1
|
Shin N, Oh J, Han Y, Lim G, Joo JC, Jeon WY, Ahn J, Kim HT, Bhatia SK, Yang YH. Real-time monitoring method of microbial growth using a simple pressure-based respiration detection system. Anal Biochem 2025; 703:115879. [PMID: 40274252 DOI: 10.1016/j.ab.2025.115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/03/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025]
Abstract
Dry cell weight (DCW) and optical density (OD) measurement methods provide useful data for assessing microbial growth. However, their sampling process is labor-intensive and time-consuming. Therefore, we aimed to evaluate a method for measuring microbial growth through continuous CO2 measurement under aerobic conditions using a pressure-based respiration detection system, which is traditionally used in anaerobic environments and applies measurement of reduced pressure by capturing CO2 with KOH. The pressure reduction rate, OD, and DCW values were compared during Ralstonia eutropha H16 culture, which revealed a correlation of R2 of 0.99 between the pressure reduction and DCW and a change of DCW (g/L) per pressure (1 mbar) of -0.02 g/L. It showed theoretical limit of detection at 14.67 mbar corresponding to 0.0428 g/L of DCW and theoretical limit of quantification at 48.9 mbar as lower limits. When the pressure-based method was applied to compare carbon source utilization and growth of different strains, such as E. coli sp., Pseudomonas sp., Burkholderia sp., and Bacillus sp., it showed a high correlation with DCW. Overall, these results demonstrate that the pressure-based respiration detection system is a reliable tool for microbial growth monitoring and offers significant advantages by providing real-time data with less labor.
Collapse
Affiliation(s)
- Nara Shin
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jinok Oh
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Yebin Han
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Gaeun Lim
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Gyeonggi-do, Republic of Korea
| | - Woo-Young Jeon
- Biotechnology Process Engineering Center, Korea Research Institute Biotechnology (KRIBB), Chungbuk, Republic of Korea
| | - Jungoh Ahn
- Biotechnology Process Engineering Center, Korea Research Institute Biotechnology (KRIBB), Chungbuk, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Shashi Kant Bhatia
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Advanced Materials Program, Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Du F, Hang Y, Zhang F, Li X, Zheng Y, Zhang Z, Ma W, Sun X. Improving Precursor Supply and Optimizing the Fermentation Process for High-Level Production of Docosapentaenoic Acid in Yarrowia Lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40240149 DOI: 10.1021/acs.jafc.5c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Docosapentaenoic acid (DPA) is widely applied in medicine and health products because of its important physiological functions. Using microbial cell factories for DPA production is considered a viable alternative to extracting DPA from seal oil. In this study, an engineering strategy for the efficient production of DPA was developed. First, the DPA biosynthesis pathway was successfully established in Yarrowia lipolytica. Then, the increase of acetyl-CoA by engineering citrate metabolism and malonyl-CoA by introducing a new orthogonal malonyl-CoA synthesis pathway was to further enhance DPA production. Furthermore, overexpression of glucose-6-phosphate dehydrogenase (G6PDH) and malic enzyme (ME) enhanced NADPH availability. Finally, by optimizing the fermentation conditions, the DPA content of the engineered strain reached 40.0%, and the yield reached 13.0 g/L in the 5 L bioreactor, representing the highest levels reported so far in Y. lipolytica. This study provides a promising strategy to construct microbial cell factories for fatty acid biosynthesis.
Collapse
Affiliation(s)
- Fei Du
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yiwen Hang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Feng Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Yi Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Zixu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Xiaoman Sun
- State Key Laboratory of Microbial Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
3
|
Kumar KK, Deeba F, Pandey AK, Islam A, Paul D, Gaur NA. Sustainable lipid production by oleaginous yeasts: Current outlook and challenges. BIORESOURCE TECHNOLOGY 2025; 421:132205. [PMID: 39923863 DOI: 10.1016/j.biortech.2025.132205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/28/2024] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Yeast lipid has gained prominence as a sustainable energy source and so various oleaginous yeasts are being investigated to create efficient lipogenic platforms. This review aims to assess the various biotechnological strategies for enhanced production of yeast lipids via agro-waste processing and media engineering including multiomic analyses, genetic engineering, random mutagenesis, and laboratory adaptive evolution. The review also emphasizes the role of cutting-edge omics technologies in pinpointing differentially expressed genes and enriched networks crucial for designing advanced metabolic engineering strategies for prominent oleaginous yeast species. The review addresses the challenges and future prospects of a viable lipid production industry that is possible through advancements in current technologies, strain improvement, media optimization and techno-economic and life cycle analyses at lab, pilot and industrial scales. This review comprehensively provides deep insights for enhancement of yeast lipid biosynthesis to reach industrially benchmarked standard of a lipid production platform.
Collapse
Affiliation(s)
- Kukkala Kiran Kumar
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi-1100067, India
| | - Farha Deeba
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi-1100067, India
| | - Ajay Kumar Pandey
- School of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur-208024, Uttar Pradesh, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Debarati Paul
- Amity Institute of Biotechnology, AUUP, Noida, sec-125, 201313, India.
| | - Naseem A Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi-1100067, India.
| |
Collapse
|
4
|
Lee SY, Weingarten M, Ottenheim C. Current upstream and downstream process strategies for sustainable yeast lipid production. BIORESOURCE TECHNOLOGY 2024; 414:131601. [PMID: 39389381 DOI: 10.1016/j.biortech.2024.131601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
An increasing global population demands more lipids for food and chemicals, but the unsustainable growth of plant-derived lipid production and an unreliable supply of certain lipids due to environmental changes, require new solutions. One promising solution is the use of lipids derived from microbial biomass, particularly oleaginous yeasts. This critical review begins with a description of the most promising yeast lipid replacement targets: palm oil substitute, cocoa butter equivalent, polyunsaturated fatty acid source, and animal fat analogue, emphasizing sustainability aspects. Subsequently, the review focuses on the most recent advances in upstream methodologies, particularly fermentation strategies that promote circularity, such as waste valorisation, co-cultivation and co-product biosynthesis. Downstream processing methods for minimising energy consumption and waste generation, including bioflocculation, energy-efficient and environmentally friendly cell lysis and extraction, and integrated co-product recovery methods, are discussed. Finally, the current challenges are outlined. Integrating these strategies advances sustainable yeast lipid production for high-value applications.
Collapse
Affiliation(s)
- Sze Ying Lee
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Melanie Weingarten
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Christoph Ottenheim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, Singapore 138669, Singapore.
| |
Collapse
|
5
|
Gu X, Shi Y, Luo C, Cheng J. Establishment of Saccharomyces cerevisiae as a cell factory for efficient de novo production of monogalactosyldiacylglycerol. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:111. [PMID: 39129014 PMCID: PMC11318150 DOI: 10.1186/s13068-024-02560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Monogalactosyldiacylglycerol (MGDG), a predominant photosynthetic membrane lipid derived from plants and microalgae, has important applications in feed additives, medicine, and other fields. The low content and various structural stereoselectivity differences of MGDG in plants limited the biological extraction or chemical synthesis of MGDG, resulting in a supply shortage of monogalactosyldiacylglycerol with a growing demand. Herein, we established Saccharomyces cerevisiae as a cell factory for efficient de novo production of monogalactosyldiacylglycerol for the first time. Heterologous production of monogalactosyldiacylglycerol was achieved by overexpression of codon-optimized monogalactosyldiacylglycerol synthase gene MGD1, the key Kennedy pathway genes (i.e. GAT1, ICT1, and PAH1), and multi-copy integration of the MGD1 expression cassette. The final engineered strain (MG-8) was capable of producing monogalactosyldiacylglycerol with titers as high as 16.58 nmol/mg DCW in a shake flask and 103.2 nmol/mg DCW in a 5 L fed-batch fermenter, respectively. This is the first report of heterologous biosynthesis of monogalactosyldiacylglycerol in microorganisms, which will provide a favorable reference for study on heterologous production of monogalactosyldiacylglycerol in yeasts.
Collapse
Affiliation(s)
- Xiaosong Gu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hubei Province Key Lab Yeast Function, Yichang, 443003, China
| | - Yumei Shi
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, China
| | - Changxin Luo
- College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, 655011, China.
| | - Jintao Cheng
- Xianghu Laboratory, Hangzhou, 310027, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
6
|
Sun ML, Gao X, Lin L, Yang J, Ledesma-Amaro R, Ji XJ. Building Yarrowia lipolytica Cell Factories for Advanced Biomanufacturing: Challenges and Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:94-107. [PMID: 38126236 DOI: 10.1021/acs.jafc.3c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Microbial cell factories have shown great potential for industrial production with the benefit of being environmentally friendly and sustainable. Yarrowia lipolytica is a promising and superior non-model host for biomanufacturing due to its cumulated advantages compared to model microorganisms, such as high fluxes of metabolic precursors (acetyl-CoA and malonyl-CoA) and its naturally hydrophobic microenvironment. However, although diverse compounds have been synthesized in Y. lipolytica cell factories, most of the relevant studies have not reached the level of industrialization and commercialization due to a number of remaining challenges, including unbalanced metabolic flux, conflict between cell growth and product synthesis, and cytotoxic effects. Here, various metabolic engineering strategies for solving the challenges are summarized, which is developing fast and extremely conducive to rational design and reconstruction of robust Y. lipolytica cell factories for advanced biomanufacturing. Finally, future engineering efforts for enhancing the production efficiency of this platform strain are highlighted.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaoxia Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jing Yang
- 2011 College, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
7
|
Su H, Shi P, Shen Z, Meng H, Meng Z, Han X, Chen Y, Fan W, Fa Y, Yang C, Li F, Wang S. High-level production of nervonic acid in the oleaginous yeast Yarrowia lipolytica by systematic metabolic engineering. Commun Biol 2023; 6:1125. [PMID: 37935958 PMCID: PMC10630375 DOI: 10.1038/s42003-023-05502-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Nervonic acid benefits the treatment of neurological diseases and the health of brain. In this study, we employed the oleaginous yeast Yarrowia lipolytica to overproduce nervonic acid oil by systematic metabolic engineering. First, the production of nervonic acid was dramatically improved by iterative expression of the genes ecoding β-ketoacyl-CoA synthase CgKCS, fatty acid elongase gELOVL6 and desaturase MaOLE2. Second, the biosynthesis of both nervonic acid and lipids were further enhanced by expression of glycerol-3-phosphate acyltransferases and diacylglycerol acyltransferases from Malania oleifera in endoplasmic reticulum (ER). Third, overexpression of a newly identified ER structure regulator gene YlINO2 led to a 39.3% increase in lipid production. Fourth, disruption of the AMP-activated S/T protein kinase gene SNF1 increased the ratio of nervonic acid to lignoceric acid by 61.6%. Next, pilot-scale fermentation using the strain YLNA9 exhibited a lipid titer of 96.7 g/L and a nervonic acid titer of 17.3 g/L (17.9% of total fatty acids), the highest reported titer to date. Finally, a proof-of-concept purification and separation of nervonic acid were performed and the purity of it reached 98.7%. This study suggested that oleaginous yeasts are attractive hosts for the cost-efficient production of nervonic acid and possibly other very long-chain fatty acids (VLCFAs).
Collapse
Affiliation(s)
- Hang Su
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Penghui Shi
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Zhaoshuang Shen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Huimin Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Ziyue Meng
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xingfeng Han
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yanna Chen
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Weiming Fan
- Zhejiang Zhenyuan Biotech Co., LTD, Shaoxing, 312365, China
| | - Yun Fa
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chunyu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Fuli Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Shi'an Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
8
|
Dietrich D, Jovanovic-Gasovic S, Cao P, Kohlstedt M, Wittmann C. Refactoring the architecture of a polyketide gene cluster enhances docosahexaenoic acid production in Yarrowia lipolytica through improved expression and genetic stability. Microb Cell Fact 2023; 22:199. [PMID: 37773137 PMCID: PMC10540379 DOI: 10.1186/s12934-023-02209-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Long-chain polyunsaturated fatty acids (LC-PUFAs), such as docosahexaenoic acid (DHA), are essential for human health and have been widely used in the food and pharmaceutical industries. However, the limited availability of natural sources, such as oily fish, has led to the pursuit of microbial production as a promising alternative. Yarrowia lipolytica can produce various PUFAs via genetic modification. A recent study upgraded Y. lipolytica for DHA production by expressing a four-gene cluster encoding a myxobacterial PKS-like PUFA synthase, reducing the demand for redox power. However, the genetic architecture of gene expression in Y. lipolytica is complex and involves various control elements, offering space for additional improvement of DHA production. This study was designed to optimize the expression of the PUFA cluster using a modular cloning approach. RESULTS Expression of the monocistronic cluster with each gene under the control of the constitutive TEF promoter led to low-level DHA production. By using the minLEU2 promoter instead and incorporating additional upstream activating UAS1B4 sequences, 5' promoter introns, and intergenic spacers, DHA production was increased by 16-fold. The producers remained stable over 185 h of cultivation. Beneficially, the different genetic control elements acted synergistically: UAS1B elements generally increased expression, while the intron caused gene-specific effects. Mutants with UAS1B16 sequences within 2-8 kb distance, however, were found to be genetically unstable, which limited production performance over time, suggesting the avoidance of long repetitive sequence blocks in synthetic multigene clusters and careful monitoring of genetic stability in producing strains. CONCLUSIONS Overall, the results demonstrate the effectiveness of synthetic heterologous gene clusters to drive DHA production in Y. lipolytica. The combinatorial exploration of different genetic control elements allowed the optimization of DHA production. These findings have important implications for developing Y. lipolytica strains for the industrial-scale production of valuable polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Demian Dietrich
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Peng Cao
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
9
|
Wang J, Yu X, Wang K, Lin L, Liu HH, Ledesma-Amaro R, Ji XJ. Reprogramming the fatty acid metabolism of Yarrowia lipolytica to produce the customized omega-6 polyunsaturated fatty acids. BIORESOURCE TECHNOLOGY 2023; 383:129231. [PMID: 37244310 DOI: 10.1016/j.biortech.2023.129231] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Omega-6 polyunsaturated fatty acids (ω6-PUFAs), such as γ-linolenic acid (GLA), dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA), are indispensable nutrients for human health. Harnessing the lipogenesis pathway of Yarrowia lipolytica creates a potential platform for producing customized ω6-PUFAs. This study explored the optimal biosynthetic pathways for customized production of ω6-PUFAs in Y. lipolytica via either the Δ6 pathway from Mortierella alpina or the Δ8 pathway from Isochrysis galbana. Subsequently, the proportion of ω6-PUFAs in total fatty acids (TFAs) was effectively increased by bolstering the provision of precursors for fatty acid biosynthesis and carriers for fatty acid desaturation, as well as preventing fatty acid degradation. Finally, the proportions of GLA, DGLA and ARA synthesized by customized strains accounted for 22.58%, 46.65% and 11.30% of TFAs, and the corresponding titers reached 386.59, 832.00 and 191.76 mg/L in shake-flask fermentation, respectively. This work provides valuable insights into the production of functional ω6-PUFAs.
Collapse
Affiliation(s)
- Jinpeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Hu-Hu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
10
|
Sun T, Yu Y, Wang L, Qi Y, Xu T, Wang Z, Lin L, Ledesma-Amaro R, Ji XJ. Combination of a Push-Pull-Block Strategy with a Heterologous Xylose Assimilation Pathway toward Lipid Overproduction from Lignocellulose in Yarrowia lipolytica. ACS Synth Biol 2023; 12:761-767. [PMID: 36789673 DOI: 10.1021/acssynbio.2c00550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The production of biodiesel using microbial lipids derived from renewable lignocellulosic biomass is considered a promising strategy to reduce environmental pressure and promote the green energy transition. The hydrolysates of lignocellulosic biomass are rich in glucose and xylose, which makes it crucial to efficiently utilize both sugars. Here, we combined metabolic engineering and adaptive laboratory evolution (ALE) to construct an engineered Yarrowia lipolytica strain that can efficiently produce lipids from glucose and xylose. First, the "Push-Pull-Block" strategy was adopted to increase lipid content to 73.42% of the dry cell weight (DCW). Then, a heterologous xylose-utilization pathway was integrated into the engineered strain, which was subjected to ALE. The final evolved strain could accumulate 53.64% DCW of lipids from xylose, and the lipid titer reached 16.25 g/L. This work sheds light on the potential of microbial lipid overproduction from lignocellulose using engineered Y. lipolytica.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yizi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lexin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yichun Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
11
|
Park YK, Ledesma-Amaro R. What makes Yarrowia lipolytica well suited for industry? Trends Biotechnol 2023; 41:242-254. [PMID: 35940976 DOI: 10.1016/j.tibtech.2022.07.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 01/24/2023]
Abstract
Yarrowia lipolytica possesses natural and engineered traits that make it a good host for the industrial bioproduction of chemicals, fuels, foods, and pharmaceuticals. In recent years, academic and industrial researchers have assessed its potential, developed synthetic biology techniques, improved its features, scaled its processes, and identified its limitations. Both publications and patents related to Y. lipolytica have shown a drastic increase during the past decade. Here, we discuss the characteristics of this yeast that make it suitable for industry and the remaining challenges for its wider use at large scale. We present evidence herein that shows the importance and potential of Y. lipolytica in bioproduction such that it may soon be one of the preferred choices of industry.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
12
|
Wang X, Yang J, Mohamed H, Shah AM, Li S, Pang S, Wu C, Xue F, Shi W, Sadaqat B, Song Y. Simultaneous overexpression of ∆6-, ∆12- and ∆9-desaturases enhanced the production of γ-linolenic acid in Mucor circinelloides WJ11. Front Microbiol 2022; 13:1078157. [PMID: 36590442 PMCID: PMC9797528 DOI: 10.3389/fmicb.2022.1078157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 12/16/2022] Open
Abstract
Mucor circinelloides WJ11, an oleaginous filamentous fungus, produces 36% lipid of its cell dry weight when cultured in a high C/N ratio medium, however, the yield of γ-linolenic acid (GLA) is insufficient to make it competitive with other plant sources. To increase the GLA content in M. circinelloides WJ11, this fungus was engineered by overexpression of its key genes such as Δ6-, Δ12-, and Δ9-desaturases involved in GLA production. Firstly, we tried to overexpress two Δ6-desaturase isozymes to determine which one played important role in GLA synthesis. Secondly, Δ6-and Δ12-desaturase were co-overexpressed to check whether linoleic acid (LA), the precursor for GLA synthesis, is a limiting factor or not. Moreover, we tried to explore the effects of simultaneous overexpression of Δ6-, Δ12-, and Δ9-desaturases on GLA production. Our results showed that overexpression (1 gene) of DES61 promoted higher GLA content (21% of total fatty acids) while co-overexpressing (2 genes) DES61 and DES12 and simultaneous overexpressing (3 genes) DES61, DES12, and DES91 increased the GLA production of engineered strains by 1.5 folds and 1.9 folds compared to the control strain, respectively. This study provided more insights into GLA biosynthesis in oleaginous fungi and laid a foundation for further increase in GLA production into fungus such as M. circinelloides.
Collapse
Affiliation(s)
- Xiuwen Wang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Junhuan Yang
- Department of Food Sciences, College of Food Science and Engineering, Lingnan Normal University, Zhanjiang, China
| | - Hassan Mohamed
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China,Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Aabid Manzoor Shah
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Shuxian Pang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Chen Wu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Futing Xue
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Wenyue Shi
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Beenish Sadaqat
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China,*Correspondence: Yuanda Song,
| |
Collapse
|
13
|
Cao L, Yin M, Shi TQ, Lin L, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce nutritional fatty acids: Current status and future perspectives. Synth Syst Biotechnol 2022; 7:1024-1033. [PMID: 35801090 PMCID: PMC9249680 DOI: 10.1016/j.synbio.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022] Open
Abstract
Due to their vital physiological functions, nutritional fatty acids have great potential as nutraceutical food supplements for preventing an array of diseases such as inflammation, depression, arthritis, osteoporosis, diabetes and cancer. Microbial biosynthesis of fatty acids follows the trend of sustainable development, as it enables green, environmentally friendly and efficient production. As a natural oleaginous yeast, Yarrowia lipolytica is especially well-suited for the production of fatty acids. Moreover, it has a variety of genetic engineering tools and novel metabolic engineering strategies that make it a robust workhorse for the production of an array of value-added products. In this review, we summarize recent advances in metabolic engineering strategies for accumulating nutritional fatty acids in Y. lipolytica, including conjugated fatty acids and polyunsaturated fatty acids. In addition, the future prospects of nutritional fatty acid production using the Y. lipolytica platform are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future studies are also emphasized.
Collapse
|
14
|
Homologous and Heterologous Expression of Delta(12)-Desaturase in Mucor circinelloides Enhanced the Production of Linolenic Acid. Molecules 2022; 27:molecules27175511. [PMID: 36080278 PMCID: PMC9457725 DOI: 10.3390/molecules27175511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Linolenic acid (LA) is gaining more interest within the scientific community. This is because it has a potential medical role in reducing the risk of inflammation, carcinogenesis, atherosclerosis and diabetes and is a valuable nutraceutical for human health. The oleaginous fungus Mucor circinelloides produces a high lipid content (36%), including valuable polyunsaturated fatty acids (PUFAs). However, the critical step in which oleic acid (OA) is converted into LA is not efficient at supplying enough substrates for PUFA synthesis. Hence, we propose a method to increase LA production based on genetic engineering. The overexpression of the Δ12-desaturase gene from M. circinelloides and Mortierella alpina increased the LA content and improved the lipid accumulation (from 14.9% to 21.6% in the Δ12-desaturase gene of the M. circinelloides overexpressing strain (Mc-D12MC) and from 14.9% to 18.7% in the Δ12-desaturase gene of M. alpina overexpressing strain (Mc-D12MA)). Additionally, the up-regulated expression levels of these genes targeted the genes involved in NADPH production, implying that the elevated Δ12-desaturase gene may function as a critical regulator of NADPH and lipid synthesis in M. circinelloides. This study provides the first evidence to support the design of metabolic engineering related to LA and PUFA production in M. circinelloides for potential industrial applications.
Collapse
|
15
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ, Huang H. Advances in synthetic biology tools paving the way for the biomanufacturing of unusual fatty acids using the Yarrowia lipolytica chassis. Biotechnol Adv 2022; 59:107984. [DOI: 10.1016/j.biotechadv.2022.107984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022]
|
16
|
Delfau-Bonnet G, Imatoukene N, Clément T, Lopez M, Allais F, Hantson AL. Evaluation of the Potential of Lipid-Extracted Chlorella vulgaris Residue for Yarrowia lipolytica Growth at Different pH Levels. Mar Drugs 2022; 20:md20040264. [PMID: 35447937 PMCID: PMC9024751 DOI: 10.3390/md20040264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Projections show that the cultivation of microalgae will extend to the production of bio-based compounds, such as biofuels, cosmetics, and medicines. This will generate co-products or residues that will need to be valorized to reduce the environmental impact and the cost of the process. This study explored the ability of lipid-extracted Chlorella vulgaris residue as a sole carbon and nitrogen source for growing oleaginous yeasts without any pretreatment. Both wild-type Yarrowia lipolytica W29 and mutant JMY3501 (which was designed to accumulate more lipids without their remobilization or degradation) showed a similar growth rate of 0.28 h−1 at different pH levels (3.5, 5.5, and 7.5). However, the W29 cell growth had the best cell number on microalgal residue at a pH of 7.5, while three times fewer cells were produced at all pH levels when JMY3501 was grown on microalgal residue. The JMY3501 growth curves were similar at pH 3.5, 5.5, and 7.5, while the fatty-acid composition differed significantly, with an accumulation of α-linolenic acid on microalgal residue at a pH of 7.5. Our results demonstrate the potential valorization of Chlorella vulgaris residue for Yarrowia lipolytica growth and the positive effect of a pH of 7.5 on the fatty acid profile.
Collapse
Affiliation(s)
- Guillaume Delfau-Bonnet
- Chemical and Biochemical Process Engineering Unit, Faculty of Engineering, University of Mons, 7000 Mons, Belgium;
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Nabila Imatoukene
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Tiphaine Clément
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Michel Lopez
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Florent Allais
- Unite Recherche et Developpement Agro-Biotechnologies Industrielles (URD ABI), Centre Europeen de Biotechnologie et Bieconomie (CEBB), AgroParisTech, 51110 Pomacle, France; (N.I.); (T.C.); (M.L.); (F.A.)
| | - Anne-Lise Hantson
- Chemical and Biochemical Process Engineering Unit, Faculty of Engineering, University of Mons, 7000 Mons, Belgium;
- Correspondence: ; Tel.: +32-65374419
| |
Collapse
|
17
|
Sundaramahalingam MA, Sivashanmugam P, Rajeshbanu J, Ashokkumar M. A review on contemporary approaches in enhancing the innate lipid content of yeast cell. CHEMOSPHERE 2022; 293:133616. [PMID: 35033523 DOI: 10.1016/j.chemosphere.2022.133616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
For the past few decades, industrialization has made a huge environmental hazard to the world with its waste. The approach of waste to wealth in the recent era has made many Eco-economical suggestions for the industries. The valuable products in biorefinery aspects of the eco-economical suggestions include; energy products, high-value drugs and novel materials. Bio-lipids are found to be the major influencing eco-economical products in the process. Production of bio-lipid from microbial sources has paved the way for future research on lipid-bioproducts. The yeast cell is a unique organism with a large unicellular structure capable of accumulating a high amount of lipids. It constitutes 90% of neutral lipids. Various strategies enhance the lipid profile of yeast cells: usage of oleaginous yeast, usage of low cost (or) alternative substrates, developing stress conditions in the growth medium, using genetically modified yeast, altering metabolic pathways of yeast and by using the symbiotic cultures of yeast with other microbes. The metabolic alterations of lipid pathways such as lipid biosynthesis, lipid elongation, lipid accumulation and lipid degradation have been a striking feature of research in lipid-based microbial work. The lipid-bioproducts have also made a strong footprint in the history of alternative energy products. It includes partial acyl glycerol, oleochemicals, phospholipids and biofuels. This report comprises the recent approaches carried out in the yeast cell for enhancing its lipid content. The limitations, challenges and future scope of individual strategies were also highlighted in this article.
Collapse
Affiliation(s)
- M A Sundaramahalingam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India
| | - P Sivashanmugam
- Chemical and Biochemical Process Engineering Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, India.
| | - J Rajeshbanu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | | |
Collapse
|
18
|
Sun ML, Shi TQ, Lin L, Ledesma-Amaro R, Ji XJ. Advancing Yarrowia lipolytica as a superior biomanufacturing platform by tuning gene expression using promoter engineering. BIORESOURCE TECHNOLOGY 2022; 347:126717. [PMID: 35031438 DOI: 10.1016/j.biortech.2022.126717] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Yarrowia lipolytica is recognized as an excellent non-conventional yeast in the field of biomanufacturing, where it is used as a host to produce oleochemicals, terpenes, organic acids, polyols and recombinant proteins. Consequently, metabolic engineering of this yeast is becoming increasingly popular to advance it as a superior biomanufacturing platform, of which promoters are the most basic elements for tuning gene expression. Endogenous promoters of Yarrowia lipolytica were reviewed, which are the basis for promoter engineering. The engineering strategies, such as hybrid promoter engineering, intron enhancement promoter engineering, and transcription factor-based inducible promoter engineering are described. Additionally, the applications of Yarrowia lipolytica promoter engineering to rationally reconstruct biosynthetic gene clusters and improve the genome-editing efficiency of the CRISPR-Cas systems were reviewed. Finally, research needs and future directions for promoter engineering are also discussed in this review.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
19
|
Synthetic biology: a new frontier in food production. Trends Biotechnol 2022; 40:781-803. [PMID: 35120749 DOI: 10.1016/j.tibtech.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Concerns regarding food security arise from population growth, global warming, and reduction in arable land. With advances in synthetic biology, food production by microbes is considered to be a promising alternative that would allow rapid food production in an environmentally friendly manner. Moreover, synthetic biology can be adopted to the production of healthier or specifically designed food ingredients (e.g., high-value proteins, lipids, and vitamins) and broaden the utilization of feedstocks (e.g., methanol and CO2), thereby offering potential solutions to high-quality food and the greenhouse effect. We first present how synthetic biology can facilitate the microbial production of various food components, and then discuss feedstock availability enabled by synthetic biology. Finally, we illustrate trends and key challenges in synthetic biology-driven food production.
Collapse
|
20
|
Uprety BK, Morrison EN, Emery RJN, Farrow SC. Customizing lipids from oleaginous microbes: leveraging exogenous and endogenous approaches. Trends Biotechnol 2021; 40:482-508. [PMID: 34625276 DOI: 10.1016/j.tibtech.2021.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022]
Abstract
To meet the growing demands of the oleochemical industry, tailored lipid sources are expanding to oleaginous microbes. To control the fatty acid composition of microbial lipids, ground-breaking exogenous and endogenous approaches are being developed. Exogenous approaches employ extracellular tools such as product-specific feedstocks, process optimization, elicitors, and magnetic and mechanical energy, whereas endogenous approaches leverage biology through the use of product-specific microbes, adaptive laboratory evolution (ALE), and the creation of custom strains via random and targeted cellular engineering. We consolidate recent advances from both fields into a review that will serve as a resource for those striving to fulfill the vision of microbial cell factories for tailored lipid production.
Collapse
Affiliation(s)
- Bijaya K Uprety
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Biology Department, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Erin N Morrison
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada
| | - R J Neil Emery
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada; Biology Department, Trent University, Peterborough, ON K9L 0G2, Canada
| | - Scott C Farrow
- Discovery Biology, Noblegen Inc., Peterborough, ON K9L 1Z8, Canada; Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|
21
|
Jia YL, Wang LR, Zhang ZX, Gu Y, Sun XM. Recent advances in biotechnological production of polyunsaturated fatty acids by Yarrowia lipolytica. Crit Rev Food Sci Nutr 2021; 62:8920-8934. [PMID: 34120537 DOI: 10.1080/10408398.2021.1937041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Owing to the important physiological functions, polyunsaturated fatty acids (PUFAs) play a vital role in protecting human health, such as preventing cancer, cardiovascular disease, and diabetes. Specifically, Yarrowia lipolytica has been identified as the most popular non-conventional oleaginous yeast, which can accumulate the abundant intracellular lipids, indicating that has great potential as an industrial host for production of PUFAs. Notably, some novel engineering strategies have been applied to endow and improve the abilities of Y. lipolytica to synthesize PUFAs, including construction and optimization of PUFAs biosynthetic pathways, improvement of preucrsors acetyl-coA and NADPH supply, inhibition of competing pathways, knockout of β-oxidation pathways, regulation of oxidative stress defense pathways, and regulation of genes involved in upstream lipid metabolism. Besides, some bypass approaches, such as strain mating, evolutionary engineering, and computational model based on omics, also have been proposed to improve the performance of engineering strains. Generally, in this review, we summarized the recent advances in engineering strategies and bypass approaches for improving PUFAs production by Y. lipolytica. In addition, we further summarized the latest efforts of CRISPR/Cas genome editing technology in Y. lipolytica, which is aimed to provide its potential applications in PUFAs production.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
22
|
Szczepańska P, Hapeta P, Lazar Z. Advances in production of high-value lipids by oleaginous yeasts. Crit Rev Biotechnol 2021; 42:1-22. [PMID: 34000935 DOI: 10.1080/07388551.2021.1922353] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The global market for high-value fatty acids production, mainly omega-3/6, hydroxy fatty-acids, waxes and their derivatives, has seen strong development in the last decade. The reason for this growth was the increasing utilization of these lipids as significant ingredients for cosmetics, food and the oleochemical industries. The large demand for these compounds resulted in a greater scientific interest in research focused on alternative sources of oil production - among which microorganisms attracted the most attention. Microbial oil production offers the possibility to engineer the pathways and store lipids enriched with the desired fatty acids. Moreover, costly chemical steps are avoided and direct commercial use of these fatty acids is available. Among all microorganisms, the oleaginous yeasts have become the most promising hosts for lipid production - their efficient lipogenesis, ability to use various (often highly affordable) carbon sources, feasible large-scale cultivations and wide range of available genetic engineering tools turns them into powerful micro-factories. This review is an in-depth description of the recent developments in the engineering of the lipid biosynthetic pathway with oleaginous yeasts. The different classes of valuable lipid compounds with their derivatives are described and their importance for human health and industry is presented. The emphasis is also placed on the optimization of culture conditions in order to improve the yield and titer of these valuable compounds. Furthermore, the important economic aspects of the current microbial oil production are discussed.
Collapse
Affiliation(s)
- Patrycja Szczepańska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Piotr Hapeta
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
23
|
Liu Y, Koh CMJ, Yap SA, Cai L, Ji L. Understanding and exploiting the fatty acid desaturation system in Rhodotorula toruloides. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:73. [PMID: 33741038 PMCID: PMC7977280 DOI: 10.1186/s13068-021-01924-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/06/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Rhodotorula toruloides is a robust producer of triacylglycerol owing to its fast growth rate and strong metabolic flux under conditions of high cell density fermentation. However, the molecular basis of fatty acid biosynthesis, desaturation and regulation remains elusive. RESULTS We present the molecular characterization of four fatty acid desaturase (FAD) genes in R. toruloides. Biosynthesis of oleic acid (OA) and palmitoleic acid (POA) was conferred by a single-copy ∆9 Fad (Ole1) as targeted deletion of which abolished the biosynthesis of all unsaturated fatty acids. Conversion of OA to linoleic acid (LA) and α-linolenic acid (ALA) was predominantly catalyzed by the bifunctional ∆12/∆15 Fad2. FAD4 was found to encode a trifunctional ∆9/∆12/∆15 FAD, playing important roles in lipid and biomass production as well as stress resistance. Furthermore, an abundantly transcribed OLE1-related gene, OLE2 encoding a 149-aa protein, was shown to regulate Ole1 regioselectivity. Like other fungi, the transcription of FAD genes was controlled by nitrogen levels and fatty acids in the medium. A conserved DNA motif, (T/C)(G/A)TTGCAGA(T/C)CCCAG, was demonstrated to mediate the transcription of OLE1 by POA/OA. The applications of these FAD genes were illustrated by engineering high-level production of OA and γ-linolenic acid (GLA). CONCLUSION Our work has gained novel insights on the transcriptional regulation of FAD genes, evolution of FAD enzymes and their roles in UFA biosynthesis, membrane stress resistance and, cell mass and total fatty acid production. Our findings should illuminate fatty acid metabolic engineering in R. toruloides and beyond.
Collapse
Affiliation(s)
- Yanbin Liu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Chong Mei John Koh
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Sihui Amy Yap
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lin Cai
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Lianghui Ji
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
24
|
Jovanovic S, Dietrich D, Becker J, Kohlstedt M, Wittmann C. Microbial production of polyunsaturated fatty acids - high-value ingredients for aquafeed, superfoods, and pharmaceuticals. Curr Opin Biotechnol 2021; 69:199-211. [PMID: 33540327 DOI: 10.1016/j.copbio.2021.01.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/01/2021] [Accepted: 01/10/2021] [Indexed: 12/26/2022]
Abstract
Polyunsaturated fatty acids (PUFAs), primarily docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have received worldwide attention in recent years due to an increasing awareness of their uniqueness in improving diet and human health and their apparently inevitable shortage in global availability. Microbial cell factories are a major solution to supplying these precious molecules in sufficient amounts and providing PUFA-rich aquafeed, superfoods, and medical formulations. This review assesses the PUFA world markets and highlights recent advances in upgrading and streamlining microalgae, yeasts, fungi, and bacteria for high-level PUFA production and broadening of the PUFA spectrum.
Collapse
Affiliation(s)
- Sofija Jovanovic
- Institute of Systems Biotechnology, Universität des Saarlandes, Germany
| | - Demian Dietrich
- Institute of Systems Biotechnology, Universität des Saarlandes, Germany
| | - Judith Becker
- Institute of Systems Biotechnology, Universität des Saarlandes, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Universität des Saarlandes, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Universität des Saarlandes, Germany.
| |
Collapse
|
25
|
Liu H, Song Y, Fan X, Wang C, Lu X, Tian Y. Yarrowia lipolytica as an Oleaginous Platform for the Production of Value-Added Fatty Acid-Based Bioproducts. Front Microbiol 2021; 11:608662. [PMID: 33469452 PMCID: PMC7813756 DOI: 10.3389/fmicb.2020.608662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/26/2020] [Indexed: 01/14/2023] Open
Abstract
The microbial fermentation process has been used as an alternative pathway to the production of value-added natural products. Of the microorganisms, Yarrowia lipolytica, as an oleaginous platform, is able to produce fatty acid-derived biofuels and biochemicals. Nowadays, there are growing progresses on the production of value-added fatty acid-based bioproducts in Y. lipolytica. However, there are fewer reviews performing the metabolic engineering strategies and summarizing the current production of fatty acid-based bioproducts in Y. lipolytica. To this end, we briefly provide the fatty acid metabolism, including fatty acid biosynthesis, transportation, and degradation. Then, we introduce the various metabolic engineering strategies for increasing bioproduct accumulation in Y. lipolytica. Further, the advanced progress in the production of fatty acid-based bioproducts by Y. lipolytica, including nutraceuticals, biofuels, and biochemicals, is summarized. This review will provide attractive thoughts for researchers working in the field of Y. lipolytica.
Collapse
Affiliation(s)
- Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yulan Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiao Fan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
26
|
Wang J, Ledesma-Amaro R, Wei Y, Ji B, Ji XJ. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica - A Review. BIORESOURCE TECHNOLOGY 2020; 313:123707. [PMID: 32595069 DOI: 10.1016/j.biortech.2020.123707] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Current energy security and climate change policies encourage the development and utilization of bioenergy. Oleaginous yeasts provide a particularly attractive platform for the sustainable production of biofuels and industrial chemicals due to their ability to accumulate high amounts of lipids. In particular, microbial lipids in the form of triacylglycerides (TAGs) produced from renewable feedstocks have attracted considerable attention because they can be directly used in the production of biodiesel and oleochemicals analogous to petrochemicals. As an oleaginous yeast that is generally regarded as safe, Yarrowia lipolytica has been extensively studied, with large amounts of data on its lipid metabolism, genetic tools, and genome sequencing and annotation. In this review, we highlight the newest strategies for increasing lipid accumulation using metabolic engineering and summarize the research advances on the overaccumulation of lipids in Y. lipolytica. Finally, perspectives for future engineering approaches are proposed.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
27
|
Engineering an oleaginous yeast Candida tropicalis SY005 for enhanced lipid production. Appl Microbiol Biotechnol 2020; 104:8399-8411. [DOI: 10.1007/s00253-020-10830-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022]
|
28
|
Synthetic biology, systems biology, and metabolic engineering of Yarrowia lipolytica toward a sustainable biorefinery platform. J Ind Microbiol Biotechnol 2020; 47:845-862. [PMID: 32623653 DOI: 10.1007/s10295-020-02290-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/25/2020] [Indexed: 01/24/2023]
Abstract
Yarrowia lipolytica is an oleaginous yeast that has been substantially engineered for production of oleochemicals and drop-in transportation fuels. The unique acetyl-CoA/malonyl-CoA supply mode along with the versatile carbon-utilization pathways makes this yeast a superior host to upgrade low-value carbons into high-value secondary metabolites and fatty acid-based chemicals. The expanded synthetic biology toolkits enabled us to explore a large portfolio of specialized metabolism beyond fatty acids and lipid-based chemicals. In this review, we will summarize the recent advances in genetic, omics, and computational tool development that enables us to streamline the genetic or genomic modification for Y. lipolytica. We will also summarize various metabolic engineering strategies to harness the endogenous acetyl-CoA/malonyl-CoA/HMG-CoA pathway for production of complex oleochemicals, polyols, terpenes, polyketides, and commodity chemicals. We envision that Y. lipolytica will be an excellent microbial chassis to expand nature's biosynthetic capacity to produce plant secondary metabolites, industrially relevant oleochemicals, agrochemicals, commodity, and specialty chemicals and empower us to build a sustainable biorefinery platform that contributes to the prosperity of a bio-based economy in the future.
Collapse
|
29
|
Semjon B, Bartkovský M, Marcinčáková D, Klempová T, Bujňák L, Hudák M, Jaďuttová I, Čertík M, Marcinčák S. Effect of Solid-State Fermented Wheat Bran Supplemented with Agrimony Extract on Growth Performance, Fatty Acid Profile, and Meat Quality of Broiler Chickens. Animals (Basel) 2020; 10:ani10060942. [PMID: 32485889 PMCID: PMC7341497 DOI: 10.3390/ani10060942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The current work evaluates the application of solid-state fermented wheat bran supplemented with agrimony extract in broiler nutrition. Broiler production parameters, blood and bone variables and meat quality were analysed. The quality of breast and thigh meat was evaluated by the use of physicochemical variables, fatty acid profile, lipid oxidation and sensory variables. The presented results showed that supplementation of the broiler diet with fermented feed positively influenced the quality of the produced breast and thigh meat. The application of fermented feed increased the nutritional value of broiler chicken meat, as shown via the positive modification of the fatty acid profile, without affecting sensory quality. Abstract The impact of the broiler diet modification on the following parameters was evaluated: meat quality, carcass traits, and bone and blood parameters. One hundred twenty one-day-old COBB 500 broiler chickens were assigned to three experimental groups (40 birds per group) with four replications (10 per pen) for 35 days of fattening. The control (C) was fed a basic feed mixture. The diet supplemented with 10% of fermented feed (FF10) and additionally supported by 0.2% of agrimony extract (FF10 + AE) was applied to the second and third groups, respectively. FF10 showed both a lower average daily feed intake and total feed consumption when compared to that of C (p < 0.05). Lower concentration of alkaline-phosphatase and calcium and higher total lipids and triglycerides in blood were observed in FF10 + AE. Breast and thigh meat showed a lower content of polyunsaturated fatty acid n-3 and n-6 in the FF10 + AE group (p < 0.01). The increase of gamma-linolenic acid content in breast and thigh meat samples obtained from the experimental groups was significant (p < 0.001 and p < 0.05; respectively). Lower lipid oxidation was observed in the thigh muscle of the FF10 + AE group on the first day of storage (p < 0.01). The current study indicates that FF10 + AE supplementation can be successfully applied to enhance broiler performance and meat quality.
Collapse
Affiliation(s)
- Boris Semjon
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (M.B.); (I.J.)
| | - Martin Bartkovský
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (M.B.); (I.J.)
| | - Dana Marcinčáková
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia;
| | - Tatiana Klempová
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (T.K.); (M.Č.)
| | - Lukáš Bujňák
- Department of Nutrition, Dietetics and Animal Breeding University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (L.B.); (M.H.)
| | - Marek Hudák
- Department of Nutrition, Dietetics and Animal Breeding University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (L.B.); (M.H.)
| | - Iveta Jaďuttová
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (M.B.); (I.J.)
| | - Milan Čertík
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (T.K.); (M.Č.)
| | - Slavomír Marcinčák
- Department of Food Hygiene and Technology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (B.S.); (M.B.); (I.J.)
- Correspondence: ; Tel.: +421-915-984-756
| |
Collapse
|
30
|
Sekova VY, Dergacheva DI, Isakova EP, Gessler NN, Tereshina VM, Deryabina YI. Soluble Sugar and Lipid Readjustments in the Yarrowia lipolytica Yeast at Various Temperatures and pH. Metabolites 2019; 9:metabo9120307. [PMID: 31861165 PMCID: PMC6950712 DOI: 10.3390/metabo9120307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/20/2022] Open
Abstract
Microorganisms cope with a wide range of environmental challenges using different mechanisms. Their ability to prosper at extreme ambient pH and high temperatures has been well reported, but the adaptation mechanism often remains unrevealed. In this study, we addressed the dynamics of lipid and sugar profiles upon different cultivation conditions. The results showed that the cells grown at various pH and optimal temperature contained mannitol as the major cytosol sugar alcohol. The elevated temperature of 38 °C led to a two- to three-fold increase in total cytosol sugars with concurrent substitution of mannitol for trehalose. Lipid composition in the cells at optimal temperature changed insignificantly at any pH tested. The increase in the temperature caused some drop in the storage and membrane lipid levels, remarkable changes in their composition, and the degree of unsaturated fatty acids. It was shown that the fatty acid composition of some membrane phospholipids varied considerably at changing pH and temperature values. The data showed a pivotal role and flexibility of the sugar and lipid composition of Y. lipolytica W29 in adaptation to unfavorable environmental conditions.
Collapse
Affiliation(s)
- Varvara Yu Sekova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
- Correspondence: (V.Y.S.); (E.P.I.)
| | - Daria I. Dergacheva
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
| | - Elena P. Isakova
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
- Correspondence: (V.Y.S.); (E.P.I.)
| | - Natalya N. Gessler
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
| | - Vera M. Tereshina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, Moscow 119071, Russia;
| | - Yulia I. Deryabina
- A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, bld 33-2, Leninsly Prospect, Moscow 119071, Russia; (D.I.D.); (N.N.G.); (Y.I.D.)
| |
Collapse
|
31
|
Ma YR, Wang KF, Wang WJ, Ding Y, Shi TQ, Huang H, Ji XJ. Advances in the metabolic engineering of Yarrowia lipolytica for the production of terpenoids. BIORESOURCE TECHNOLOGY 2019; 281:449-456. [PMID: 30846235 DOI: 10.1016/j.biortech.2019.02.116] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/24/2019] [Accepted: 02/26/2019] [Indexed: 05/02/2023]
Abstract
Terpenoids are a large class of natural compounds based on the C5 isoprene unit, with many biological effects such activity against cancer and allergies, while some also have an agreeable aroma. Consequently, they have received extensive attention in the food, pharmaceutical and cosmetic fields. With the identification and analysis of the underlying natural product synthesis pathways, current microbial-based metabolic engineering approaches have yielded new strategies for the production of highly valuable terpenoids. Yarrowia lipolytica is a non-conventional oleaginous yeast that is rapidly emerging as a valuable host for the production of terpenoids due to its own endogenous mevalonate pathway and high oil production capacity. This review aims to summarize the status and strategies of metabolic engineering for the heterologous synthesis of terpenoids in Y. lipolytica in recent years and proposes new methods aiming towards further improvement of terpenoid production.
Collapse
Affiliation(s)
- Yi-Rong Ma
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kai-Feng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wei-Jian Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ying Ding
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People's Republic of China.
| |
Collapse
|
32
|
Modulating Heterologous Pathways and Optimizing Culture Conditions for Biosynthesis of trans-10, cis-12 Conjugated Linoleic Acid in Yarrowia lipolytica. Molecules 2019; 24:molecules24091753. [PMID: 31064128 PMCID: PMC6539415 DOI: 10.3390/molecules24091753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 11/17/2022] Open
Abstract
A novel recombinant strain has been constructed for converting glycerol into a specific conjugated linoleic acid isomer (trans-10, cis-12 CLA) using Yarrowia lipolytica as host. The lipid accumulation pathway was modified for increasing lipid content. Overexpression of the diacylglycerol transferase (DGA1) gene improved the intracellular lipid yield by approximately 45% as compared to the original strain. The corresponding intracellular lipid yield of recombinant strain WXYL037 reached 52.2% of the cell dry weight. In combination with integration of Δ12 desaturase from Mortierella alpina (MA12D) and DGA1, the linoleic acid (LA) production content reached 0.88 g/L, which was 2-fold that of the original strain. Furthermore, with overexpressed DGA1, MA12D and Propionibacterium acnes isomerase (PAI), the titer of trans-10, cis-12 CLA in WXYL037 reached 110.6 mg/L after 72 h of shake flask culture, representing a 201.8% improvement when compared with that attained in the WXYL030 strain, which manifested overexpressed PAI. With optimal medium, the maximum CLA content and lipid yield of Y. lipolytica Po1g were 132.6 mg/L and 2.58 g/L, respectively. This is the first report of the production of trans-10, cis-12 CLA by the oleaginous yeast Y. lipolytica using glycerol as the sole carbon source through expression of DGA1 combined with MA12D and PAI.
Collapse
|
33
|
Ding Y, Wang KF, Wang WJ, Ma YR, Shi TQ, Huang H, Ji XJ. Increasing the homologous recombination efficiency of eukaryotic microorganisms for enhanced genome engineering. Appl Microbiol Biotechnol 2019; 103:4313-4324. [DOI: 10.1007/s00253-019-09802-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 11/28/2022]
|
34
|
Rai AK, Pandey A, Sahoo D. Biotechnological potential of yeasts in functional food industry. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Shi TQ, Huang H, Kerkhoven EJ, Ji XJ. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system. Appl Microbiol Biotechnol 2018; 102:9541-9548. [PMID: 30238143 PMCID: PMC6208947 DOI: 10.1007/s00253-018-9366-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
The oleaginous yeast Yarrowia lipolytica is widely used for the production of both bulk and fine chemicals, including organic acids, fatty acid-derived biofuels and chemicals, polyunsaturated fatty acids, single-cell proteins, terpenoids, and other valuable products. Consequently, it is becoming increasingly popular for metabolic engineering applications. Multiple gene manipulation tools including URA blast, Cre/LoxP, and transcription activator-like effector nucleases (TALENs) have been developed for metabolic engineering in Y. lipolytica. However, the low efficiency and time-consuming procedures involved in these methods hamper further research. The emergence of the CRISPR/Cas system offers a potential solution for these problems due to its high efficiency, ease of operation, and time savings, which can significantly accelerate the genomic engineering of Y. lipolytica. In this review, we summarize the research progress on the development of CRISPR/Cas systems for Y. lipolytica, including Cas9 proteins and sgRNA expression strategies, as well as gene knock-out/knock-in and repression/activation applications. Finally, the most promising and tantalizing future prospects in this area are highlighted.
Collapse
Affiliation(s)
- Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing, 210009, People's Republic of China
| | - Eduard J Kerkhoven
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road, Nanjing, 210009, People's Republic of China. .,Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
36
|
Cordova LT, Alper HS. Production of α-linolenic acid in Yarrowia lipolytica using low-temperature fermentation. Appl Microbiol Biotechnol 2018; 102:8809-8816. [DOI: 10.1007/s00253-018-9349-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/16/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
37
|
Abdel-Mawgoud AM, Markham KA, Palmer CM, Liu N, Stephanopoulos G, Alper HS. Metabolic engineering in the host Yarrowia lipolytica. Metab Eng 2018; 50:192-208. [PMID: 30056205 DOI: 10.1016/j.ymben.2018.07.016] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
The nonconventional, oleaginous yeast, Yarrowia lipolytica is rapidly emerging as a valuable host for the production of a variety of both lipid and nonlipid chemical products. While the unique genetics of this organism pose some challenges, many new metabolic engineering tools have emerged to facilitate improved genetic manipulation in this host. This review establishes a case for Y. lipolytica as a premier metabolic engineering host based on innate metabolic capacity, emerging synthetic tools, and engineering examples. The metabolism underlying the lipid accumulation phenotype of this yeast as well as high flux through acyl-CoA precursors and the TCA cycle provide a favorable metabolic environment for expression of relevant heterologous pathways. These properties allow Y. lipolytica to be successfully engineered for the production of both native and nonnative lipid, organic acid, sugar and acetyl-CoA derived products. Finally, this host has unique metabolic pathways enabling growth on a wide range of carbon sources, including waste products. The expansion of carbon sources, together with the improvement of tools as highlighted here, have allowed this nonconventional organism to act as a cellular factory for valuable chemicals and fuels.
Collapse
Affiliation(s)
- Ahmad M Abdel-Mawgoud
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Kelly A Markham
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States
| | - Claire M Palmer
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States
| | - Nian Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States; Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States.
| |
Collapse
|
38
|
Advances in synthetic biology of oleaginous yeast Yarrowia lipolytica for producing non-native chemicals. Appl Microbiol Biotechnol 2018; 102:5925-5938. [DOI: 10.1007/s00253-018-9099-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/31/2022]
|
39
|
Carsanba E, Papanikolaou S, Erten H. Production of oils and fats by oleaginous microorganisms with an emphasis given to the potential of the nonconventional yeast Yarrowia lipolytica. Crit Rev Biotechnol 2018; 38:1230-1243. [DOI: 10.1080/07388551.2018.1472065] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- E. Carsanba
- Cukurova University, Faculty of Agriculture, Food Engineering Department, Adana, Turkey
- Mustafa Kemal University, Altınozu Agricultural Sciences Vocational School, Hatay, Turkey
| | - S. Papanikolaou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Athens, Greece
| | - H. Erten
- Cukurova University, Faculty of Agriculture, Food Engineering Department, Adana, Turkey
| |
Collapse
|
40
|
Zeng SY, Liu HH, Shi TQ, Song P, Ren LJ, Huang H, Ji XJ. Recent Advances in Metabolic Engineering ofYarrowia lipolyticafor Lipid Overproduction. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201700352] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Si-Yu Zeng
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Hu-Hu Liu
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Ping Song
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
| | - Lu-Jing Ren
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No.5 Xinmofan Road Nanjing 210009 P. R. China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No.5 Xinmofan Road Nanjing 210009 P. R. China
- School of Pharmaceutical Sciences; Nanjing Tech University; No.30 South Puzhu Road Nanjing 211816 P. R. of China
- State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; No.5 Xinmofan Road Nanjing 210009 P. R. China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering; Nanjing Tech University; No. 30 South Puzhu Road Nanjing 211816 P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); No.5 Xinmofan Road Nanjing 210009 P. R. China
| |
Collapse
|
41
|
Liu HH, Zeng SY, Shi TQ, Ding Y, Ren LJ, Song P, Huang H, Madzak C, Ji XJ. A Yarrowia lipolytica strain engineered for arachidonic acid production counteracts metabolic burden by redirecting carbon flux towards intracellular fatty acid accumulation at the expense of organic acids secretion. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Shi S, Zhao H. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals. Front Microbiol 2017; 8:2185. [PMID: 29167664 PMCID: PMC5682390 DOI: 10.3389/fmicb.2017.02185] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/25/2017] [Indexed: 01/23/2023] Open
Abstract
Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.
Collapse
Affiliation(s)
- Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore, Singapore
| | - Huimin Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
43
|
Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr Opin Biotechnol 2017; 50:39-46. [PMID: 29101852 DOI: 10.1016/j.copbio.2017.10.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/22/2022]
Abstract
Traditional oleochemical industry chemically processes animal fats and plant oils to produce detergents, lubricants, biodiesel, plastics, coatings, and other products. Biotechnology offers an alternative process, where the same oleochemicals can be produced from abundant biomass feedstocks using microbial catalysis. This review summarizes the recent advances in the engineering of microbial metabolism for production of fatty acid-derived products. We highlight the efforts in engineering the central carbon metabolism, redox metabolism, controlling the chain length of the products, and obtaining metabolites with different functionalities. The prospects of commercializing microbial oleochemicals are also discussed.
Collapse
|
44
|
Liu HH, Madzak C, Sun ML, Ren LJ, Song P, Huang H, Ji XJ. Engineering Yarrowia lipolytica for arachidonic acid production through rapid assembly of metabolic pathway. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|