1
|
Beylerli O, Gareev I, Musaev E, Roumiantsev S, Chekhonin V, Ahmad A, Chao Y, Yang G. New approaches to targeted drug therapy of intracranial tumors. Cell Death Discov 2025; 11:111. [PMID: 40113789 PMCID: PMC11926108 DOI: 10.1038/s41420-025-02358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Intracranial tumors encompass a heterogeneous group of neoplasms, including gliomas, meningiomas, pituitary adenomas, schwannomas, craniopharyngiomas, ependymomas, medulloblastomas, and primary central nervous system lymphomas. These tumors present significant challenges due to their diverse molecular characteristics, critical locations, and the unique obstacles posed by the blood-brain barrier (BBB) and blood-tumor barrier (BTB), which limit the efficacy of systemic therapies. Recent advances in molecular biology and genomics have enabled the identification of specific molecular pathways and targets, paving the way for innovative precision therapies. This review examines the current state of targeted therapies for intracranial tumors, including receptor tyrosine kinase (RTK) inhibitors, PI3K/AKT/mTOR inhibitors, RAF/MEK/ERK pathway inhibitors, IDH mutation inhibitors, immune checkpoint inhibitors, and CAR-T cell therapies. Emphasis is placed on the role of the BBB and BTB in modulating drug delivery and therapeutic outcomes. Strategies to overcome these barriers, such as focused ultrasound, nanoparticle-based delivery systems, and convection-enhanced delivery, are also explored. Furthermore, the manuscript reviews clinical trial data, highlighting successes and limitations across different tumor types. It delves into emerging therapeutic approaches, including combination of regimens and personalized treatments based on molecular profiling. By synthesizing the latest research, this article aims to provide a comprehensive understanding of the advancements and ongoing challenges in the targeted treatment of intracranial tumors. The findings underscore the necessity for innovative delivery systems and more extensive clinical trials to optimize therapeutic strategies. This review aspires to inform future research and clinical practices, aiming to improve patient outcomes and quality of life in the management of these complex and life-threatening conditions.
Collapse
Affiliation(s)
- Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russian Federation.
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russian Federation
| | - Elmar Musaev
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Sergey Roumiantsev
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Endocrinology Research Center, Moscow, Russian Federation
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Yuan Chao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
- Heilongjiang Province Neuroscience Institute, Harbin, China.
| |
Collapse
|
2
|
DE Alcubierre D, Carretti AL, Ducray F, Jouanneau E, Raverot G, Ilie MD. Aggressive pituitary tumors and carcinomas: medical treatment beyond temozolomide. Minerva Endocrinol (Torino) 2024; 49:321-334. [PMID: 38240681 DOI: 10.23736/s2724-6507.23.04058-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Aggressive pituitary tumors are a subset of pituitary neoplasms, characterized by unusually fast growth rate, invasiveness and overall resistance to optimized standard treatment. When metastases are present, the term pituitary carcinoma is employed. After failure of standard treatments, current guidelines recommend first-line temozolomide monotherapy. However, a significant number of patients do not respond to temozolomide, or experience disease progression following its discontinuation; in these latter cases, re-challenge with temozolomide is generally advised, although the reported outcomes have been less satisfactory. Although no alternative therapies have been formally recommended after temozolomide failure, growing evidence regarding potential second- or third-line therapeutic strategies has emerged. In the present work, we reviewed the available evidence published up to April 2023 involving the most relevant therapies employed so far, namely immune checkpoint inhibitors, bevacizumab, peptide radionuclide receptor therapy, tyrosine kinase inhibitors and mTOR inhibitors. For each treatment, we report efficacy and safety outcomes, along with data regarding potential predictors of response. Overall, immune checkpoint inhibitors and bevacizumab are showing the most promise as therapeutic options after temozolomide failure. The former showed better responses in pituitary carcinomas. Peptide radionuclide receptor therapy has also showed some efficacy in these tumors, while tyrosine kinase inhibitors and mTOR inhibitors have exhibited so far limited or no efficacy. Further studies, as well as an individualized, patient-tailored approach, are clearly needed. In addition, we report an unpublished case of a silent corticotroph pituitary carcinoma that progressed under dual immunotherapy, and then showed stable disease under a combination of lomustine and bevacizumab.
Collapse
Affiliation(s)
- Dario DE Alcubierre
- Department of Experimental Medicine, Sapienza University, Rome, Italy
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Claude Bernard Lyon1 University, Lyon, France
| | - Anna L Carretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
- Department of Endocrinology, Reference Center for Rare Pituitary Diseases HYPO, Groupement Hospitalier Est Hospices Civils de Lyon, Bron, France
| | - François Ducray
- Service of Neuro-Oncology, Groupement Hospitalier Est Hospices Civils de Lyon, Bron, France
| | - Emmanuel Jouanneau
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Claude Bernard Lyon1 University, Lyon, France
- Department of Pituitary and Skull Base Neurosurgical, Reference Center for Rare Pituitary Diseases HYPO, Groupement Hospitalier Est Hospices Civils de Lyon, Bron, France
| | - Gérald Raverot
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Claude Bernard Lyon1 University, Lyon, France -
- Department of Endocrinology, Reference Center for Rare Pituitary Diseases HYPO, Groupement Hospitalier Est Hospices Civils de Lyon, Bron, France
| | - Mirela D Ilie
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Claude Bernard Lyon1 University, Lyon, France
- Department of Endocrinology, C.I. Parhon National Institute of Endocrinology, Bucharest, Romania
| |
Collapse
|
3
|
Guo X, Yang Y, Qian Z, Chang M, Zhao Y, Ma W, Wang Y, Xing B. Immune landscape and progress in immunotherapy for pituitary neuroendocrine tumors. Cancer Lett 2024; 592:216908. [PMID: 38677640 DOI: 10.1016/j.canlet.2024.216908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Pituitary neuroendocrine tumors (pitNETs) are the second most common primary brain tumors. Despite their prevalence, the tumor immune microenvironment (TIME) and its clinical implications remain largely unexplored. This review provides a comprehensive overview of current knowledge on the immune landscape and advancements in targeted immunotherapy for pitNETs. Macrophages and T cells are principal immune infiltrates within the TIME. Different subtypes of pitNETs display distinct immune patterns, influencing tumor progressive behaviors. PD-L1, the most extensively studied immune checkpoint, is prominently expressed in hormonal pitNETs and correlates with tumor growth and invasion. Cytokines and chemokines including interleukins, CCLs, and CXCLs have complex correlations with tumor subtypes and immune cell infiltration. Crosstalk between macrophages and pitNET cells highlights bidirectional regulatory roles, suggesting potential macrophage-targeted strategies. Recent preclinical studies have demonstrated the efficacy of anti-PD-L1 therapy in a mouse model of corticotroph pitNET. Moreover, anti-PD-1 and/or anti-CTLA-4 immunotherapy has been applied globally in 28 cases of refractory pitNETs, showing more favorable responses in pituitary carcinomas than aggressive pitNETs. In conclusion, the TIME of pitNETs represents a promising avenue for targeted immunotherapy and warrants further investigation.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiying Yang
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Eight-Year Program of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhihong Qian
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Mengqi Chang
- Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanli Zhao
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Bing Xing
- Department of Neurosurgery, Key Laboratory of Endocrinology of National Ministry of Health, China Pituitary Adenoma Specialist Council, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Capatina C, Hanzu FA, Hinojosa-Amaya JM, Fleseriu M. Medical treatment of functional pituitary adenomas, trials and tribulations. J Neurooncol 2024; 168:197-213. [PMID: 38760632 DOI: 10.1007/s11060-024-04670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 05/19/2024]
Abstract
CONTEXT Functioning pituitary adenomas (FPAs) include most frequently prolactinomas, somatotroph or corticotroph adenomas, while thyrotroph and gonadotroph adenomas are very rare. Despite their benign histological nature (aggressive tumors are rare and malignant ones exceptional), FPAs could cause significant morbidity and increased mortality due to complications associated with hormonal excess syndromes and/or mass effect leading to compression of adjacent structures. This mini review will focus on the increasing role of medical therapy in the multimodal treatment, which also includes transsphenoidal surgery (TSS) and radiotherapy. EVIDENCE SYNTHESIS Most patients with prolactinomas are treated only with medications, but surgery could be considered for some patients in a specialized pituitary center, if higher chances of cure. Dopamine agonists, especially cabergoline, are efficient in reducing tumor size and normalizing prolactin. TSS is the first-line treatment for all other FPAs, but most patients require complex adjuvant treatment, including a combination of therapeutic approaches. Medical therapy is the cornerstone of treatment in all patients after unsuccessful surgery or when surgery cannot be offered and includes somatostatin receptor ligands and dopamine agonists (almost all FPAs), growth hormone receptor antagonists (acromegaly), adrenal steroidogenesis inhibitors and glucocorticoid receptor blockers (Cushing's disease). Novel medical treatments, especially for acromegaly and Cushing's disease are under research. CONCLUSIONS An enlarged panel of effective drugs available with increased knowledge of predictive factors for response and/or adverse effects will enhance the possibility to offer a more individualized treatment. This would not only improve disease control and prognosis, but also quality of life.
Collapse
Affiliation(s)
- Cristina Capatina
- Department of Endocrinology, University of Medicine and Pharmacy "Carol Davila" Bucharest, and Department of Pituitary and Neuroendocrine Pathology, C.I. Parhon National Institute of Endocrinology, Bucharest, Romania
| | - Felicia Alexandra Hanzu
- Endocrinology Department, Hospital Clínic de Barcelona, Spain, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - José Miguel Hinojosa-Amaya
- Endocrinology Division and Department of Medicine, Pituitary Clinic, Hospital Universitario U.A.N.L, Monterrey, Mexico
| | - Maria Fleseriu
- Departments of Medicine (Endocrinology, Diabetes and Clinical Nutrition) and Neurological Surgery, and Pituitary Center, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Pasdaran A, Grice ID, Hamedi A. A review of natural products and small-molecule therapeutics acting on central nervous system malignancies: Approaches for drug development, targeting pathways, clinical trials, and challenges. Drug Dev Res 2024; 85:e22180. [PMID: 38680103 DOI: 10.1002/ddr.22180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/09/2023] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
In 2021, the World Health Organization released the fifth edition of the central nervous system (CNS) tumor classification. This classification uses histopathology and molecular pathogenesis to group tumors into more biologically and molecularly defined entities. The prognosis of brain cancer, particularly malignant tumors, has remained poor worldwide, approximately 308,102 new cases of brain and other CNS tumors were diagnosed in the year 2020, with an estimated 251,329 deaths. The cost and time-consuming nature of studies to find new anticancer agents makes it necessary to have well-designed studies. In the present study, the pathways that can be targeted for drug development are discussed in detail. Some of the important cellular origins, signaling, and pathways involved in the efficacy of bioactive molecules against CNS tumorigenesis or progression, as well as prognosis and common approaches for treatment of different types of brain tumors, are reviewed. Moreover, different study tools, including cell lines, in vitro, in vivo, and clinical trial challenges, are discussed. In addition, in this article, natural products as one of the most important sources for finding new chemotherapeutics were reviewed and over 700 reported molecules with efficacy against CNS cancer cells are gathered and classified according to their structure. Based on the clinical trials that have been registered, very few of these natural or semi-synthetic derivatives have been studied in humans. The review can help researchers understand the involved mechanisms and design new goal-oriented studies for drug development against CNS malignancies.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Irwin Darren Grice
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
- School of Medical Science, Griffith University, Gold Coast, Southport, Queensland, Australia
| | - Azadeh Hamedi
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Luo M, Yu J, Tang R. Immunological signatures and predictive biomarkers for first-generation somatostatin receptor ligand resistance in Acromegaly. J Neurooncol 2024; 167:415-425. [PMID: 38441839 DOI: 10.1007/s11060-024-04620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/23/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Predicting resistance to first-generation Somatostatin Receptor Ligands (fg-SRL) in Acromegaly patients remains an ongong challenge. Tumor-associated immune components participate in various pathological processes, including drug-resistance. We aimed to identify the immune components involved in resistance of fg-SRL, and to investigate biomarkers that can be targeted to treat those drug-resistant Acromegaly. METHODS We conducted a retrospective study involving 35 Acromegaly patients with somatotropinomas treated postoperatively with fg-SRL. Gathering clinicopathological data, SSTR2 expression, and immunological profiles, we utilized univariate, binary logistic regression, and ROC analyses to assess their predictive roles in fg-SRL resistance. Spearman correlation analysis further examined interactions among interested characteristics. RESULTS 19 patients (54.29%) exhibited resistance to postoperative fg-SRL. GH level at diagnosis, preoperative tumor volume, T2WI-MRI intensity, granularity, PD-L1, SSTR2, and CD8 + T cell infiltration showed association with clinical outcomes of fg-SRL. Notably, T2WI-MRI hyperintensity, PD-L1-IRS > 7, CD8 + T cell infiltration < 14.8/HPF, and SSTR2-IRS < 5.4 emerged as reliable predictors for fg-SRL resistance. Correlation analysis highlighted a negative relationship between PD-L1 expression and CD8 + T cell infiltration, while showcasing a positive correlation with preoperative tumor volume of somatotropinomas. Additionally, 5 patients with fg-SRL resistance underwent re-operation were involved. Following fg-SRL treatment, significant increases in PD-L1 and SSTR5 expression were observed, while SSTR2 expression decreased in somatotropinoma. CONCLUSION PD-L1 expression and CD8 + T cell infiltration, either independently or combined with SSTR2 expression and T2WI-MRI intensity, could form a predictive model guiding clinical decisions on fg-SRL employment. Furthermore, targeting PD-L1 through immunotherapy and embracing second-generations of SRL with higher affinity to SSTR5 represent promising strategies to tackle fg-SRL resistance in somatotropinomas.
Collapse
Affiliation(s)
- Mei Luo
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, China
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiangfan Yu
- Department of Pediatric Dermatology, Dermatology Hospital of Southern Medical University, 510091, Guangzhou, China
| | - Rui Tang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center for Systemic Autoimmune Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Iglesias P. Aggressive and Metastatic Pituitary Neuroendocrine Tumors: Therapeutic Management and Off-Label Drug Use. J Clin Med 2023; 13:116. [PMID: 38202123 PMCID: PMC10779494 DOI: 10.3390/jcm13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common pituitary tumors and the second most common brain tumors. Although the vast majority (>90%) are benign, a small percentage (<2%) are aggressive. These aggressive PitNETs (AgPitNETs) are defined by the presence of radiological invasion, a high rate of cell proliferation, resistance to conventional treatments, and/or a high propensity for recurrence. Lastly, there are the rare pituitary carcinomas, also known as metastatic PitNETs (MetPitNETs), which account for only 0.2% of cases and are defined by the presence of craniospinal or distant metastases. At present, there are no definitive factors that allow us to predict with certainty the aggressive behavior of PitNETs, making the therapeutic management of AgPitNETs a real challenge. Surgery is considered the first-line treatment for AgPitNETs and MetPitNETs. Radiation therapy can be effective in controlling tumor growth and regulating hormone hypersecretion. Currently, there are no approved non-endocrine medical therapies for the management of AgPitNETs/MetPitNETs, mainly due to the lack of randomized controlled clinical trials. As a result, many of the medical therapies used are off-label drugs, and several are under investigation. Temozolomide (TMZ) is now recognized as the primary medical treatment following the failure of standard therapy (medical treatment, surgery, and radiotherapy) in AgPitNETs/MetPitNETs due to its ability to improve overall and progression-free survival rates in responding patients over 5 years. Other therapeutic options include pituitary-targeted therapies (dopamine agonists and somatostatin analogs), hormonal antisecretory drugs, non-hormonal targeted therapies, radionuclide treatments, and immunotherapy. However, the number of patients who have undergone these treatments is limited, and the results obtained to date have been inconsistent. As a result, it is imperative to expand the cohort of patients undergoing treatment to better determine the therapeutic efficacy and safety of these drugs for individuals with AgPitNETs/MetPitNETs.
Collapse
Affiliation(s)
- Pedro Iglesias
- Department of Endocrinology, Hospital Universitario Puerta de Hierro Majadahonda, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana (IDIPHISA), 28222 Madrid, Spain
| |
Collapse
|
8
|
Petersenn S, Fleseriu M, Casanueva FF, Giustina A, Biermasz N, Biller BMK, Bronstein M, Chanson P, Fukuoka H, Gadelha M, Greenman Y, Gurnell M, Ho KKY, Honegger J, Ioachimescu AG, Kaiser UB, Karavitaki N, Katznelson L, Lodish M, Maiter D, Marcus HJ, McCormack A, Molitch M, Muir CA, Neggers S, Pereira AM, Pivonello R, Post K, Raverot G, Salvatori R, Samson SL, Shimon I, Spencer-Segal J, Vila G, Wass J, Melmed S. Diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international Consensus Statement. Nat Rev Endocrinol 2023; 19:722-740. [PMID: 37670148 DOI: 10.1038/s41574-023-00886-5] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 09/07/2023]
Abstract
This Consensus Statement from an international, multidisciplinary workshop sponsored by the Pituitary Society offers evidence-based graded consensus recommendations and key summary points for clinical practice on the diagnosis and management of prolactinomas. Epidemiology and pathogenesis, clinical presentation of disordered pituitary hormone secretion, assessment of hyperprolactinaemia and biochemical evaluation, optimal use of imaging strategies and disease-related complications are addressed. In-depth discussions present the latest evidence on treatment of prolactinoma, including efficacy, adverse effects and options for withdrawal of dopamine agonist therapy, as well as indications for surgery, preoperative medical therapy and radiation therapy. Management of prolactinoma in special situations is discussed, including cystic lesions, mixed growth hormone-secreting and prolactin-secreting adenomas and giant and aggressive prolactinomas. Furthermore, considerations for pregnancy and fertility are outlined, as well as management of prolactinomas in children and adolescents, patients with an underlying psychiatric disorder, postmenopausal women, transgender individuals and patients with chronic kidney disease. The workshop concluded that, although treatment resistance is rare, there is a need for additional therapeutic options to address clinical challenges in treating these patients and a need to facilitate international registries to enable risk stratification and optimization of therapeutic strategies.
Collapse
Affiliation(s)
- Stephan Petersenn
- ENDOC Center for Endocrine Tumors, Hamburg, Germany.
- University of Duisburg-Essen, Essen, Germany.
| | | | | | - Andrea Giustina
- San Raffaele Vita-Salute University, Milan, Italy
- IRCCS Hospital San Raffaele, Milan, Italy
| | | | | | | | - Philippe Chanson
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | | | - Monica Gadelha
- Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yona Greenman
- Tel Aviv-Sourasky Medical Center, Tel Aviv, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Mark Gurnell
- University of Cambridge, Cambridge, UK
- Addenbrooke's Hospital, Cambridge, UK
| | - Ken K Y Ho
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | | | | | - Ursula B Kaiser
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Niki Karavitaki
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Maya Lodish
- University of California, San Francisco, San Francisco, CA, USA
| | | | - Hani J Marcus
- National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ann McCormack
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Mark Molitch
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | - Alberto M Pereira
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Kalmon Post
- Mount Sinai Health System, New York, NY, USA
| | - Gerald Raverot
- Department of Endocrinology, Reference Centre for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
| | | | | | - Ilan Shimon
- Tel Aviv University, Tel Aviv, Israel
- Beilinson Hospital, Rabin Medical Center, Petah-Tikva, Israel
| | | | - Greisa Vila
- Medical University of Vienna, Vienna, Austria
| | - John Wass
- University of Oxford, Oxford, UK
- Churchill Hospital, Oxford, UK
| | | |
Collapse
|
9
|
Tapoi DA, Popa ML, Tanase C, Derewicz D, Gheorghișan-Gălățeanu AA. Role of Tumor Microenvironment in Pituitary Neuroendocrine Tumors: New Approaches in Classification, Diagnosis and Therapy. Cancers (Basel) 2023; 15:5301. [PMID: 37958474 PMCID: PMC10649263 DOI: 10.3390/cancers15215301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Adenohypophysal pituitary tumors account for 10-15% of all intracranial tumors, and 25-55% display signs of invasiveness. Nevertheless, oncology still relies on histopathological examination to establish the diagnosis. Considering that the classification of pituitary tumors has changed significantly in recent years, we discuss the definition of aggressive and invasive tumors and the latest molecular criteria used for classifying these entities. The pituitary tumor microenvironment (TME) is essential for neoplastic development and progression. This review aims to reveal the impact of TME characteristics on stratifying these tumors in view of finding appropriate therapeutic approaches. The role of the pituitary tumor microenvironment and its main components, non-tumoral cells and soluble factors, has been addressed. The variable display of different immune cell types, tumor-associated fibroblasts, and folliculostellate cells is discussed in relation to tumor development and aggressiveness. The molecules secreted by both tumoral and non-tumoral cells, such as VEGF, FGF, EGF, IL6, TNFα, and immune checkpoint molecules, contribute to the crosstalk between the tumor and its microenvironment. They could be considered potential biomarkers for diagnosis and the invasiveness of these tumors, together with emerging non-coding RNA molecules. Therefore, assessing this complex network associated with pituitary neuroendocrine tumors could bring a new era in diagnosing and treating this pathology.
Collapse
Affiliation(s)
- Dana Antonia Tapoi
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | - Maria-Linda Popa
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Cell Biology and Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Diana Derewicz
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pediatric Hematology and Oncology, Marie Sklodowska Curie Clinical Emergency Hospital, 041447 Bucharest, Romania
| | - Ancuța-Augustina Gheorghișan-Gălățeanu
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- C.I. Parhon National Institute of Endocrinology, 011863 Bucharest, Romania
| |
Collapse
|
10
|
Ilie MD, De Alcubierre D, Carretti AL, Jouanneau E, Raverot G. Therapeutic targeting of the pituitary tumor microenvironment. Pharmacol Ther 2023; 250:108506. [PMID: 37562699 DOI: 10.1016/j.pharmthera.2023.108506] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The tumor microenvironment (TME), the complex environment in which tumors develop, has been increasingly targeted for cancer treatment in recent years. Aggressive pituitary tumors and pituitary carcinomas have been so far targeted with immune-checkpoint inhibitors (28 cases, including a large cohort), and anti-angiogenic drugs (34 cases), specifically bevacizumab (30 cases), sunitinib (three cases), and apatinib (one case). Here, we reviewed all these cases, reporting tumor response, potential predictors of response, as well as adverse events. Given that the histological type could potentially influence treatment response, we present the existing data separately for each type. Briefly, under ICIs, complete response was noted in one case, partial response in a third of cases, stable disease in 10% of cases, while 54% of tumors progressed. Under BVZ monotherapy, most cases (57%) showed stable disease, while 36% of tumors progressed; partial response was reported in only one case. The three cases treated with sunitinib monotherapy progressed. Regarding predictive factors of response, the tumor type (aggressive pituitary tumor versus pituitary carcinoma) appears as the strongest predictor of response to ICIs. To date, no predictor of response to anti-angiogenic drugs in the treatment of pituitary carcinomas and aggressive pituitary tumors has been identified. The interest of BZV add-on to first- or second-line chemotherapy warrants further investigation. In addition, we discuss perspectives regarding the TME-targeting in aggressive pituitary tumors and pituitary carcinomas, including perspectives on immunotherapy, anti-angiogenic drugs, as well as on other TME components, namely stromal cells, extracellular matrix, and secreted molecules.
Collapse
Affiliation(s)
- Mirela-Diana Ilie
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Lyon 1 University, Villeurbanne, France; Endocrinology Department, "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - Dario De Alcubierre
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Lucia Carretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy; Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
| | - Emmanuel Jouanneau
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Lyon 1 University, Villeurbanne, France; Neurosurgery Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
| | - Gérald Raverot
- Inserm U1052, CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Lyon 1 University, Villeurbanne, France; Endocrinology Department, Reference Center for Rare Pituitary Diseases HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France.
| |
Collapse
|
11
|
Geer EB. Medical therapy for refractory pituitary adenomas. Pituitary 2023:10.1007/s11102-023-01320-9. [PMID: 37115295 DOI: 10.1007/s11102-023-01320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Refractory pituitary adenomas are those that have progressed following standard of care treatments. Medical therapy options for these challenging tumors are limited. PURPOSE To review the landscape of tumor directed medical therapies and off-label investigational approaches for refractory pituitary adenomas. METHODS Literature on medical therapies for refractory adenomas was reviewed. RESULTS The established first-line medical therapy for refractory adenomas is temozolomide, which importantly may increase survival, but clinical trial data are still needed to clearly establish its efficacy, identify biomarkers of response, and clarify eligibility and outcome criteria. Other therapies for refractory tumors have only been described in case reports and small case series. CONCLUSION There are currently no approved non-endocrine medical therapies for refractory pituitary tumors. There is an urgent need for identifying effective medical therapies and studying them in multi-center clinical trials.
Collapse
Affiliation(s)
- Eliza B Geer
- Departments of Medicine and Neurosurgery, Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering Cancer Center, David H. Koch Center for Cancer Care, 530 East 74th Street, Box 19, New York, NY, 10021, USA.
| |
Collapse
|
12
|
Marques P, Korbonits M. Tumour microenvironment and pituitary tumour behaviour. J Endocrinol Invest 2023; 46:1047-1063. [PMID: 37060402 DOI: 10.1007/s40618-023-02089-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
The pituitary tumour microenvironment encompasses a spectrum of non-tumoural cells, such as immune, stromal or endothelial cells, as well as enzymes and signalling peptides like cytokines, chemokines and growth factors, which surround the tumour cells and may influence pituitary tumour behaviour and tumourigenic mechanisms. Recently, there has been intensive research activity in this field describing various pituitary tumour-infiltrating immune and stromal cell subpopulations, and immune- and microenvironment-related pathways. Key changes in oncological therapeutic avenues resulted in the recognition of pituitary as a target of adverse events for patients treated with immune checkpoint regulators. However, these phenomena can be turned into therapeutic advantage in severe cases of pituitary tumours. Therefore, unravelling the pituitary tumour microenvironment will allow a better understanding of the biology and behaviour of pituitary tumours and may provide further developments in terms of diagnosis and management of patients with aggressively growing or recurrent pituitary tumours.
Collapse
Affiliation(s)
- P Marques
- Pituitary Tumor Unit, Endocrinology Department, Hospital CUF Descobertas, Lisbon, Portugal.
- Faculdade de Medicina, Universidade Católica Portuguesa, Lisbon, Portugal.
| | - M Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
13
|
Padovan M, Cerretti G, Caccese M, Barbot M, Bergo E, Occhi G, Scaroni C, Lombardi G, Ceccato F. Knowing when to discontinue Temozolomide therapy in responding aggressive pituitary tumors and carcinomas: a systematic review and Padua (Italy) case series. Expert Rev Endocrinol Metab 2023; 18:181-198. [PMID: 36876325 DOI: 10.1080/17446651.2023.2185221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
INTRODUCTION Pituitary adenomas can show a tendency to grow, despite multimodal treatment. Temozolomide (TMZ) has been used in the last 15 years in patients with aggressive pituitary tumors. TMZ requires a careful balance of different expertise, especially for selection criteria. AREAS COVERED We conducted: (1) a systematic review of the published literature from 2006 to 2022, collecting only cases with a complete description of patient follow-up after TMZ discontinuation; (2) a description of all patients with aggressive pituitary adenoma or carcinoma treated in Padua (Italy). EXPERT OPINION There is considerable heterogeneity in the literature: TMZ cycles duration ranged from 3 to 47 months; the follow-up time after TMZ discontinuation ranged from 4 to 91 months (mean 24 months, median 18 months), at least a stable disease has been reported in 75% of patients after a mean 13 months (range 3-47 months, median 10 months). The Padua (Italy) cohort reflects the literature. Future directions to explore are to understand the pathophysiological mechanism of TMZ resistance escape, to develop predicting factors to TMZ treatment (especially through the delineation of the underlying transformation processes), and to further expand the therapeutic applications of TMZ (as neoadjuvant, combined with radiotherapy).
Collapse
Affiliation(s)
- Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Mattia Barbot
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padua, Padua, Italy
| | - Eleonora Bergo
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Gianluca Occhi
- Department of Biology DIBIO, University of Padua, Padua, Italy
| | - Carla Scaroni
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padua, Padua, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Filippo Ceccato
- Department of Medicine DIMED, University of Padua, Padua, Italy
- Endocrine Disease Unit, University-Hospital of Padua, Padua, Italy
| |
Collapse
|