1
|
Capetti CCDM, Ontañon O, Navas LE, Campos E, Simister R, Dowle A, Liberato MV, Pellegrini VDOA, Gómez LD, Polikarpov I. Sugarcane bagasse derived xylooligosaccharides produced by an arabinofuranosidase/xylobiohydrolase from Bifidobacterium longum in synergism with xylanases. Carbohydr Polym 2024; 339:122248. [PMID: 38823916 DOI: 10.1016/j.carbpol.2024.122248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Arabinoxylan is a major hemicellulose in the sugarcane plant cell wall with arabinose decorations that impose steric restrictions on the activity of xylanases against this substrate. Enzymatic removal of the decorations by arabinofuranosidases can allow a more efficient arabinoxylan degradation by xylanases. Here we produced and characterized a recombinant Bifidobacterium longum arabinofuranosidase from glycoside hydrolase family 43 (BlAbf43) and applied it, together with GH10 and GH11 xylanases, to produce xylooligosaccharides (XOS) from wheat arabinoxylan and alkali pretreated sugarcane bagasse. The enzyme synergistically enhanced XOS production by GH10 and GH11 xylanases, being particularly efficient in combination with the latter family of enzymes, with a degree of synergism of 1.7. We also demonstrated that the enzyme is capable of not only removing arabinose decorations from the arabinoxylan and from the non-reducing end of the oligomeric substrates, but also hydrolyzing the xylan backbone yielding mostly xylobiose and xylose in particular cases. Structural studies of BlAbf43 shed light on the molecular basis of the substrate recognition and allowed hypothesizing on the structural reasons of its multifunctionality.
Collapse
Affiliation(s)
- Caio Cesar de Mello Capetti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | - Ornella Ontañon
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura E Navas
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Eleonora Campos
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Los Reseros y N. Repetto, Hurlingham B1686, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, CNAP, University of York, York YO10 5DD, United Kingdom
| | - Adam Dowle
- Technology Facility, Proteomics Laboratory, Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Marcelo Vizoná Liberato
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil
| | | | - Leonardo D Gómez
- Centre for Novel Agricultural Products, Department of Biology, CNAP, University of York, York YO10 5DD, United Kingdom.
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, 13566-590 São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Chen Z, Mense AL, Brewer LR, Shi YC. Wheat bran arabinoxylans: Chemical structure, extraction, properties, health benefits, and uses in foods. Compr Rev Food Sci Food Saf 2024; 23:e13366. [PMID: 38775125 DOI: 10.1111/1541-4337.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 07/02/2024]
Abstract
Wheat bran (WB) is a well-known and valuable source of dietary fiber. Arabinoxylan (AX) is the primary hemicellulose in WB and can be isolated and used as a functional component in various food products. Typically, AX is extracted from the whole WB using different processes after mechanical treatments. However, WB is composed of different layers, namely, the aleurone layer, pericarp, testa, and hyaline layer. The distribution, structure, and extractability of AX vary within these layers. Modern fractionation technologies, such as debranning and electrostatic separation, can separate the different layers of WB, making it possible to extract AX from each layer separately. Therefore, AX in WB shows potential for broader applications if it can be extracted from the different layers separately. In this review, the distribution and chemical structures of AX in WB layers are first discussed followed by extraction, physicochemical properties, and health benefits of isolated AX from WB. Additionally, the utilization of AX isolated from WB in foods, including cereal foods, packaging film, and the delivery of food ingredients, is reviewed. Future perspectives on challenges and opportunities in the research field of AX isolated from WB are highlighted.
Collapse
Affiliation(s)
- Zhongwei Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, P. R. China
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Andrew L Mense
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
- Wheat Marketing Center, Portland, Oregon, USA
| | - Lauren R Brewer
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - Yong-Cheng Shi
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
3
|
Pérez-Flores JG, García-Curiel L, Pérez-Escalante E, Contreras-López E, Olloqui EJ. Arabinoxylans matrixes as a potential material for drug delivery systems development - A bibliometric analysis and literature review. Heliyon 2024; 10:e25445. [PMID: 38352745 PMCID: PMC10862686 DOI: 10.1016/j.heliyon.2024.e25445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Arabinoxylans (AX) have become a focal point in the pharmaceutical sector owing to their physicochemical, biological, and functional properties. The purpose of this paper was to present a summary of the utilization of AX as drug release matrices through a bibliometric analysis (BA) and a literature review to spotlight the AX functional characteristics and their technological applications to promote this line of research. The BA was carried out using data from a Web of Science database research, specifically emphasizing the analysis of authors' keywords. This approach was chosen due to its significance in comprehensively understanding a particular research field and its relevance for in-depth knowledge of a research field. The BA outcomes revealed limited information concerning the AX applications in both release matrices and as excipients in the formulation and development of drug delivery systems (DDS), so there is a need for additional scientific and technological research in these areas to address the existing information gaps. However, the literature review shows that the native and modified AX from different delivery release systems, such as macrogels (including films, tablets, and hard gelatin capsules) and multi-particulate systems (including micro and nanogels), present an excellent potential as release matrices of biomolecules and drugs, such as doxorubicin, diclofenac sodium, caffeine, gentamicin, tizanidine hydrochloride, and insulin. In conclusion, AX have a wide potential for application in the pharmaceutical industry, so this work is expected to be a reference point for future research by scientists, technologists, and entrepreneurs who cope with the subject.
Collapse
Affiliation(s)
- Jesús Guadalupe Pérez-Flores
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción s/n, Carretera Pachuca-Actopan, 42060, San Agustín Tlaxiaca, Hidalgo, Mexico
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42184, Mineral de la Reforma, Hidalgo, Mexico
| | - Laura García-Curiel
- Área Académica de Enfermería, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Circuito Ex Hacienda La Concepción s/n, Carretera Pachuca-Actopan, 42060, San Agustín Tlaxiaca, Hidalgo, Mexico
| | - Emmanuel Pérez-Escalante
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42184, Mineral de la Reforma, Hidalgo, Mexico
| | - Elizabeth Contreras-López
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42184, Mineral de la Reforma, Hidalgo, Mexico
| | - Enrique J. Olloqui
- CONAHCyT, Colegio de Postgraduados, Campus Puebla, Boulevard Forjadores, 72760, Puebla, Puebla, Mexico
| |
Collapse
|
4
|
Hernández-Pinto FJ, Miranda-Medina JD, Natera-Maldonado A, Vara-Aldama Ó, Ortueta-Cabranes MP, Vázquez Del Mercado-Pardiño JA, El-Aidie SAM, Siddiqui SA, Castro-Muñoz R. Arabinoxylans: A review on protocols for their recovery, functionalities and roles in food formulations. Int J Biol Macromol 2024; 259:129309. [PMID: 38216021 DOI: 10.1016/j.ijbiomac.2024.129309] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Arabinoxylans (AXs) are compounds with high nutritional value and applicability, including prebiotics or supplementary ingredients, in food manufacturing industries. Unfortunately, the recovery of AXs may require advanced separation and integrated strategies. Here, an analysis of the emerging techniques to extract AXs from cereals and their by-products is discussed. This review covers distinct methods implemented over the last 2-3 years, identifying that the type of method, extraction source, AX physicochemical properties and pre-treatment conditions are the main factors influencing the recovery yield. Alkaline extraction is among the most used methods nowadays, mostly due to its simplicity and high recovery yield. Concurrently, recovered AXs applied in food applications is timely reviewed, such as potential bread ingredient, prebiotic and as a wall material for probiotic encapsulation, in beer and non-alcoholic beverage manufacturing, complementary ingredient in bakery products and cookies, improvers in Chinese noodles, 3D food printing and designing of nanostructures for delivery platforms.
Collapse
Affiliation(s)
- Fernanda Jimena Hernández-Pinto
- Tecnologico de Monterrey, Campus Querétaro. Av. Epigmenio González 500, Tecnológico, 76130 Santiago de Querétaro, Qro., Mexico
| | - Juan Daniel Miranda-Medina
- Tecnologico de Monterrey, Campus Guadalajara, Av. General Ramón Corona 2514, Zapopan 45138, Jalisco, Mexico
| | - Abril Natera-Maldonado
- Tecnologico de Monterrey, Campus Chihuahua, Av. H Colegio Militar 4700, Nombre de Dios, Chihuahua, Chih., Mexico
| | - Óscar Vara-Aldama
- Tecnologico de Monterrey, Campus Monterrey. Av. Eugenio Garza Sada Sur 2501 Sur, Tecnológico, 64849 Monterrey, N.L., Mexico
| | - Mary Pily Ortueta-Cabranes
- Tecnologico de Monterrey, Campus Monterrey. Av. Eugenio Garza Sada Sur 2501 Sur, Tecnológico, 64849 Monterrey, N.L., Mexico
| | | | - Safaa A M El-Aidie
- Dairy Technology Department, Animal Production Research Institute, Agricultural Research Centre, Giza, Egypt
| | - Shahida Anusha Siddiqui
- Technical University of Munich, Department of Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany; German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 11/12 Narutowicza St., 80-233 Gdansk, Poland.
| |
Collapse
|
5
|
Costa JR, Pereira MJ, Pedrosa SS, Gullón B, de Carvalho NM, Pintado ME, Madureira AR. Sugarcane Straw as a Source of Arabinoxylans: Optimization and Economic Viability of a Two-Step Alkaline Extraction. Foods 2023; 12:2280. [PMID: 37372491 DOI: 10.3390/foods12122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Sugarcane processing produces a significant amount of byproducts in the form of straw and bagasse, which are rich in cellulose, hemicellulose, and lignin. This work aims to provide a valorization approach to sugarcane straw by optimizing a two-step alkaline extraction of arabinoxylans by a response surface methodology to evaluate a potential industrial-scale production. Sugarcane straws were delignified using an alkaline-sulfite pretreatment, followed by alkaline extraction and precipitation of arabinoxylan, a two-step process optimized using a response surface methodology. A KOH concentration of (2.93-17.1%) and temperature (18.8-61.2 °C) were chosen as independent variables, and the arabinoxylan yield (%) as a response variable. The model application shows that KOH concentration, temperature, and the interaction between both independent variables are significant in extracting arabinoxylans from straw. The best-performing condition was further characterized by FTIR, DSC, and chemical and molecular weight evaluation. The straws arabinoxylans presented high purities levels, ca. 69.93%, and an average molecular weight of 231 kDa. The overall estimated production cost of arabinoxylan from straw was 0.239 €/g arabinoxylan. This work demonstrates a two-step alkaline extraction of the arabinoxylans method, as well as their chemical characterization and economic viability analysis, that can be used as a model for industrial scale-up production.
Collapse
Affiliation(s)
- Joana R Costa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Maria J Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Sílvia S Pedrosa
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Beatriz Gullón
- Departamento de Enxeñaría Química, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Nelson M de Carvalho
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ana Raquel Madureira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
6
|
Wan L, Yuan Z, Wu B, Jia H, Gao Z, Cao F. Dissolution behavior of arabinoxylan from sugarcane bagasse in tetrabutylammonium hydroxide aqueous solution. Carbohydr Polym 2022; 282:119037. [DOI: 10.1016/j.carbpol.2021.119037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023]
|
7
|
Solomou K, Alyassin M, Angelis-Dimakis A, Campbell GM. Arabinoxylans: A new class of food ingredients arising from synergies with biorefining, and illustrating the nature of biorefinery engineering. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Silva-Guillen YV, Almeida VV, Nuñez AJC, Schinckel AP, Thomaz MC. Effects of feeding diets containing increasing content of purified lignocellulose supplied by sugarcane bagasse to early-weaned pigs on growth performance and intestinal health. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Dimopoulou M, Kontogiorgos V. Soluble dietary fibres from sugarcane bagasse. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Maria Dimopoulou
- Department of Chemical Sciences University of Huddersfield Huddersfield HD1 3DH UK
- Department of Biological Sciences University of Huddersfield Huddersfield HD1 3DH UK
| | - Vassilis Kontogiorgos
- Department of Biological Sciences University of Huddersfield Huddersfield HD1 3DH UK
| |
Collapse
|
10
|
Winterburn J. Editorial – bioprocess development. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Sheppard P, Garcia-Garcia G, Angelis-Dimakis A, Campbell GM, Rahimifard S. Synergies in the co-location of food manufacturing and biorefining. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|