1
|
Copeland HM, Maye S, MacLeod G, Brabazon D, Loscher C, Freeland B. Statistical optimisation and analysis of biomass and exopolysaccharide production by Lacticaseibacillus rhamnosus LRH30. World J Microbiol Biotechnol 2025; 41:58. [PMID: 39888560 PMCID: PMC11785610 DOI: 10.1007/s11274-025-04273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Exopolysaccharides (EPS) produced by lactic acid bacteria with immunomodulatory potential are promising natural food additives. This study employs small-scale, 250 mL bioreactors combined with a central composite design to optimise two important bioprocess parameters, namely temperature and airflow, to achieve high yields of biomass and EPS from Lacticaseibacillus rhamnosus LRH30 (L. rhamnosus LRH30). A quadratic model was determined to be the best fit for the production of both products. The optimum critical process parameters for maximised biomass were identified to be 37.01 °C with an airflow of 0.12 vvm, while optimum criteria was 20.1 °C with an airflow of 0.18 vvm for maximum EPS production. Under these optimized conditions, small-scale batch experiments yielded a biomass concentration of 10.1 g/L and an EPS yield of 520.2 mg/L. In comparison, scale-up experiments in 2L reactors resulted in a biomass concentration of 8.54 g/L (a reduction of 18%) and an EPS yield of 654.6 mg/L (an increase of 26%). The produced EPS was purified and characterised through Fourier transform infrared spectroscopy and showed characteristic peaks associated with polysaccharides. The immunomodulatory potential of the L. rhamnosus LRH30 cells and EPS was evaluated through cytokine and chemokine secretion in a J774A.1 murine macrophage, resulting in a predominantly anti-inflammatory effect of L. rhamnosus LRH30 and EPS.
Collapse
Affiliation(s)
- Helena Mylise Copeland
- School of Biotechnology, Dublin City University, Dublin, D9, Ireland.
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, Dublin, D9, Ireland.
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, Mitchelstown, P67 DD36, Ireland.
| | - Susan Maye
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, Mitchelstown, P67 DD36, Ireland
| | - George MacLeod
- School of Biotechnology, Dublin City University, Dublin, D9, Ireland
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, Dublin, D9, Ireland
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, Mitchelstown, P67 DD36, Ireland
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, Dublin, D9, Ireland
| | - Christine Loscher
- School of Biotechnology, Dublin City University, Dublin, D9, Ireland
| | - Brian Freeland
- School of Biotechnology, Dublin City University, Dublin, D9, Ireland
| |
Collapse
|
2
|
Le Nepvou De Carfort J, Pinto T, Krühne U. An Automatic Method for Generation of CFD-Based 3D Compartment Models: Towards Real-Time Mixing Simulations. Bioengineering (Basel) 2024; 11:169. [PMID: 38391655 PMCID: PMC10886251 DOI: 10.3390/bioengineering11020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
This article aims to develop a method to automatically generate CFD-based compartment models. This effort to simplify mixing models aims at capturing the interactions between material transport and chemical/biochemical conversions in large-scale reactors. The proposed method converts the CFD results into a system of mass balance equations for each defined component. The compartmentalization method is applied to two bioreactor geometries and was able to replicate tracer mixing profiles observed in CFD simulations. The generated compartment models were successfully coupled with, a simple Monod-type biokinetic model describing microbial growth, substrate consumption and product formation. The coupled model was used to simulate a four-hour fermentation in a 190 L reactor and a 10 m3 reactor. Resolving the substrate gradients had a clear impact on the biokinetics, increasing with the scale of the reactor. Moreover, the coupled model could simulate the fermentation faster than real-time. Having a real-time-solvable model is essential for implementations in digital twins and other real-time applications using the models as predictive tools.
Collapse
Affiliation(s)
- Johan Le Nepvou De Carfort
- Process and System Engineering Center, Department of Chemical and Biochemical Engineering, 2800 Kongens Lyngby, Denmark
| | - Tiago Pinto
- R/D Department, UNIBIO A/S, 4000 Roskilde, Denmark
| | - Ulrich Krühne
- Process and System Engineering Center, Department of Chemical and Biochemical Engineering, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Haringa C. An analysis of organism lifelines in an industrial bioreactor using Lattice-Boltzmann CFD. Eng Life Sci 2023; 23:e2100159. [PMID: 36619885 PMCID: PMC9815090 DOI: 10.1002/elsc.202100159] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 01/11/2023] Open
Abstract
Euler-Lagrange CFD simulations, where the biotic phase is represented by computational particles (parcels), provide information on environmental gradients inside bioreactors from the microbial perspective. Such information is highly relevant for reactor scale-down and process optimization. One of the major challenges is the computational intensity of CFD simulations, especially when resolution of dynamics in the flowfield is required. Lattice-Boltzmann large-eddy simulations (LB-LES) form a very promising approach for simulating accurate, dynamic flowfields in stirred reactors, at strongly reduced computation times compared to finite volume approaches. In this work, the performance of LB-LES in resolving substrate gradients in large-scale bioreactors is explored, combined with the inclusion of a Lagrangian biotic phase to provide the microbial perspective. In addition, the hydrodynamic performance of the simulations is confirmed by verification of hydrodynamic characteristics (radial velocity, turbulent kinetic energy, energy dissipation) in the impeller discharge stream of a 29 cm diameter stirred tank. The results are compared with prior finite volume simulation results, both in terms of hydrodynamic and biokinetic observations, and time requirements.
Collapse
Affiliation(s)
- Cees Haringa
- Bioprocess EngineeringBiotechnology DepartmentDelft University of TechnologyDelftthe Netherlands
| |
Collapse
|
4
|
Hartmann FSF, Udugama IA, Seibold GM, Sugiyama H, Gernaey KV. Digital models in biotechnology: Towards multi-scale integration and implementation. Biotechnol Adv 2022; 60:108015. [PMID: 35781047 DOI: 10.1016/j.biotechadv.2022.108015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022]
Abstract
Industrial biotechnology encompasses a large area of multi-scale and multi-disciplinary research activities. With the recent megatrend of digitalization sweeping across all industries, there is an increased focus in the biotechnology industry on developing, integrating and applying digital models to improve all aspects of industrial biotechnology. Given the rapid development of this field, we systematically classify the state-of-art modelling concepts applied at different scales in industrial biotechnology and critically discuss their current usage, advantages and limitations. Further, we critically analyzed current strategies to couple cell models with computational fluid dynamics to study the performance of industrial microorganisms in large-scale bioprocesses, which is of crucial importance for the bio-based production industries. One of the most challenging aspects in this context is gathering intracellular data under industrially relevant conditions. Towards comprehensive models, we discuss how different scale-down concepts combined with appropriate analytical tools can capture intracellular states of single cells. We finally illustrated how the efforts could be used to develop digitals models suitable for both cell factory design and process optimization at industrial scales in the future.
Collapse
Affiliation(s)
- Fabian S F Hartmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Isuru A Udugama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark.
| | - Gerd M Seibold
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Haringa C, Tang W, Noorman HJ. Stochastic parcel tracking in an Euler-Lagrange compartment model for fast simulation of fermentation processes. Biotechnol Bioeng 2022; 119:1849-1860. [PMID: 35352339 PMCID: PMC9321588 DOI: 10.1002/bit.28094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022]
Abstract
The compartment model (CM) is a well‐known approach for computationally affordable, spatially resolved hydrodynamic modeling of unit operations. Recent implementations use flow profiles based on Computational Fluid Dynamics (CFD) simulations, and several authors included microbial kinetics to simulate gradients in bioreactors. However, these studies relied on black‐box kinetics that do not account for intracellular changes and cell population dynamics in response to heterogeneous environments. In this paper, we report the implementation of a Lagrangian reaction model, where the microbial phase is tracked as a set of biomass‐parcels, each linked with an intracellular composition vector and a structured reaction model describing their intracellular response to extracellular variations. A stochastic parcel tracking approach is adopted, in contrast to the resolved trajectories used in CFD implementations. A penicillin production process is used as a case study. We show good performance of the model compared with full CFD simulations, both regarding the extracellular gradients and intracellular pool response, using the mixing time as a matching criterion and taking into account that the mixing time is sensitive to the number of compartments. The sensitivity of the model output towards some of the inputs is explored. The coarsest representative CM requires a few minutes to solve 80 h of flow time, compared with approximately 2 weeks for a full Euler–Lagrange CFD simulation of the same case. This alleviates one of the major bottlenecks for the application of such CFD simulations towards the analysis and optimization of industrial fermentation processes.
Collapse
Affiliation(s)
- Cees Haringa
- Biotechnology Department, Bioprocess EngineeringDelft University of TechnologyDelftThe Netherlands
| | - Wenjun Tang
- Biotechnology Department, Bioprocess EngineeringDelft University of TechnologyDelftThe Netherlands
- Department of Biotechnology, Bioprocess Engineering group, Faculty of Applied Sciences, Delft University of TechnologyRoyal DSMDelftThe Netherlands
| | - Henk J. Noorman
- Biotechnology Department, Bioprocess EngineeringDelft University of TechnologyDelftThe Netherlands
- Department of Biotechnology, Bioprocess Engineering group, Faculty of Applied Sciences, Delft University of TechnologyRoyal DSMDelftThe Netherlands
| |
Collapse
|
6
|
Zalai D, Kopp J, Kozma B, Küchler M, Herwig C, Kager J. Microbial technologies for biotherapeutics production: Key tools for advanced biopharmaceutical process development and control. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:9-24. [PMID: 34895644 DOI: 10.1016/j.ddtec.2021.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/14/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022]
Abstract
Current trends in the biopharmaceutical market such as the diversification of therapies as well as the increasing time-to-market pressure will trigger the rethinking of bioprocess development and production approaches. Thereby, the importance of development time and manufacturing costs will increase, especially for microbial production. In the present review, we investigate three technological approaches which, to our opinion, will play a key role in the future of biopharmaceutical production. The first cornerstone of process development is the generation and effective utilization of platform knowledge. Building processes on well understood microbial and technological platforms allows to accelerate early-stage bioprocess development and to better condense this knowledge into multi-purpose technologies and applicable mathematical models. Second, the application of verified scale down systems and in silico models for process design and characterization will reduce the required number of large scale batches before dossier submission. Third, the broader availability of mathematical process models and the improvement of process analytical technologies will increase the applicability and acceptance of advanced control and process automation in the manufacturing scale. This will reduce process failure rates and subsequently cost of goods. Along these three aspects we give an overview of recently developed key tools and their potential integration into bioprocess development strategies.
Collapse
Affiliation(s)
- Denes Zalai
- Richter-Helm BioLogics GmbH & Co. KG, Suhrenkamp 59, 22335 Hamburg, Germany.
| | - Julian Kopp
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Bence Kozma
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| | - Michael Küchler
- Richter-Helm BioLogics GmbH & Co. KG, Suhrenkamp 59, 22335 Hamburg, Germany
| | - Christoph Herwig
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria; Competence Center CHASE GmbH, Altenbergerstraße 69, 4040 Linz, Austria
| | - Julian Kager
- Research Division Biochemical Engineering, Institute of Chemical Environmental and Bioscience Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
7
|
Automated Compartment Model Development Based on Data from Flow-Following Sensor Devices. Processes (Basel) 2021. [DOI: 10.3390/pr9091651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Due to the heterogeneous nature of large-scale fermentation processes they cannot be modelled as ideally mixed reactors, and therefore flow models are necessary to accurately represent the processes. Computational fluid dynamics (CFD) is used more and more to derive flow fields for the modelling of bioprocesses, but the computational demands associated with simulation of multiphase systems with biokinetics still limits their wide applicability. Hence, a demand for simpler flow models persists. In this study, an approach to develop data-based flow models in the form of compartment models is presented, which utilizes axial-flow rates obtained from flow-following sensor devices in combination with a proposed procedure for automatic zoning of volume. The approach requires little experimental effort and eliminates the necessity for computational determination of inter-compartmental flow rates and manual zoning. The concept has been demonstrated in a 580 L stirred vessel, of which models have been developed for two types of impellers with varying agitation intensities. The sensor device measurements were corroborated by CFD simulations, and the performance of the developed compartment models was evaluated by comparing predicted mixing times with experimentally determined mixing times. The data-based compartment models predicted the mixing times for all examined conditions with relative errors in the range of 3–27%. The deviations were ascribed to limitations in the flow-following behavior of the sensor devices, whose sizes were relatively large compared to the examined system. The approach provides a versatile and automated flow modelling platform which can be applied to large-scale bioreactors.
Collapse
|
8
|
Brunner V, Siegl M, Geier D, Becker T. Challenges in the Development of Soft Sensors for Bioprocesses: A Critical Review. Front Bioeng Biotechnol 2021; 9:722202. [PMID: 34490228 PMCID: PMC8417948 DOI: 10.3389/fbioe.2021.722202] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/03/2021] [Indexed: 01/10/2023] Open
Abstract
Among the greatest challenges in soft sensor development for bioprocesses are variable process lengths, multiple process phases, and erroneous model inputs due to sensor faults. This review article describes these three challenges and critically discusses the corresponding solution approaches from a data scientist’s perspective. This main part of the article is preceded by an overview of the status quo in the development and application of soft sensors. The scope of this article is mainly the upstream part of bioprocesses, although the solution approaches are in most cases also applicable to the downstream part. Variable process lengths are accounted for by data synchronization techniques such as indicator variables, curve registration, and dynamic time warping. Multiple process phases are partitioned by trajectory or correlation-based phase detection, enabling phase-adaptive modeling. Sensor faults are detected by symptom signals, pattern recognition, or by changing contributions of the corresponding sensor to a process model. According to the current state of the literature, tolerance to sensor faults remains the greatest challenge in soft sensor development, especially in the presence of variable process lengths and multiple process phases.
Collapse
Affiliation(s)
- Vincent Brunner
- Chair of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | - Manuel Siegl
- Chair of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | - Dominik Geier
- Chair of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| | - Thomas Becker
- Chair of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany
| |
Collapse
|
9
|
Gargalo CL, de Las Heras SC, Jones MN, Udugama I, Mansouri SS, Krühne U, Gernaey KV. Towards the Development of Digital Twins for the Bio-manufacturing Industry. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 176:1-34. [PMID: 33349908 DOI: 10.1007/10_2020_142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The bio-manufacturing industry, along with other process industries, now has the opportunity to be engaged in the latest industrial revolution, also known as Industry 4.0. To successfully accomplish this, a physical-to-digital-to-physical information loop should be carefully developed. One way to achieve this is, for example, through the implementation of digital twins (DTs), which are virtual copies of the processes. Therefore, in this paper, the focus is on understanding the needs and challenges faced by the bio-manufacturing industry when dealing with this digitalized paradigm. To do so, two major building blocks of a DT, data and models, are highlighted and discussed. Hence, firstly, data and their characteristics and collection strategies are examined as well as new methods and tools for data processing. Secondly, modelling approaches and their potential of being used in DTs are reviewed. Finally, we share our vision with regard to the use of DTs in the bio-manufacturing industry aiming at bringing the DT a step closer to its full potential and realization.
Collapse
Affiliation(s)
- Carina L Gargalo
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | | | - Mark Nicholas Jones
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark.,Molecular Quantum Solutions ApS, Copenhagen, Denmark
| | - Isuru Udugama
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Seyed Soheil Mansouri
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Ulrich Krühne
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
10
|
Understanding gradients in industrial bioreactors. Biotechnol Adv 2020; 46:107660. [PMID: 33221379 DOI: 10.1016/j.biotechadv.2020.107660] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/22/2020] [Accepted: 11/14/2020] [Indexed: 01/07/2023]
Abstract
Gradients in industrial bioreactors have attracted substantial research attention since exposure to fluctuating environmental conditions has been shown to lead to changes in the metabolome, transcriptome as well as population heterogeneity in industrially relevant microorganisms. Such changes have also been found to impact key process parameters like the yield on substrate and the productivity. Hence, understanding gradients is important from both the academic and industrial perspectives. In this review the causes of gradients are outlined, along with their impact on microbial physiology. Quantifying the impact of gradients requires a detailed understanding of both fluid flow inside industrial equipment and microbial physiology. This review critically examines approaches used to investigate gradients including large-scale experimental work, computational methods and scale-down approaches. Avenues for future work have been highlighted, particularly the need for further coordinated development of both in silico and experimental tools which can be used to further the current understanding of gradients in industrial equipment.
Collapse
|
11
|
Ultra-fine nickel sulfide nanoclusters @ nickel sulfide microsphere as enzyme-free electrode materials for sensitive detection of lactic acid. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
12
|
Linking CFD and Kinetic Models in Anaerobic Digestion Using a Compartmental Model Approach. Processes (Basel) 2020. [DOI: 10.3390/pr8060703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Understanding mixing behavior and its impact on conversion processes is essential for the operational stability and conversion efficiency of anaerobic digestion (AD). Mathematical modelling is a powerful tool to achieve this. Direct linkage of Computational Fluid Dynamics (CFD) and the kinetic model is, however, computationally expensive, given the stiffness of the kinetic model. Therefore, this paper proposes a compartmental model (CM) approach, which is derived from a converged CFD solution to understand the performance of AD under non-ideal mixing conditions and with spatial variation of substrates, biomass, pH, and specific biogas and methane production. To quantify the effect of non-uniformity on the reactor performance, the CM implements the Anaerobic Digestion Model 1 (ADM1) in each compartment. It is demonstrated that the performance and spatial variation of the biochemical process in a CM are significantly different from a continuously stirred tank reactor (CSTR) assumption. Hence, the assumption of complete mixed conditions needs attention concerning the AD performance prediction and biochemical process non-uniformities.
Collapse
|
13
|
Comprehensive sensitivity analysis and process risk assessment of large scale pharmaceutical crystallization processes. Comput Chem Eng 2020. [DOI: 10.1016/j.compchemeng.2020.106746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|