1
|
Ghoshoon MB, Raee MJ, Shabanpoor MR, Dehghani Z, Ebrahimi N, Berenjian A, Negahdaripour M, Hemmati S, Sadeghian I, Ghasemi Y. Whole cell immobilization of recombinant E. coli cells by calcium alginate beads; evaluation of plasmid stability and production of extracellular L-asparaginase. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1962910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mohammad Bagher Ghoshoon
- Pharmaceutical Sciences Research Center,Shiraz University of Medical Sciences,Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz,Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery,Shiraz University of Medical SciencesShiraz,Iran
| | - Mohammad Reza Shabanpoor
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz,Iran
| | - Zahra Dehghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz,Iran
| | - Narjes Ebrahimi
- Allergy Research Center,Shiraz University of Medical Sciences, Shiraz,Iran
| | - Aydin Berenjian
- School of Engineering Faculty of Science and Engineering, The University of Waikato, Hamilton, New Zealand
| | - Manica Negahdaripour
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz,Iran
| | - Shiva Hemmati
- Pharmaceutical Sciences Research Center,Shiraz University of Medical Sciences,Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz,Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz,Iran
| | - Issa Sadeghian
- Pharmaceutical Sciences Research Center,Shiraz University of Medical Sciences,Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz,Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center,Shiraz University of Medical Sciences,Shiraz, Iran
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz,Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz,Iran
| |
Collapse
|
2
|
Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzyme Microb Technol 2020; 135:109495. [DOI: 10.1016/j.enzmictec.2019.109495] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022]
|
3
|
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Kadisch
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Christian Willrodt
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Michael Hillen
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| |
Collapse
|
4
|
Ge X, Yang L, Xu J. Cell Immobilization: Fundamentals, Technologies, and Applications. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Xumeng Ge
- Arkansas State University; Arkansas Biosciences Institute; 504 University Loop Jonesboro AR 72401 USA
- Ohio State University, College of Food, Agricultural, and Environmental Sciences; Department of Food, Agricultural and Biological Engineering; 1680 Madison Avenue Wooster OH 77691 USA
| | - Liangcheng Yang
- Ohio State University, College of Food, Agricultural, and Environmental Sciences; Department of Food, Agricultural and Biological Engineering; 1680 Madison Avenue Wooster OH 77691 USA
| | - Jianfeng Xu
- Arkansas State University; Arkansas Biosciences Institute; 504 University Loop Jonesboro AR 72401 USA
- Arkansas State University; College of Agriculture and Technology; 422 University Loop Jonesboro AR 72401 USA
| |
Collapse
|
5
|
Ye L, Lv X, Yu H. Engineering microbes for isoprene production. Metab Eng 2016; 38:125-138. [DOI: 10.1016/j.ymben.2016.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/13/2016] [Indexed: 01/12/2023]
|
6
|
Metabolic Responses of Bacterial Cells to Immobilization. Molecules 2016; 21:molecules21070958. [PMID: 27455220 PMCID: PMC6273605 DOI: 10.3390/molecules21070958] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 01/15/2023] Open
Abstract
In recent years immobilized cells have commonly been used for various biotechnological applications, e.g., antibiotic production, soil bioremediation, biodegradation and biotransformation of xenobiotics in wastewater treatment plants. Although the literature data on the physiological changes and behaviour of cells in the immobilized state remain fragmentary, it is well documented that in natural settings microorganisms are mainly found in association with surfaces, which results in biofilm formation. Biofilms are characterized by genetic and physiological heterogeneity and the occurrence of altered microenvironments within the matrix. Microbial cells in communities display a variety of metabolic differences as compared to their free-living counterparts. Immobilization of bacteria can occur either as a natural phenomenon or as an artificial process. The majority of changes observed in immobilized cells result from protection provided by the supports. Knowledge about the main physiological responses occurring in immobilized cells may contribute to improving the efficiency of immobilization techniques. This paper reviews the main metabolic changes exhibited by immobilized bacterial cells, including growth rate, biodegradation capabilities, biocatalytic efficiency and plasmid stability.
Collapse
|
7
|
Che Man R, Fauzi Ismail A, Fatimah Zaharah Mohd Fuzi S, Faisal Ghazali N, Md Illias R. Effects of culture conditions of immobilized recombinant Escherichia coli on cyclodextrin glucanotransferase (CGTase) excretion and cell stability. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Effects of the immobilization of recombinant Escherichia coli on cyclodextrin glucanotransferase (CGTase) excretion and cell viability. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Oliveira SMD, Chandraseelan JG, Häkkinen A, Goncalves NSM, Yli-Harja O, Startceva S, Ribeiro AS. Single-cell kinetics of a repressilator when implemented in a single-copy plasmid. MOLECULAR BIOSYSTEMS 2015; 11:1939-45. [PMID: 25923804 DOI: 10.1039/c5mb00012b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic genetic clocks, such as the Elowitz-Leibler repressilator, will be key regulatory components of future synthetic circuits. We constructed a single-copy repressilator (SCR) by implementing the original repressilator circuit on a single-copy F-plasmid. After verifying its functionality, we studied its behaviour as a function of temperature and compared it with that of the original low-copy-number repressilator (LCR). Namely, we compared the period of oscillations, functionality (the fraction of cells exhibiting oscillations) and robustness to internal fluctuations (the fraction of expected oscillations that would occur). We found that, under optimal temperature conditions, the dynamics of the two systems differs significantly, although qualitatively they respond similarly to temperature changes. Exception to this is in the functionality, in which the SCR is higher at lower temperatures but lower at higher temperatures. Next, by adding IPTG to the medium at low and high concentrations during microscopy sessions, we showed that the functionality of the SCR is more robust to external perturbations, which indicates that the oscillatory behaviour of the LCR can be disrupted by affecting only a few of the copies in a cell. We conclude that the SCR, the first functional, synthetic, single-copy, ring-type genetic clock, is more robust to lower temperatures and to external perturbations than the original LCR. The SCR will be of use in future synthetic circuits, since it complements the array of tasks that the LCR can perform.
Collapse
Affiliation(s)
- Samuel M D Oliveira
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
10
|
Persistent organic pollutants induced protein expression and immunocrossreactivity by Stenotrophomonas maltophilia PM102: a prospective bioremediating candidate. BIOMED RESEARCH INTERNATIONAL 2013; 2013:714232. [PMID: 23878815 PMCID: PMC3708406 DOI: 10.1155/2013/714232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/26/2013] [Accepted: 06/05/2013] [Indexed: 11/18/2022]
Abstract
A novel bacterium capable of growth on trichloroethylene as the sole carbon source was identified as Stenotrophomonas maltophilia PM102 by 16S rDNA sequencing (accession number of NCBI GenBank: JQ797560). In this paper, we report the growth pattern, TCE degradation, and total proteome of this bacterium in presence of various other carbon sources: toluene, phenol, glucose, chloroform, and benzene. TCE degradation was comparatively enhanced in presence of benzene. Densitometric analysis of the intracellular protein profile revealed four proteins of 78.6, 35.14, 26.2, and 20.47 kDa while the extracellular protein profile revealed two distinct bands at 14 kDa and 11 kDa that were induced by TCE, benzene, toluene, and chloroform but absent in the glucose lane. A rabbit was immunised with the total protein extracted from the bacteria grown in 0.2% TCE + 0.2% peptone. Antibody preadsorbed on proteins from peptone grown PM102 cells reacted with a single protein of 35.14 kDa (analysed by MALDI-TOF-mass-spectrometry) from TCE, benzene, toluene, or chloroform grown cells. No reaction was seen for proteins of PM102 grown with glucose. The PM102 strain was immobilised in calcium alginate beads, and TCE degradation by immobilised cells was almost double of that by free cells. The beads could be reused 8 times.
Collapse
|
11
|
Zajkoska P, Rebroš M, Rosenberg M. Biocatalysis with immobilized Escherichia coli. Appl Microbiol Biotechnol 2013; 97:1441-55. [DOI: 10.1007/s00253-012-4651-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 11/30/2022]
|
12
|
Silva F, Queiroz JA, Domingues FC. Evaluating metabolic stress and plasmid stability in plasmid DNA production by Escherichia coli. Biotechnol Adv 2012; 30:691-708. [DOI: 10.1016/j.biotechadv.2011.12.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/01/2011] [Accepted: 12/29/2011] [Indexed: 01/26/2023]
|
13
|
Yang J, Xian M, Su S, Zhao G, Nie Q, Jiang X, Zheng Y, Liu W. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli. PLoS One 2012; 7:e33509. [PMID: 22558074 PMCID: PMC3338741 DOI: 10.1371/journal.pone.0033509] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/15/2012] [Indexed: 11/19/2022] Open
Abstract
The depleting petroleum reserve, increasingly severe energy crisis, and global climate change are reigniting enthusiasm for seeking sustainable technologies to replace petroleum as a source of fuel and chemicals. In this paper, the efficiency of the MVA pathway on isoprene production has been improved as follows: firstly, in order to increase MVA production, the source of the “upper pathway” which contains HMG-CoA synthase, acetyl-CoA acetyltransferase and HMG-CoA reductase to covert acetyl-CoA into MVA has been changed from Saccharomyces cerevisiae to Enterococcus faecalis; secondly, to further enhance the production of MVA and isoprene, a alanine 110 of the mvaS gene has been mutated to a glycine. The final genetic strain YJM25 containing the optimized MVA pathway and isoprene synthase from Populus alba can accumulate isoprene up to 6.3 g/L after 40 h of fed-batch cultivation.
Collapse
Affiliation(s)
- Jianming Yang
- Biomaterials Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Mo Xian
- Biomaterials Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- * E-mail:
| | - Sizheng Su
- Department of Biochemistry, Beijing Risun Chemical Technologies Institute, China Risun Coal Chemicals Group Limited, Beijing, China
| | - Guang Zhao
- Biomaterials Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Qingjuan Nie
- College English Office, Foreign Languages School, Qingdao Agricultural University, Qingdao, China
| | - Xinglin Jiang
- Biomaterials Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yanning Zheng
- Biomaterials Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Wei Liu
- Biomaterials Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
14
|
Repeated-batch production of glucoamylase using recombinant Saccharomyces cerevisiae immobilized in a fibrous bed bioreactor. J Ind Microbiol Biotechnol 2010; 37:773-83. [DOI: 10.1007/s10295-010-0719-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
|
15
|
Kilonzo P, Margaritis A, Bergougnou M. Airlift-driven fibrous-bed bioreactor for continuous production of glucoamylase using immobilized recombinant yeast cells. J Biotechnol 2009; 143:60-8. [PMID: 19539672 DOI: 10.1016/j.jbiotec.2009.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/03/2009] [Accepted: 06/05/2009] [Indexed: 10/20/2022]
Abstract
Continuous production of a fungal glucoamylase by immobilized recombinant Saccharomyces cerevisiae strain C468 containing plasmid pGAC9. Yeast cells were immobilized on hydrophilic cotton cloth in an inverse internal loop airlift-driven bioreactor. Free-cell culture in the airlift and stirred tank bioreactors confirmed the plasmid instability of the recombinant yeast. Enhanced glucoamylase productivity and plasmid stability were observed both in the free and immobilized cell cultures in the airlift bioreactor system. The glucoamylase level of the free-cell culture in the airlift bioreactor was approximately 20% higher than that in the in stirred tank bioreactor due to high cell density (cell dry weight/volume of bioreactor) and fraction of the plasmid-carrying cells. A potentially high glucoamylase activity of 161U/L and a corresponding volumetric productivity of 3.5U/Lh were achieved when a cell density of approximately 85g/L (or 12.3g/g fiber) was attained in the fibrous-bed immobilized cell bioreactor system. The stable glucoamylase production was achieved after five generations, at which time a fraction of approximately 62% of the plasmid-carrying cells was realized in the immobilized cell system. Plasmid stability was increased for the immobilized cells during continuous culture at the operating dilution rate. The volumetric and specific productivities and fraction of plasmid-carrying cells in the immobilized cell system were higher than in the free-cell counterpart, however. This was in part due to the high viability (approximately 80%) in the immobilized cell system and the selective immobilization of the plasmid-carrying cells in the fibrous bed, and perhaps increased plasmid copy number.
Collapse
Affiliation(s)
- Peter Kilonzo
- Department of Chemical and Biochemical Engineering, University of Western Ontario, Ontario, Canada
| | | | | |
Collapse
|
16
|
Potential of biofilm-based biofuel production. Appl Microbiol Biotechnol 2009; 83:1-18. [PMID: 19300995 DOI: 10.1007/s00253-009-1940-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 01/09/2023]
Abstract
Biofilm technology has been extensively applied to wastewater treatment, but its potential application in biofuel production has not been explored. Current technologies of converting lignocellulose materials to biofuel are hampered by costly processing steps in pretreatment, saccharification, and product recovery. Biofilms may have a potential to improve efficiency of these processes. Advantages of biofilms include concentration of cell-associated hydrolytic enzymes at the biofilm-substrate interface to increase reaction rates, a layered microbial structure in which multiple species may sequentially convert complex substrates and coferment hexose and pentose as hydrolysates diffuse outward, and the possibility of fungal-bacterial symbioses that allow simultaneous delignification and saccharification. More importantly, the confined microenvironment within a biofilm selectively rewards cells with better phenotypes conferred from intercellular gene or signal exchange, a process which is absent in suspended cultures. The immobilized property of biofilm, especially when affixed to a membrane, simplifies the separation of biofuel from its producer and promotes retention of biomass for continued reaction in the fermenter. Highly consolidated bioprocessing, including delignification, saccharification, fermentation, and separation in a single reactor, may be possible through the application of biofilm technology. To date, solid-state fermentation is the only biofuel process to which the advantages of biofilms have been applied, even though it has received limited attention and improvements. The transfer of biofilm technology from environmental engineering has the potential to spur great innovations in the optimization of biofuel production.
Collapse
|
17
|
Zhou B, Martin GJO, Pamment NB. Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli KO11 when immobilized in continuous fluidized bed culture. Biotechnol Bioeng 2008; 100:627-33. [PMID: 18306427 DOI: 10.1002/bit.21800] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The recombinant Escherichia coli B strain KO11, containing chromosomally-integrated genes for ethanol production, was developed for use in lignocellulose-to-ethanol bioconversion processes but suffers from instability in continuous culture and a low ethanol tolerance compared to yeast. Here we report the ability cell immobilization to improve its phenotypic stability and ethanol tolerance during continuous culture on a 50 g/L xylose feed. Experiments conducted in a vertical tubular fermentor operated as a liquid-fluidized bed with the cells immobilized on porous glass microspheres were compared to control experiments in the same reactor operated as a chemostat without the support particles. Without cell immobilization the ethanol yield fell sharply following start-up, declining to 60% of theoretical after only 8-9 days of continuous fermentation. While immobilizing the cells did not prevent this decline, it delayed its onset and slowed its rate. With immobilization, a stable high ethanol yield (>85%) was maintained for at least 10 days, thereafter declining slowly, but remaining above 70% even after up to 40 days of fermentation. The ethanol tolerance of E. coli KO11 cells was substantially increased by immobilization on the glass microspheres. In ethanol tolerance tests, immobilized cells released from the microspheres had survival rates 2.3- to 15-fold higher than those of free cells isolated from the same broth. Immobilization is concluded to be an effective means of increasing ethanol tolerance in E. coli KO11. While immobilization was only partially effective in combating its phenotypic instability, further improvements can be expected following optimization of the immobilization conditions.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
18
|
Zhao YN, Chen G, Yao SJ. Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochem Eng J 2006. [DOI: 10.1016/j.bej.2006.09.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|