1
|
Liu C, Tan L, Zhang K, Wang W, Ma L. Immobilization of Horseradish Peroxidase for Phenol Degradation. ACS OMEGA 2023; 8:26906-26915. [PMID: 37546652 PMCID: PMC10398862 DOI: 10.1021/acsomega.3c01570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
The use of enzymes to degrade environmental pollutants has received wide attention as an emerging green approach. Horseradish peroxidase (HRP) can efficiently catalyze the degradation of phenol in the environment; however, free HRP exhibits poor stability and temperature sensitivity and is easily deactivated, which limit its practical applications. In this study, to improve their thermal stability, HRP enzymes were immobilized on mesoporous molecular sieves (Al-MCM-41). Specifically, Al-MCM-41(W) and Al-MCM-41(H) were prepared by modifying the mesoporous molecular sieve Al-MCM-41 with glutaraldehyde and epichlorohydrin, respectively, and used as carriers to immobilize HRP on their surface, by covalent linkage, to form the immobilized enzymes HRP@Al-MCM-41(W) and HRP@Al-MCM-41(H). Notably, the maximum reaction rate of HRP@Al-MCM-41(H) was increased from 2.886 × 105 (free enzyme) to 5.896 × 105 U/min-1, and its half-life at 50 °C was increased from 745.17 to 1968.02 min; the thermal stability of the immobilized enzyme was also significantly improved. In addition, we elucidated the mechanism of phenol degradation by HRP, which provides a basis for the application of this enzyme to phenol degradation.
Collapse
Affiliation(s)
- Can Liu
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs, Beijing University of
Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, PR China
| | - Li Tan
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs, Beijing University of
Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, PR China
| | - Kaixin Zhang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs, Beijing University of
Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, PR China
| | - Wenyi Wang
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs, Beijing University of
Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, PR China
| | - Lanqing Ma
- Key
Laboratory for Northern Urban Agriculture of Ministry of Agriculture
and Rural Affairs, Beijing University of
Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, PR China
- Beijing
Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping
District, Beijing 102206, PR China
| |
Collapse
|
2
|
Vicaria JM, Herrera-Márquez O, Serrano-Haro M, Vidal A, Jurado E, Jiménez-Pérez JL. Optimization of surfactants formulations to stabilise proteases and amylases. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Zafer JB, Dede S, Karakuş E. α-Amylase assay with starch-iodine-sodium fluorescein-based fluorometric method in human serum samples. Prep Biochem Biotechnol 2021; 51:599-606. [PMID: 33427021 DOI: 10.1080/10826068.2020.1843177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A new fluorometric method was developed for the determination of α-amylase activity in human serum samples. Firstly, a saturated starch-iodine complex (SI) was prepared. The SI complex was combined with sodium fluorescein to form a starch-iodine-sodium fluorescein complex (SIF). As the SIF complex decomposes with the α-amylase enzymatic hydrolysis of starch, the intensity of its fluorescence emission increases. The α-amylase activity is determined using the increased fluorescence emission intensity following hydrolysis of the SIF complex by α-amylase. The optimum pH, optimum buffer concentration, optimum temperature, and interference effect were identified for the developed fluorometric measurement method. Under the optimum conditions, a linear calibration curve was obtained between 0.18 and 9.00 U/L for α-amylase. The α-amylase activity in the human serum sample was also determined by our prepared measurement system and compared with the result from a medical center. Both methods are in good agreement with each other. Because this newly developed fluorometric method for α-amylase activity in serum samples is inexpensive, easy to use, and carried out to detect a very low amount of human serum α-amylase with sensitivity, it can be proposed this method for alpha-amylase activity assay in all other biological samples.
Collapse
Affiliation(s)
- Julide Buse Zafer
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Süreyya Dede
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| | - Emine Karakuş
- Department of Chemistry, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
Herrera-Márquez O, Fernández-Serrano M, Pilamala M, Jácome M, Luzón G. Stability studies of an amylase and a protease for cleaning processes in the food industry. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Arabacı N, Arıkan B. Isolation and characterization of a cold-active, alkaline, detergent stable α-amylase from a novel bacterium Bacillus subtilis N8. Prep Biochem Biotechnol 2018; 48:419-426. [PMID: 29561221 DOI: 10.1080/10826068.2018.1452256] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A cold-active alkaline amylase producer Bacillus subtilis N8 was isolated from soil samples. Amylase synthesis optimally occurred at 15°C and pH 10.0 on agar plates containing starch. The molecular weight of the enzyme was found to be 205 kDa by performing SDS-PAGE. While the enzyme exhibited the highest activity at 25°C and pH 8.0, it was highly stable in alkaline media (pH 8.0-12.0) and retained 96% of its original activity at low temperatures (10-40°C) for 24 hr. While the amylase activity increased in the presence of β-mercaptoethanol (103%); Ba2+, Ca2+, Na+, Zn2+, Mn2+, H2O2, and Triton X-100 slightly inhibited the activity. The enzyme showed resistance to some denaturants: such as SDS, EDTA, and urea (52, 65, and 42%, respectively). N8 α-amylase displayed the maximum remaining activity of 56% with 3% NaCl. The major final products of starch were glucose, maltose, and maltose-derived oligosaccharides. This novel cold-active α-amylase has the potential to be used in the industries of detergent and food, bioremediation process and production of prebiotics.
Collapse
Affiliation(s)
- Nihan Arabacı
- a Department of Biology , Çukurova University , Adana , Turkey
| | - Burhan Arıkan
- a Department of Biology , Çukurova University , Adana , Turkey
| |
Collapse
|
6
|
Jurado-Alameda E, Herrera-Márquez O, Martínez-Gallegos JF, Vicaria JM. Starch-soiled stainless steel cleaning using surfactants and α-amylase. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2015.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Ebrahimipour SY, Mohamadi M, Castro J, Mollania N, Rudbari HA, Saccá A. Syntheses, characterizations, crystal structures, and biological activities of two new mixed ligand Ni(II) and Cu(II) Schiff base complexes. J COORD CHEM 2015. [DOI: 10.1080/00958972.2014.1000883] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- S. Yousef Ebrahimipour
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Mohamadi
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Jesús Castro
- Departamento de Química Inorgánica, Universidade de Vigo, Facultade de Química, Edificio de Ciencias Experimentais, 36310 Vigo, Galicia, Spain
| | - Nasrin Mollania
- Department of Biology, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | | | - Alessandro Saccá
- Dipartimento di Scienze Chimiche, Universita´ di Messina, Messina, Italy
| |
Collapse
|
8
|
Martínez-Gallegos JF, Jurado-Alameda E, Carrasquilla-Carmona JL, Jiménez-Pérez JL, Romero-Pareja PM. Characterization of the ozone effect over an α-amylase from Bacillus licheniformis. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Presečki AV, Blažević ZF, Vasić-Rački Đ. Mathematical modeling of maize starch liquefaction catalyzed by α-amylases from Bacillus licheniformis: effect of calcium, pH and temperature. Bioprocess Biosyst Eng 2012; 36:117-26. [DOI: 10.1007/s00449-012-0767-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/01/2012] [Indexed: 11/24/2022]
|
10
|
Sakac N, Sak-Bosnar M, Horvat M, Madunić-Cacić D, Szechenyi A, Kovacs B. A new potentiometric sensor for the determination of α-amylase activity. Talanta 2010; 83:1606-12. [PMID: 21238759 DOI: 10.1016/j.talanta.2010.11.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/05/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
A platinum redox sensor for the direct potentiometric determination of α-amylase concentration has been described. The sensor measured the amount of triiodide released from a starch-triiodide complex, which was correlated with the α-amylase activity after biocatalytic starch degradation. The composition and stability of the potassium triiodide solution was optimized. The starch-triiodide complex was characterized potentiometrically at variable starch and triiodide concentrations. The response mechanism of the platinum redox sensor towards α-amylase was proposed and the appropriate theoretical model was elaborated. The results obtained using the redox sensor exhibited satisfactory accuracy and precision and good agreement with a standard spectrophotometric method and high-sensitive fully automated descret analyser method. The sensor was tested on pure α-amylase (EC 3.2.1.1, Fluka, Switzerland), industrial granulated α-amylase Duramyl 120 T and an industrial cogranulate of protease and α-amylase Everlase/Duramyl 8.0 T/60 T. The detection limit was found to be 1.944 mU for α-amylase in the range of 0-0.54 U (0-15 μg), 0.030 mKNU for Duramyl 120 T in the range of 0-9.6 mKNU (0-80 μg) and 0.032 mKNU for Everlase/Duramyl 8.0 T/60 T in the range of 0-9.24 mKNU (0-140 μg).
Collapse
Affiliation(s)
- Nikola Sakac
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia.
| | | | | | | | | | | |
Collapse
|
11
|
Besselink T, Baks T, Janssen AE, Boom RM. A stochastic model for predicting dextrose equivalent and saccharide composition during hydrolysis of starch by α-amylase. Biotechnol Bioeng 2008; 100:684-97. [DOI: 10.1002/bit.21799] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|