1
|
Ng WZ, Chan ES, Gourich W, Adiiba SH, Liow MY, Ooi CW, Tey BT, Song CP. Unveiling the role of mechanical process intensifications and chemical additives in boosting lipase-catalyzed hydrolysis of vegetable oil for fatty acid production: A comprehensive review. Int J Biol Macromol 2025; 284:138144. [PMID: 39613062 DOI: 10.1016/j.ijbiomac.2024.138144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
The enzymatic production of fatty acids from vegetable oils is becoming a preferred method due to its mild conditions, simplicity, and scalability. This review analyzes studies on enzymatic hydrolysis, exploring various feedstocks, lipases, reaction conditions, and conversion yields. However, a key limitation is the longer reaction time compared to conventional methods. This limitation is primarily due to the immiscibility of triacylglycerols (TAGs) with water at low temperatures and pressures, as well as the lower activity of enzymes compared to chemical catalysts. To overcome these issues, chemical additives are identified as the most effective process intensification strategy. They are easy to implement, cause less damage to lipases, and are more efficient than mechanical methods. The impact of various chemical additives was thoroughly examined for potential improvements in the enzymatic hydrolysis of vegetable oils. A synergistic combination of chemical additives comprising ionic liquids (ILs) and polyols, along with ultrasound, as well as the consideration of immobilization techniques were explored. Overall, this review highlights the potential of chemical additives and their synergistic feasibility in enhancing the enzymatic performance of lipase-catalyzed hydrolysis reactions.
Collapse
Affiliation(s)
- Wei Zhe Ng
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Eng-Seng Chan
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Wail Gourich
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Siti Hanifah Adiiba
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Min Ying Liow
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Chien Wei Ooi
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Cher Pin Song
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
2
|
Towards rapid and sustainable synthesis of biodiesel: A review of effective parameters and scale-up potential of intensification technologies for enzymatic biodiesel production. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Mei J, Zhao X, Yi Y, Zhang Y, Wang X, Ying G. Preparation of astaxanthin by lipase-catalyzed hydrolysis from its esters in a slug-flow microchannel reactor. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Enzymatic Degradation of 2,4,6-Trichlorophenol in a Microreactor using Soybean Peroxidase. Symmetry (Basel) 2020. [DOI: 10.3390/sym12071129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Soybean peroxidase is an enzyme extracted from soybean seed hulls. In the presence of hydrogen peroxide, the enzyme has the potential to catalyze the biodegradation of toxic substances like chlorophenols. For this reason, its use in wastewater treatment processes is environmentally friendly since the enzyme can be obtained from a renewable and abundant raw material. In this work, enzymatic biodegradation of 2,4,6-trichlorophenol performed by soybean peroxidase in a microreactor was studied experimentally and theoretically. The experimental data set was obtained with a volume of 250 μL by using different soybean peroxidase concentrations and different reaction times. The fluid dynamics of the microreactor was modeled as well, using ANSYS CFX. The simulations exhibited secondary flows, which enhanced mixing. Although the laminar flow was developed, it can be assumed to be a well-mixed medium. The kinetic data were evaluated through a mechanistic model, the modified bi-bi ping-pong model, which is adequate to represent the enzymatic degradation using peroxidases. The model was composed of an initial value problem for ordinary differential equations that were solved using MATLAB. Some kinetic constants were estimated using the least square function. The results of the model fit well the experimental data.
Collapse
|
5
|
Mařík K, Tichá L, Vobecká L, Přibyl M. Theoretical study on enzyme synthesis of cephalexin in a parallel-flow microreactor combined with electrically driven ATPS microextraction. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00482c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mathematical model of a microfluidic device with two aqueous phases for the simultaneous cephalexin production and its separation from a reaction mixture was developed. The model anticipates the continuous cephalexin synthesis and enzyme recyclation.
Collapse
Affiliation(s)
- Karel Mařík
- Department of Chemical Engineering
- University of Chemistry and Technology, Prague
- 166 28 Praha 6
- Czech Republic
| | - Linda Tichá
- Department of Chemical Engineering
- University of Chemistry and Technology, Prague
- 166 28 Praha 6
- Czech Republic
| | - Lucie Vobecká
- Department of Chemical Engineering
- University of Chemistry and Technology, Prague
- 166 28 Praha 6
- Czech Republic
| | - Michal Přibyl
- Department of Chemical Engineering
- University of Chemistry and Technology, Prague
- 166 28 Praha 6
- Czech Republic
| |
Collapse
|
6
|
Hommes A, de Wit T, Euverink GJW, Yue J. Enzymatic Biodiesel Synthesis by the Biphasic Esterification of Oleic Acid and 1-Butanol in Microreactors. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02693] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
|
8
|
Onbas R, Yesil-Celiktas O. Synthesis of alginate-silica hybrid hydrogel for biocatalytic conversion by β-glucosidase in microreactor. Eng Life Sci 2018; 19:37-46. [PMID: 32624954 DOI: 10.1002/elsc.201800124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/18/2018] [Accepted: 10/04/2018] [Indexed: 11/06/2022] Open
Abstract
The organic-inorganic hybrid materials have been used in different fields to immobilize biomolecules since they offer many advantages. The aim of this study was to optimize and characterize the alginate-silica hybrid hydrogel as a stable and injectable form for microfluidic systems using internal gelation method and increase the stability and activity of immobilized enzyme for biocatalytic conversions as well. Characterization was carried out by scanning electron microscopy, energy dispersive spectroscopy/mapping, Brunauer-Emmett-Teller, Barrett-Joyner-Halenda, and Fourier-transform infrared spectroscopy analyses, and the shrinkages of monoliths were evaluated. Subsequent to optimizing the enzyme concentration (40 μg), hydrolytic conversion of 4-nitrophenyl β-d-glucopyranoside (pNPG) was performed to understand the behavior of the bioconversion in the microfluidic system. The yield was 94% which reached the equilibrium at 24 h indicating that the alginate-silica gel derived microsystem overcome some drawbacks of monolithic systems. Additionally, bioconversion of Ruscus aculeatus saponins was carried out at the same setup in order to obtain aglycon part, which has pharmaceutical significance. Although pure aglycon could not be achieved, an intermediate compound was obtained based on the HPLC analysis. The developed formulation can be utilized for various life science applications.
Collapse
Affiliation(s)
- Rabia Onbas
- Biomedical Technologies Graduate Programme Graduate School of Natural and Applied Sciences Ege University Izmir Turkey
| | - Ozlem Yesil-Celiktas
- Biomedical Technologies Graduate Programme Graduate School of Natural and Applied Sciences Ege University Izmir Turkey.,Department of Bioengineering Faculty of Engineering Ege University Izmir Turkey
| |
Collapse
|
9
|
Tuček J, Slouka Z, Přibyl M. Electric field assisted transport of dielectric droplets dispersed in aqueous solutions of ionic surfactants. Electrophoresis 2018; 39:2997-3005. [DOI: 10.1002/elps.201800176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jakub Tuček
- Department of Chemical EngineeringUniversity of Chemistry and Technology Prague
| | - Zdeněk Slouka
- Department of Chemical EngineeringUniversity of Chemistry and Technology Prague
| | - Michal Přibyl
- Department of Chemical EngineeringUniversity of Chemistry and Technology Prague
| |
Collapse
|
10
|
Vobecká L, Romanov A, Slouka Z, Hasal P, Přibyl M. Optimization of aqueous two-phase systems for the production of 6-aminopenicillanic acid in integrated microfluidic reactors-separators. N Biotechnol 2018; 47:73-79. [PMID: 29614323 DOI: 10.1016/j.nbt.2018.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/27/2023]
Abstract
Aqueous two-phase systems (ATPSs) were screened for the production of 6-aminopenicillanic acid (6-APA) catalyzed by penicillin acylase, followed by the extractive separation of 6-APA from the reaction mixture. The key point of this study was to find an ATPS exhibiting a large difference in the partition coefficients of the biocatalyst and reaction products. Several ATPSs based on polyethylene glycol (PEG)/phosphate, PEG/citrate, and PEG/dextran were tested. We found that an ATPS consisting of 15 wt% of PEG 4000, 10 wt% of phosphates, 75 wt% of water (pH value 8.0 after dissolution) provided optimal separation of 6-APA from the enzyme. While the 6-APA was mainly found in the top PEG phase, the free enzyme favored the bottom salt-rich phase. This ATPS also fulfils other important requirements: (i) high buffering capacity, reducing an undesirable pH decrease due to the dissociation of phenylacetic acid (the side product of the reaction), (ii) a relatively low cost of the ATPS components, (iii) the possibility of electrophoretic transport of fine droplets as well as the reaction products for both the acceleration of phase separation and the enhancement of 6-APA concentration in the product stream. Extraction experiments in microcapillary and batch systems showed that the transport of 6-APA formed in the salt-rich phase to the corresponding PEG phase could occur within 30 s. The experimental results described form a base of knowledge for the development of continuously operating integrated microfluidic reactors-separators driven by an electric field for the efficient production of 6-APA.
Collapse
Affiliation(s)
- Lucie Vobecká
- University of Chemistry and Technology, Prague, Department of Chemical Engineering, Technická 5, 166 28 Praha 6, Czech Republic.
| | - Alexandr Romanov
- University of Chemistry and Technology, Prague, Department of Chemical Engineering, Technická 5, 166 28 Praha 6, Czech Republic.
| | - Zdeněk Slouka
- University of Chemistry and Technology, Prague, Department of Chemical Engineering, Technická 5, 166 28 Praha 6, Czech Republic.
| | - Pavel Hasal
- University of Chemistry and Technology, Prague, Department of Chemical Engineering, Technická 5, 166 28 Praha 6, Czech Republic.
| | - Michal Přibyl
- University of Chemistry and Technology, Prague, Department of Chemical Engineering, Technická 5, 166 28 Praha 6, Czech Republic.
| |
Collapse
|
11
|
Čech J, Hessel V, Přibyl M. Aldolase catalyzed L-phenylserine synthesis in a slug-flow microfluidic system – Performance and diastereoselectivity studies. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.08.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Shang M, Noël T, Su Y, Hessel V. High Pressure Direct Synthesis of Adipic Acid from Cyclohexene and Hydrogen Peroxide via Capillary Microreactors. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04813] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minjing Shang
- Department of Chemical Engineering
and Chemistry, Group Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering
and Chemistry, Group Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Yuanhai Su
- Department of Chemical Engineering
and Chemistry, Group Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Volker Hessel
- Department of Chemical Engineering
and Chemistry, Group Micro Flow Chemistry and Process Technology, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| |
Collapse
|
13
|
Laurenti E, dos Santos Vianna Jr. A. Enzymatic microreactors in biocatalysis: history, features, and future perspectives. ACTA ACUST UNITED AC 2016. [DOI: 10.1515/boca-2015-0008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractMicrofluidic reaction devices are a very promising technology for chemical and biochemical processes. In microreactors, the micro dimensions, coupled with a high surface area/volume ratio, permit rapid heat exchange and mass transfer, resulting in higher reaction yields and reaction rates than in conventional reactors. Moreover, the lower energy consumption and easier separation of products permit these systems to have a lower environmental impact compared to macroscale, conventional reactors. Due to these benefits, the use of microreactors is increasing in the biocatalysis field, both by using enzymes in solution and their immobilized counterparts. Following an introduction to the most common applications of microreactors in chemical processes, a broad overview will be given of the latest applications in biocatalytic processes performed in microreactors with free or immobilized enzymes. In particular, attention is given to the nature of the materials used as a support for the enzymes and the strategies employed for their immobilization. Mathematical and engineering aspects concerning fluid dynamics in microreactors were also taken into account as fundamental factors for the optimization of these systems.
Collapse
|
14
|
Yang L, Shi Y, Abolhasani M, Jensen KF. Characterization and modeling of multiphase flow in structured microreactors: a post microreactor case study. LAB ON A CHIP 2015; 15:3232-3241. [PMID: 26126496 DOI: 10.1039/c5lc00431d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We study microreactors with internal fields of posts as typical examples of structured microreactors to elucidate flow fields and their implications for mass transfer. Laser-induced fluorescence (LIF) visualization combined with image analysis is used to systematically quantify key features such as interfacial area, phase holdup and the characteristics of the post-wetting layer. The subsequent mass transport analysis yields insight into how the posts contribute to the overall enhanced mass transfer performance compared to open channels, and provides predictions of mass transfer performance under varying operating conditions. Computational fluid dynamic (CFD) simulations of multiphase flow using the volume-of-fluid (VOF) method are in good agreement with experimentally observed multiphase flows.
Collapse
Affiliation(s)
- Lu Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | |
Collapse
|
15
|
Impact of mass transport on the enzymatic hydrolysis of rapeseed oil. Appl Microbiol Biotechnol 2014; 99:293-300. [PMID: 25007743 DOI: 10.1007/s00253-014-5892-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
In order to assess the capillary segmented flow reactor as a potentially appropriate reactor device for the enzymatic hydrolysis of vegetable oils, a study was made to reveal the impact of incident mass transfer processes on the hydrolysis rate. As demonstrated by means of experiments performed in a modified Lewis-cell type contactor, which allows the independent adjustment of flow rates for both phases, the enzymatic hydrolysis rate of rapeseed oil is strongly governed by mass transport processes taking place in both phases. In the oil phase, any increase in convective mass transfer results in an enhancement of hydrolysis rate due to facilitated removal of fatty acids from interface layer which is known to inhibit the activity of the enzyme adsorbed at the interface. At asynchronous condition when solely the water phase is agitated, however, convective mass transport in the interface layer has an inverse effect on the hydrolysis rate due to the generation of considerable shear stress in the vicinity of the interface unfavorable for the performance of the enzymes. By operating at synchronous agitation conditions, the shear stress can considerably be reduced. Generally, the positive effect of mass transport in the oil phase compensates the negative one in the aqueous phase thus resulting in an overall increase in hydrolysis rate of 57% with increasing stirrer rates. The results can be applied to the operation of segmented-flow capillary reactors by choosing the oil phase as disperse phase and the water phase as continuous phase, respectively.
Collapse
|
16
|
Alves JS, Vieira NS, Cunha AS, Silva AM, Záchia Ayub MA, Fernandez-Lafuente R, Rodrigues RC. Combi-lipase for heterogeneous substrates: a new approach for hydrolysis of soybean oil using mixtures of biocatalysts. RSC Adv 2014. [DOI: 10.1039/c3ra45969a] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The concept of thecombi-lipasebiocatalyst has been proposed. It is based on the combination of different lipases as biocatalysts in reactions using heterogeneous substrates.
Collapse
Affiliation(s)
- Joana S. Alves
- Biotechnolgy, Bioprocess and Biocatalysis Group
- Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Nathália S. Vieira
- Biotechnolgy, Bioprocess and Biocatalysis Group
- Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Alisson S. Cunha
- Biotechnolgy, Bioprocess and Biocatalysis Group
- Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Alexandre M. Silva
- Biotechnolgy, Bioprocess and Biocatalysis Group
- Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | - Marco A. Záchia Ayub
- Biotechnolgy, Bioprocess and Biocatalysis Group
- Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| | | | - Rafael C. Rodrigues
- Biotechnolgy, Bioprocess and Biocatalysis Group
- Food Science and Technology Institute
- Federal University of Rio Grande do Sul
- Porto Alegre, Brazil
| |
Collapse
|
17
|
Cech J, Přibyl M, Snita D. Three-phase slug flow in microchips can provide beneficial reaction conditions for enzyme liquid-liquid reactions. BIOMICROFLUIDICS 2013; 7:54103. [PMID: 24404066 PMCID: PMC3785521 DOI: 10.1063/1.4821168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/30/2013] [Indexed: 05/31/2023]
Abstract
Here, we introduce a solution to low stability of a two-phase slug flow with a chemical reaction occurring at the phase interface in a microfluidic reactor where substantial merging of individual reacting slugs results in the loss of uniformity of the flow. We create a three-phase slug flow by introducing a third fluid phase into the originally two-phase liquid-liquid slug flow, which generates small two-phase liquid slugs separated by gas phase. Introduction of the third phase into our system efficiently prevents merging of slugs and provides beneficial reaction conditions, such as uniform flow pattern along the whole reaction capillary, interfacial area with good reproducibility, and intensive water-oil interface renewal. We tested the three-phase flow on an enzyme hydrolysis of soybean oil and compared the reaction conversion with those from unstable two-phase slug flows. We experimentally confirmed that the three-phase slug flow arrangement provides conversions and pressure drops comparable or even better with two-phase liquid-liquid arrangements.
Collapse
Affiliation(s)
- Jiří Cech
- Department of Chemical Engineering, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic
| | - Michal Přibyl
- Department of Chemical Engineering, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic ; Research Centre New Technologies, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic
| | - Dalimil Snita
- Department of Chemical Engineering, Institute of Chemical Technology, Technická 5, 166 28 Prague, Czech Republic ; Research Centre New Technologies, University of West Bohemia, Univerzitní 8, 306 14 Plzeň, Czech Republic
| |
Collapse
|