua A, Cruz F, Gomez R, Tejada MA, McMahon SB, Lo Re L, Barthas F, Vincent K, Birch J, Meijlink J, Hummelshoj L, Sweeney PJ, Armstrong JD, Treede RD, Nagel J. Preclinical models of endometriosis and interstitial cystitis/bladder pain syndrome: an Innovative Medicines Initiative-PainCare initiative to improve their value for translational research in pelvic pain. Pain 2021; 162:2349-2365. [PMID: 34448751 PMCID: PMC8374713 DOI: 10.1097/j.pain.0000000000002248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023]
Abstract
ABSTRACT Endometriosis (ENDO) and interstitial cystitis/bladder pain syndrome (IC/BPS) are chronic pain conditions for which better treatments are urgently needed. Development of new therapies with proven clinical benefit has been slow. We have conducted a review of existing preclinical in vivo models for ENDO and IC/BPS in rodents, discussed to what extent they replicate the phenotype and pain experience of patients, as well as their relevance for translational research. In 1009 publications detailing ENDO models, 41% used autologous, 26% syngeneic, 18% xenograft, and 11% allogeneic tissue in transplantation models. Intraperitoneal injection of endometrial tissue was the subcategory with the highest construct validity score for translational research. From 1055 IC/BPS publications, most interventions were bladder centric (85%), followed by complex mechanisms (8%) and stress-induced models (7%). Within these categories, the most frequently used models were instillation of irritants (92%), autoimmune (43%), and water avoidance stress (39%), respectively. Notably, although pelvic pain is a hallmark of both conditions and a key endpoint for development of novel therapies, only a small proportion of the studies (models of ENDO: 0.5%-12% and models of IC/BPS: 20%-44%) examined endpoints associated with pain. Moreover, only 2% and 3% of publications using models of ENDO and IC/BPS investigated nonevoked pain endpoints. This analysis highlights the wide variety of models used, limiting reproducibility and translation of results. We recommend refining models so that they better reflect clinical reality, sharing protocols, and using standardized endpoints to improve reproducibility. We are addressing this in our project Innovative Medicines Initiative-PainCare/Translational Research in Pelvic Pain.
Collapse
Affiliation(s)
| | - Bianca De Leo
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| | | | - Anja Hoffmann
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| | | | - Philippa T.K. Saunders
- Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Ioannis Simitsidellis
- Centre for Inflammation Research, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Ana Charrua
- I3S—Instituto de Investigação e Inovação em Saúde, and Faculty of Medicine of Porto, Porto, Portugal
| | - Francisco Cruz
- I3S—Instituto de Investigação e Inovação em Saúde, and Faculty of Medicine of Porto, Porto, Portugal
| | - Raul Gomez
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | | | - Stephen B. McMahon
- Neurorestoration Group, Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Laure Lo Re
- Neurorestoration Group, Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | | | - Katy Vincent
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Judy Birch
- Pelvic Pain Support Network, Poole, United Kingdom
| | - Jane Meijlink
- International Painful Bladder Foundation, Naarden, the Netherlands
| | | | | | - J. Douglas Armstrong
- Actual Analytics, Edinburgh, United Kingdom
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Centre for Biomedicine and Medical Technology Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jens Nagel
- Bayer AG, Research & Development, Pharmaceuticals, Berlin, Germany
| |
Collapse
|
16
|
Balasubramanian V, Saravanan R, Joseph LD, Dev B, Gouthaman S, Srinivasan B, Dharmarajan A, Rayala SK, Venkatraman G. Molecular dysregulations underlying the pathogenesis of endometriosis. Cell Signal 2021; 88:110139. [PMID: 34464692 DOI: 10.1016/j.cellsig.2021.110139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Endometriosis is a crippling disease characterized by the presence of endometrium-like tissue or scar outside the uterine cavity, commonly confined to the peritoneal and serosal surfaces of the pelvic organs. 10-15% of women in reproductive age are estimated to be affected by endometriosis. Most of these patients present with infertility and suffer from pelvic pain. The benign disease rarely progresses to malignancy. Regardless of its high prevalence, the pathogenesis of the disease is not fully understood. Treatment options for endometriosis are limited and are often based on a symptomatic approach. The unavailability of proper diagnostic approaches, fewer therapeutic options, and sparse understanding of molecular alterations are responsible for the continued disease burden. Exploring the molecular elements causing the pathogenesis of endometriosis may lead to a number of breakthroughs in the treatment of the illness, such as the discovery of new biomarkers for diagnosis and therapeutic targets that can be a guide to better prognosis and reduced recurrence. The goal of this review is to provide the reader a critical understanding of the disease by summarizing the genetic, immunological, hormonal, and epigenetic deregulations that support the molecular basis for development of endometriotic cyst, with a special focus on the study models needed to analyze these changes in the endometriotic microenvironment.
Collapse
Affiliation(s)
- Vaishnavi Balasubramanian
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Roshni Saravanan
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Leena Dennis Joseph
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Bhawna Dev
- Department of Radiology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Shanmugasundaram Gouthaman
- Department of Surgical Oncology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Bhuvana Srinivasan
- Department of Obstetrics and Gynecology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Suresh Kumar Rayala
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India.
| |
Collapse
|
17
|
Dorning A, Dhami P, Panir K, Hogg C, Park E, Ferguson GD, Hargrove D, Karras J, Horne AW, Greaves E. Bioluminescent imaging in induced mouse models of endometriosis reveals differences in four model variations. Dis Model Mech 2021; 14:dmm049070. [PMID: 34382636 PMCID: PMC8419713 DOI: 10.1242/dmm.049070] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022] Open
Abstract
Our understanding of the aetiology and pathophysiology of endometriosis remains limited. Disease modelling in the field is problematic as many versions of induced mouse models of endometriosis exist. We integrated bioluminescent imaging of 'lesions' generated using luciferase-expressing donor mice. We compared longitudinal bioluminescence and histology of lesions, sensory behaviour of mice with induced endometriosis and the impact of the gonadotropin-releasing hormone antagonist Cetrorelix on lesion regression and sensory behaviour. Four models of endometriosis were tested. We found that the nature of the donor uterine material was a key determinant of how chronic the lesions were, as well as their cellular composition. The severity of pain-like behaviour also varied across models. Although Cetrorelix significantly reduced lesion bioluminescence in all models, it had varying impacts on pain-like behaviour. Collectively, our results demonstrate key differences in the progression of the 'disease' across different mouse models of endometriosis. We propose that validation and testing in multiple models, each of which may be representative of the different subtypes/heterogeneity observed in women, should become a standard approach to discovery science in the field of endometriosis.
Collapse
Affiliation(s)
- Ashley Dorning
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Priya Dhami
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kavita Panir
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Chloe Hogg
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Emma Park
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gregory D. Ferguson
- Ferring Research Institute, 4245 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | - Diane Hargrove
- Ferring Research Institute, 4245 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | - James Karras
- Ferring Research Institute, 4245 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | - Andrew W. Horne
- Medical Research Council Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Erin Greaves
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
18
|
Nonsurgical mouse model of endometriosis-associated pain that responds to clinically active drugs. Pain 2021; 161:1321-1331. [PMID: 32132396 DOI: 10.1097/j.pain.0000000000001832] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endometriosis is an estrogen-dependent inflammatory disease that affects approximately 10% of women. Debilitating pelvic or abdominal pain is one of its major clinical features. Current animal models of endometriosis-associated pain require surgery either to implant tissue or to remove the ovaries. Moreover, existing models do not induce spontaneous pain, which is the primary symptom of patients with chronic pain, including endometriosis. A lack of models that accurately recapitulate the disease phenotype must contribute to the high failure rate of clinical trials for analgesic drugs directed at chronic pain, including those for endometriosis. We set out to establish a murine model of endometriosis-associated pain. Endometriosis was induced nonsurgically by injecting a dissociated uterine horn into a recipient mouse. The induced lesions exhibited histological features that resemble human lesions along with an increase in proinflammatory cytokines and recruitment of immune cells. We also observed the presence of calcitonin gene-related peptide-, TRPA1-, and TRPV1-expressing nerve fibers in the lesions. This model induced mechanical allodynia, spontaneous abdominal pain, and changes in thermal selection behavior that indicate discomfort. These behavioral changes were reduced by drugs used clinically for endometriosis, specifically letrozole (aromatase inhibitor) and danazol (androgen). Endometriosis also induced neuronal changes as evidenced by activation of the NF-κB signaling pathway in TRPA1- and TRPV1-expressing dorsal root ganglion neurons. In conclusion, we have established a model of endometriosis-associated pain that responds to clinically active drugs and can, therefore, be used to identify novel therapies.
Collapse
|
19
|
Bora G, Yaba A. The role of mitogen-activated protein kinase signaling pathway in endometriosis. J Obstet Gynaecol Res 2021; 47:1610-1623. [PMID: 33590617 DOI: 10.1111/jog.14710] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/10/2021] [Accepted: 01/29/2021] [Indexed: 12/20/2022]
Abstract
AIM Endometriosis is an estrogen-dependent chronic inflammatory condition which causes pain, infertility, and predisposition for ovarian cancer. Endometriosis generates a unique microenvironment for survivability of endometriotic lesions which includes cell proliferation, differentiation, migration, and apoptosis. For these cellular activities, cascading activations of intracellular kinases are needed. Many kinase signaling pathways, IKKβ/NK-κB pathway, PI3K/AKT/mTOR, and the mitogen-activated protein kinase (MAPK) pathways (ERK1/2, p38, and JNK), are activated in endometriosis. In this review, we focus on the role of MAPK pathways in endometriosis. METHODS To identify the role of MAP Kinase signaling pathway in endometriosis we searched the Pubmed database using the search terms in various combinations "endometriosis," "endometrium," "ovary," "MAPK pathway," "ERK pathway," "p38 pathway," "JNK pathway," "estrogen," and "progesterone." RESULTS According to the current literature, MAPK signaling pathway has various roles in generating microenvironment and survival of endometriosis. Abnormal MAPK activation in migration, implantation, growth, invasion into the pelvic structures, proliferation, and apoptosis leads to the form of endometriosis and to worsen the condition in patients with endometriosis. CONCLUSION To further investigations on the effective and long-term endometriosis treatment, MAPK signaling pathways may be targeted. Molecular mechanism of MAPK signaling pathway in endometriosis should be more deeply understood and clinical trials should be more commonly performed for possible new endometriosis treatments to improve fertility and rescue endometriosis irreversibly.
Collapse
Affiliation(s)
- Gizem Bora
- Department of Histology and Embryology, Yeditepe University School of Medicine, İstanbul, Turkey
| | - Aylin Yaba
- Department of Histology and Embryology, Yeditepe University School of Medicine, İstanbul, Turkey
| |
Collapse
|
20
|
Appleyard CB, Flores I, Torres-Reverón A. The Link Between Stress and Endometriosis: from Animal Models to the Clinical Scenario. Reprod Sci 2020; 27:1675-1686. [PMID: 32542543 DOI: 10.1007/s43032-020-00205-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
There is strong evidence from humans and animal models showing that abnormal functioning of the hypothalamic-pituitary-adrenal (HPA) axis and/or the inflammatory response system disrupts feedback regulation of both neuroendocrine and immune systems, contributing to disease. Stress is known to affect the physiology of pelvic organs and to disturb the HPA axis leading to chronic, painful, inflammatory disorders. A link between stress and disease has already been documented for many chronic conditions. Endometriosis is a complex chronic gynecological disease associated with severe pelvic pain and infertility that affects 10% of reproductive-aged women. Patients report the negative impact of endometriosis symptoms on quality of life, work/study productivity, and personal relationships, which in turn cause high levels of psychological and emotional distress. The relationship between stress and endometriosis is not clear. Still, we have recently demonstrated that stress increases the size and severity of the lesions as well as inflammatory parameters in an animal model. Furthermore, the "controllability" of stress influences the pathophysiology in this model, offering the possibility of using stress management techniques in patients. The crosstalk between stress-inflammation-pain through HPA axis activity indicates that stress relief should alleviate inflammation and, in turn, decrease painful responses. This opens up the opportunity of altering brain-body-brain pathways as potential new therapeutic option for endometriosis. The goal of this review is to gather the research evidence regarding the interaction between stress (psychological and physiological) and the development and progression of endometriosis on the exacerbation of its symptoms with the purpose of proposing new lines of emerging research and possible treatment modalities for this still incurable disease.
Collapse
Affiliation(s)
- Caroline B Appleyard
- Department of Basic Sciences, Women's Health Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA. .,Department of Internal Medicine, Ponce Health Sciences University, Ponce, PR, USA. .,Department of Basic Sciences, Physiology Division, Medical School and Ponce Research Institute, Ponce Health Sciences University, 395 Zona Ind Reparada 2, Ponce, PR, 00716-2347, USA.
| | - Idhaliz Flores
- Department of Basic Sciences, Women's Health Division, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA.,Department of Obstetrics and Gynecology, Ponce Health Sciences University, Ponce, PR, USA
| | | |
Collapse
|
21
|
Greaves E, Rosser M, Saunders PTK. Endometriosis-Associated Pain - Do Preclinical Rodent Models Provide a Good Platform for Translation? ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2020; 232:25-55. [PMID: 33278006 DOI: 10.1007/978-3-030-51856-1_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pelvic pain is a common symptom of endometriosis. Our understanding of its etiology remains incomplete and medical management is limited by poor translation from preclinical models to clinical trials. In this review, we briefly consider the evidence, or lack thereof, that different subtypes of lesion, extra-uterine bleeding, and neuropathic pathways add to the complex and heterogeneous pain experience of women with the condition. We summarize the studies in rodent models of endometriosis that have used behavioral endpoints (evoked and non-evoked) to explore mechanisms of endometriosis-associated pain. Lesion innervation, activation of nerves by pronociceptive molecules released by immune cells, and a role for estrogen in modulating hyperalgesia are key endometriosis-associated pain mechanisms replicated in preclinical rodent models. The presence of ectopic (full thickness uterus or endometrial) tissue may be associated with changes in the spinal cord and brain, which appear to model changes reported in patients. While preclinical models using rats and mice have yielded insights that appear relevant to mechanisms responsible for the development of endometriosis-associated pain, they are limited in scope. Specifically, most studies are based on models that only resulted in the formation of superficial lesions and use induced (evoked) behavioral 'pain' tests. We suggest that translation for patient benefit will be improved by new approaches including models of ovarian and deep infiltrating disease and measurement of spontaneous pain behaviors. Future studies must also capitalize on new advances in the wider field of pain medicine to identify more effective treatments for endometriosis-associated pain.
Collapse
Affiliation(s)
- Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Matthew Rosser
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Philippa T K Saunders
- Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Melki E. Endometriosis treatment with shock waves: A novel approach. Med Hypotheses 2019; 124:114-117. [PMID: 30798904 DOI: 10.1016/j.mehy.2019.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/21/2018] [Accepted: 02/03/2019] [Indexed: 10/27/2022]
Abstract
Endometriosis affects 10-15% of women. When medication is unsatisfactory, not well tolerated or unwanted, surgery remains the sole option. There is a need for a less invasive treatment. We suggest the application of shock wave therapy (SWT) to endometriotic nodules (including deep infiltrating endometriosis), endometriomas and adenomyosis. We hypothesize pain relief via an antiinflammatory effect, an antioxidant effect and neural pathways modulation, as well as a direct effect on the lesions by the energy thus delivered. Questions to be answered before a clinical application is tested include route of administration (external versus internal transducers), dose regimen, optimal duration of treatment and type of shock waves used (focalised versus radial).
Collapse
Affiliation(s)
- E Melki
- Obstetrics and Gynecology Department, Clinique Saint-Paul, 4 rue des Hibiscus, 97000 Fort de France, Martinique.
| |
Collapse
|