1
|
Hoffmann A, Franz A, Löser C, Hoyer T, Weyd M, Walther T. In situ Product Recovery of Microbially Synthesized Ethyl Acetate from the Exhaust Gas of a Bioreactor by Membrane Technology. Eng Life Sci 2024; 24:e202400041. [PMID: 39649183 PMCID: PMC11620624 DOI: 10.1002/elsc.202400041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 12/10/2024] Open
Abstract
Ethyl acetate is at present exclusively produced from fossil resources. Microbial synthesis of this ester from sugar-rich waste as an alternative is an aerobic process. Ethyl acetate is highly volatile and therefore stripped with the exhaust gas from the bioreactor which enables in situ product recovery. Previous research on microbial formation of ethyl acetate has focused on the kinetics of ester synthesis and in part on the ester stripping, while the separation of the ester from the exhaust gas has hardly been investigated. A mixed matrix membrane was developed consisting of Silikalite-1 embedded in polydimethylsiloxane which was installed in a radial-symmetrical membrane module. Evaluation of the separation of ethyl acetate was based on the analysis of the composition of the feed and retentate gas by mass spectrometry. The separation efficiency of the membrane was first tested with varied flows of artificial exhaust gas, containing defined amounts of ethyl acetate. A model for describing the separation process was parametrized by the measured data and used to design a real separation experiment. Ethyl acetate produced from delactosed whey permeate by Kluyveromyces marxianus DSM 5422 in a stirred bioreactor gassed with 0.5 vvm air was successfully separated from the exhaust gas by membranes; 93.6% of the stripped ester was separated. Liquid ethyl acetate was recovered by cooling the permeate gas to ‒78°C, whereby 99.75% of the condensed organic compounds were ethyl acetate. This study demonstrates for the first time that microbially produced and stripped ethyl acetate can be effectively separated from the exhaust gas of bioreactors by membrane technology to obtain the ester in high yield and purity.
Collapse
Affiliation(s)
- Andreas Hoffmann
- Chair of Bioprocess EngineeringInstitute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Alexander Franz
- Interfaculty Centre for Bioactive Matter b‐ACT MatterLeipzig UniversityLeipzigGermany
| | - Christian Löser
- Chair of Bioprocess EngineeringInstitute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| | - Thomas Hoyer
- Fraunhofer Institute for Ceramic Technologies and Systems IKTSHermsdorfGermany
| | - Marcus Weyd
- Fraunhofer Institute for Ceramic Technologies and Systems IKTSHermsdorfGermany
| | - Thomas Walther
- Chair of Bioprocess EngineeringInstitute of Natural Materials TechnologyTechnische Universität DresdenDresdenGermany
| |
Collapse
|
2
|
Martín M, Taifouris M, Galán G. Lignocellulosic biorefineries: A multiscale approach for resource exploitation. BIORESOURCE TECHNOLOGY 2023:129397. [PMID: 37380036 DOI: 10.1016/j.biortech.2023.129397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Biomass can become the source for chemicals towards a sustainable production system. However, the challenges it presents such as the variety of species, their widespread and sparse availability, and the expensive transportation claims for an integrated approach to design the novel production system. Multiscale approaches have not been properly extended to biorefineryes design and deployment, due to the comprehensive experimental and modelling work they require. A systems perspective provides the systematic framework to analyze the availability and composition of raw materials across regions, how that affects process design, the portfolio of products that can be obtained by evaluating the strong link between the biomass features and the process design. The use of lignocellulosic materials requires for a multidisciplinary work, that must lead to new process engineers with technical competences in biology, biotechnology but also process engineering, mathematics, computer science and social sciences towards a sustainable process/chemical industry.
Collapse
Affiliation(s)
- Mariano Martín
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain.
| | - Manuel Taifouris
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain
| | - Guillermo Galán
- Departamento de Ingeniería Química. Universidad de Salamanca. Pza. Caídos 1-5, 37008 Salamanca, Spain
| |
Collapse
|
3
|
Oksal IN, Kaymak DB. Selection of eco-efficient downstream separation configuration for isopropanol–butanol–ethanol purification process. CHEM ENG COMMUN 2023. [DOI: 10.1080/00986445.2023.2183125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Ilayda N. Oksal
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Devrim B. Kaymak
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
4
|
The use of GVL for holistic valorization of biomass. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Ferreira Dos Santos Vieira C, Duzi Sia A, Maugeri Filho F, Maciel Filho R, Pinto Mariano A. Isopropanol-butanol-ethanol production by cell-immobilized vacuum fermentation. BIORESOURCE TECHNOLOGY 2022; 344:126313. [PMID: 34798259 DOI: 10.1016/j.biortech.2021.126313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
The Isopropanol-Butanol-Ethanol productivity by solventogenic clostridia can increase when cells are immobilized on low-cost, renewable fibrous materials; however, butanol inhibition imposes the need for dilute sugar solutions (less than40 g/L). To alleviate this problem, the in-situ vacuum product recovery technique was applied to recover IBE in repeated-batch cultivation of Clostridium beijerinckii DSM 6423 immobilized on sugarcane bagasse. Five repeated batch cycles were conducted in a 7-L bioreactor containing P2 medium (∼60 g/L glucose) and bagasse packed in 3D-printed concentric annular baskets. In three cycles, glucose was consumed by 86% on average, the IBE productivity was 0.35 g/L∙h or 30% and 17% higher relative to free- and immobilized (without vacuum)-cell cultures. Notably, the product stream contained 45 g/L IBE. However, the fermentation was unsatisfactory in two cycles. Finally, by inserting a fibrous bed with hollow annuli in a vacuum fermentation, this work introduces the concept of an internal-loop boiling-driven fibrous-bed bioreactor.
Collapse
Affiliation(s)
- Carla Ferreira Dos Santos Vieira
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Augusto Duzi Sia
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Francisco Maugeri Filho
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriano Pinto Mariano
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
6
|
Teke GM, Tai SL, Pott RWM. Extractive Fermentation Processes: Modes of Operation and Application. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- George M. Teke
- University of Stellenbosch Department of Process Engineering Stellenbosch South Africa
| | - Siew L. Tai
- University of Cape Town Department of Chemical Engineering Cape Town South Africa
| | - Robert W. M. Pott
- University of Stellenbosch Department of Process Engineering Stellenbosch South Africa
| |
Collapse
|
7
|
Adsorptive recovery of butanol, propanol, and ethanol using activated carbon based on residual sludge industrial (ACRS). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Poblete R, Cortés E, Pérez N, Valdivia M, Maldonado MI. Removal of organic matter from wastewater coming from fruit juice production using solar photo-Fenton process. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2021. [DOI: 10.1515/ijcre-2020-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The grape juice production generates an industrial wastewater that has a high concentration of organic matter and several polyphenols, such as ethanol. Therefore, the discharge of this wastewater can produce environmental problems. The aim of this work was to determine the optimal concentration of the reagents involved in a solar photo-Fenton process in the treatment of wastewater coming from juice. The process was analysed in a factorial design, as a function of H2O2 (900, 1000, 1100 mg/L) and Fe2+ (90, 100, 110 mg/L) concentration. The grape juice wastewater presents high organic content (20,500 mg/L COD and 5.4 mg/L polyphenols). Also, the presence of alcohols such ethanol, ethyl acetate and 2-metil-1-propanol was confirmed. The results showed that highest COD (>27%) and polyphenols removal (>36%) were obtained in experiments with 1100 mg H2O2/L and 100 mg Fe2+/L. In treatments with higher COD removal, 2-metil-1-propanol was detected as an intermediate of ethanol oxidation. These results proved that solar photo-Fenton is a suitable approach for treating the refractory organic matter from grape juice.
Collapse
Affiliation(s)
- Rodrigo Poblete
- Universidad Católica del Norte , Facultad de Ciencias del Mar, Escuela de Prevención de Riesgos y Medioambiente , 1780000 Coquimbo , Chile
| | - Ernesto Cortés
- Universidad Católica del Norte , Facultad de Ciencias del Mar, Escuela de Prevención de Riesgos y Medioambiente , 1780000 Coquimbo , Chile
| | - Norma Pérez
- Universidad Católica del Norte , Facultad de Ciencias del Mar, Escuela de Prevención de Riesgos y Medioambiente , 1780000 Coquimbo , Chile
| | | | - Manuel I. Maldonado
- Plataforma Solar de Almería (CIEMAT) , Tabernas, 04200 Almería , Spain
- CIESOL, Joint Centre University of Almería-CIEMAT , 04120 Almería , Spain
| |
Collapse
|
9
|
Gan L, Chidambaram A, Fonquernie PG, Light ME, Choquesillo-Lazarte D, Huang H, Solano E, Fraile J, Viñas C, Teixidor F, Navarro JAR, Stylianou KC, Planas JG. A Highly Water-Stable meta-Carborane-Based Copper Metal–Organic Framework for Efficient High-Temperature Butanol Separation. J Am Chem Soc 2020; 142:8299-8311. [DOI: 10.1021/jacs.0c01008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Lei Gan
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), E-08193 Bellaterra, Barcelona, Spain
| | - Arunraj Chidambaram
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l’Industrie 17, 1951 Sion, Switzerland
| | - Pol G. Fonquernie
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), E-08193 Bellaterra, Barcelona, Spain
| | - Mark E. Light
- Department of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-Universidad de Granada, Av. de las Palmeras 4, E-18100 Armilla, Granada, Spain
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| | - Eduardo Solano
- NCD-SWEET Beamline, ALBA Synchrotron Light Source, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Julio Fraile
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), E-08193 Bellaterra, Barcelona, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), E-08193 Bellaterra, Barcelona, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), E-08193 Bellaterra, Barcelona, Spain
| | - Jorge A. R. Navarro
- Departamento de Quı́mica Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, E-18071 Granada, Spain
| | - Kyriakos C. Stylianou
- Institute of Chemical Sciences and Engineering, École Polytechnique Fedérale de Lausanne (EPFL Valais), Rue de l’Industrie 17, 1951 Sion, Switzerland
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - José G. Planas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), E-08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
10
|
Tang MJ, Liu ML, Wang DA, Shao DD, Wang HJ, Cui Z, Cao XL, Sun SP. Precisely Patterned Nanostrand Surface of Cucurbituril[ n]-Based Nanofiltration Membranes for Effective Alcohol-Water Condensation. NANO LETTERS 2020; 20:2717-2723. [PMID: 32207960 DOI: 10.1021/acs.nanolett.0c00344] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low concentration alcohols produced by state-of-the-art biological fermentation restrict subsequent purification processes for chemical, pharmaceutical, biofuel, and other applications. Herein, a rarely reported cucurbituril[n] (n = 6, 8) is employed to pattern the thin-film composite membranes with controllable and quantifiable nanostrand structures through a host-guest strategy. The resulting nanofiltration membrane with such morphology is the first report that exhibits excellent separation performance for isopropyl alcohol (IPA) and water, condensing the initial 0.5 wt % IPA aqueous solution to 9.0 wt %. This not only provides a novel strategy for patterning nanostructural morphology but also makes nanofiltration membranes promising for alcohol condensation in the biological fermentation industry that may reduce energy consumption and postprocessing costs.
Collapse
Affiliation(s)
- Ming-Jian Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Mei-Ling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Da-An Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Dan-Dan Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Hua-Jiang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Xue-Li Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Shi-Peng Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing 210023 China
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
11
|
Dos Santos Vieira CF, Maugeri Filho F, Maciel Filho R, Pinto Mariano A. Acetone-free biobutanol production: Past and recent advances in the Isopropanol-Butanol-Ethanol (IBE) fermentation. BIORESOURCE TECHNOLOGY 2019; 287:121425. [PMID: 31085056 DOI: 10.1016/j.biortech.2019.121425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Production of butanol for fuel via the conventional Acetone-Butanol-Ethanol fermentation has been considered economically risky because of a potential oversupply of acetone. Alternatively, acetone is converted into isopropanol by specific solventogenic Clostridium species in the Isopropanol-Butanol-Ethanol (IBE) fermentation. This route, although less efficient, has been gaining attention because IBE mixtures are a potential fuel. The present work is dedicated to reviewing past and recent advances in microorganisms, feedstock, and fermentation equipment for IBE production. In our analysis we demonstrate the importance of novel engineered IBE-producing Clostridium strains and cell retention systems to decrease the staggering number of fermentation tanks required by IBE plants equipped with conventional technology. We also summarize the recent progress on recovery techniques integrated with fermentation, especially gas stripping. In addition, we assessed ongoing pilot-plant efforts that have been enabling IBE production from woody feedstock.
Collapse
Affiliation(s)
- Carla Ferreira Dos Santos Vieira
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Francisco Maugeri Filho
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriano Pinto Mariano
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
12
|
Cao Nhien L, Van Duc Long N, Kim S, Lee M. Novel reaction-hybrid-extraction-distillation process for furfuryl alcohol production from raw bio-furfural. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Techno-economic evaluation of heat integrated second generation bioethanol and furfural coproduction. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.01.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
A Total Site Synthesis approach for the selection, integration and planning of multiple-feedstock biorefineries. Comput Chem Eng 2019. [DOI: 10.1016/j.compchemeng.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Pereira JPC, Overbeek W, Gudiño-Reyes N, Andrés-García E, Kapteijn F, van der Wielen LAM, Straathof AJJ. Integrated Vacuum Stripping and Adsorption for the Efficient Recovery of (Biobased) 2-Butanol. Ind Eng Chem Res 2019; 58:296-305. [PMID: 30774191 PMCID: PMC6369677 DOI: 10.1021/acs.iecr.8b03043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/29/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022]
Abstract
![]()
Biobased
2-butanol offers high potential as biofuel, but its toxicity
toward microbial hosts calls for efficient techniques to alleviate
product inhibition in fermentation processes. Aiming at the selective
recovery of 2-butanol, the feasibility of a process combining in situ vacuum stripping followed by vapor adsorption has
been assessed using mimicked fermentation media. The experimental
vacuum stripping of model solutions and corn stover hydrolysate closely
aligned with mass transfer model predictions. However, the presence
of lignocellulosic impurities affected 2-butanol recovery yields resulting
from vapor condensation, which decreased from 96 wt % in model solutions
to 40 wt % using hydrolysate. For the selective recovery of 2-butanol
from a vapor mixture enriched in water and carbon dioxide, silicalite
materials were the most efficient, particularly at low alcohol partial
pressures. Integrating in situ vacuum stripping with
vapor adsorption using HiSiv3000 proved useful to effectively concentrate
2-butanol above its azeotropic composition (>68 wt %), facilitating
further product purification.
Collapse
|
16
|
Techno-economic analysis of various process schemes for the production of fuel grade 2,3-butanediol from fermentation broth. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Koutinas A, Kookos I. Special issue on advances on biorefinery engineering and food supply chain waste valorisation. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|