1
|
Pan SY, Liao YL, Lin YI, Tseng PC. Ionically conductive materials for energy-efficient succinic acid recovery towards electrified circular bioeconomy. BIORESOURCE TECHNOLOGY 2025; 430:132549. [PMID: 40250531 DOI: 10.1016/j.biortech.2025.132549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
In biorefineries, separation units for extracting valuable products from biomass often constitute a substantial portion of operational costs. Electrifying these separation units, such as through the use of bipolar membrane electrodeionization (BMEDI), has emerged as a key strategy to advance the circular bioeconomy. In this study, an ionically conductive material (ICM) was synthesized via sulfonation reactions under mild conditions and subsequently applied in BMEDI for the energy-efficient recovery of succinic acid. The ICM effectively alleviates the concentration polarization-induced limiting region in BMEDI, resulting in exceptional performance. The ICM-BMEDI system achieved a recovery efficiency of ∼91 %, a current efficiency of ∼90 %, a productivity of ∼0.55 kg/m2/h, and an energy consumption of ∼2.53 kWh per kg of succinic acid. Economic analysis revealed a strong benefit-cost ratio of 4.49 over a 2-year operational period. These findings highlight the potential of integrating ICM-BMEDI in biorefineries to achieve both energy-efficient and cost-effective bioproduction.
Collapse
Affiliation(s)
- Shu-Yuan Pan
- Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei City 10617, Taiwan, ROC; Agricultural Net-Zero Carbon Technology and Management Innovation Research Center, College of Bioresources and Agriculture, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei City 10617, Taiwan, ROC.
| | - Yu-Lun Liao
- Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei City 10617, Taiwan, ROC
| | - Yu-I Lin
- Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei City 10617, Taiwan, ROC
| | - Po-Chih Tseng
- Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei City 10617, Taiwan, ROC
| |
Collapse
|
2
|
Cai R, Zhang J, Song Y, Liu X, Xu H. Research Progress on the Degradation of Human Milk Oligosaccharides (HMOs) by Bifidobacteria. Nutrients 2025; 17:519. [PMID: 39940377 PMCID: PMC11820314 DOI: 10.3390/nu17030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
The purpose of this study was to investigate the degradation mechanism of Bifidobacterium on breast milk oligosaccharides (HMOs) and its application in infant nutrition. The composition and characteristics of HMOs were introduced, and the degradation mechanism of HMOs by Bifidobacterium was described, including intracellular and extracellular digestion and species-specific differences. The interaction between Bifidobacterium and Bacteroides in the process of degrading HMOs and its effect on intestinal microecology were analyzed. The effects of HMO formula milk powder on the intestinal microbiota of infants were discussed, including simulating breast milk composition, regulating intestinal flora and immune function, infection prevention, and brain development. Finally, the research results are summarized, and future research directions are proposed to provide directions for research in the field of infant nutrition.
Collapse
Affiliation(s)
| | | | | | - Xiaoyong Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China; (R.C.); (J.Z.); (Y.S.)
| | - Huilian Xu
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China; (R.C.); (J.Z.); (Y.S.)
| |
Collapse
|
3
|
Song Y, Maskey S, Lee YG, Lee DS, Nguyen DT, Bae HJ. Optimizing bioconversion processes of rice husk into value-added products: D-psicose, bioethanol, and lactic acid. BIORESOURCE TECHNOLOGY 2024; 395:130363. [PMID: 38253244 DOI: 10.1016/j.biortech.2024.130363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Rice husk, rich carbon content, is an agricultural waste produced globally at an amount of 120 million tons annually, and it has high potential as a biorefinery feedstock. Herein, we investigated the feasibility of producing various products as D-psicose, bioethanol and lactic acid from rice husk (RH) through a biorefinery process. Alkali-hydrogen peroxide-acetic acid pretreatment of RH effectively removed lignin and silica, resulting in enzymatic hydrolysis yield of approximately 86.3% under optimal hydrolysis conditions. By using xylose isomerase as well as D-psicose-3-epimerase with borate, glucose present in the RH hydrolysate was converted into D-psicose with a 40.6% conversion yield in the presence of borate. Furthermore, bioethanol (85.4%) and lactic acid (92.5%) were successfully produced from the RH hydrolysate. This study confirmed the high potential of RH as a biorefinery feedstock, and it is expected that various platform chemicals and value-added products can be produced using RH.
Collapse
Affiliation(s)
- Younho Song
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shila Maskey
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Gyo Lee
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dae-Seok Lee
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea
| | | | - Hyeun-Jong Bae
- Bio-energy Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
4
|
Song Y, Lee YG, Ahn YS, Nguyen DT, Bae HJ. Utilization of bamboo as biorefinery feedstock: Co-production of xylo-oligosaccharide with succinic acid and lactic acid. BIORESOURCE TECHNOLOGY 2023; 372:128694. [PMID: 36731613 DOI: 10.1016/j.biortech.2023.128694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Herein, we investigated the possibility of co-producing xylo-oligosaccharides (XOSs) from bamboo, as value-added products, along with succinic and lactic acids, as platform chemicals. Xylan was extracted from bamboo using the alkali method under mild conditions. From xylan, XOSs were produced by partial enzymatic hydrolysis at a conversion rate of 83.9%, and all reaction conditions resulted in similar degrees of polymerization. Hydrogen peroxide-acetic acid (HPAC) pretreatment effectively removed lignin from NaOH-treated bamboo, and the enzymatic hydrolytic yield of NaOH and HPAC-treated bamboo was 84.3% of the theoretical yield. The production of succinic and lactic acids from the hydrolysate resulted in conversion rates of approximately 63.2% and 91.3% of the theoretical yield using Corynebacterium glutamicum Δldh and Actinobacillus succinogenes, respectively, under facultative anaerobic conditions. This study demonstrates that bamboo has a high potential to produce value-added products using a biorefinery process and is an alternative resource for compounds typically derived from petroleum.
Collapse
Affiliation(s)
- Younho Song
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yoon Gyo Lee
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Young Sang Ahn
- Department of Forest Resources, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | - Hyeun-Jong Bae
- Bio-energy Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
5
|
Asghar N, Lee H, Jang D, Jang A. Recovery of volatile fatty acids using forward osmosis: Influence of solution chemistry, temperature, and membrane orientation. CHEMOSPHERE 2022; 303:134814. [PMID: 35525449 DOI: 10.1016/j.chemosphere.2022.134814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
This study investigates the suitability of forward osmosis (FO) for recovery of volatile fatty acids (VFAs) from anaerobic digesters (ADs) and identifies the conditions favorable for commercially viable maximum recovery of VFAs. The recovery efficiency of VFAs is evaluated using a polyamide (PA)-based thin-film composite (TFC) membrane. The pH (3, 5, 7, and 9), temperature (20 °C and 40 °C), and membrane orientation (active-layer [AL]-facing FS and AL facingDS) were changed, and water flux, reverse salt flux (RSF), rejection rate, and concentration factor (CF) were evaluated for five VFAs. The water flux and RSF were higher at a higher pH, temperature and in AL-DS mode. A low rejection rate of 23-36% and a CF of 0.20-1.90 were observed at a pH below the pKa due to the solubility of molecular VFAs, while rejection rates was 80-97% and concentration increase by 1 to 4.8-fold at a pH above the pKa values were achieved due to deprotonation of VFAs and changes in membrane surface charges. With an equal increase in temperature of FS and DS from 20 to 40 °C, the rejection rate decreased by almost 20%. While with a transmembrane temperature change, a decrease in rejection rate of 20% was observed compared with baseline experiments due to decreases in viscosity and high diffusivity. In AL-DS mode, VFAs were rejected at a rate of almost 20% lower than that in AL-FS mode due to internal concentration polarization and membrane properties. These findings provide useful information on the factors that can influence optimal recovery rates of VFAs.
Collapse
Affiliation(s)
- Nosheen Asghar
- Department of Global Smart City, Sungkyunkwan University (SKKU), (16419) 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, Republic of Korea.
| | - Hyeonho Lee
- Department of Global Smart City, Sungkyunkwan University (SKKU), (16419) 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, Republic of Korea.
| | - Duksoo Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), (16419) 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), (16419) 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
6
|
Assessment of vine shoots and surplus grape must for succinic acid bioproduction. Appl Microbiol Biotechnol 2022; 106:4977-4994. [PMID: 35821430 DOI: 10.1007/s00253-022-12063-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 11/02/2022]
Abstract
Vine shoots and surplus grape must were assessed as feedstocks for succinic acid production with Actinobacillus succinogenes and Basfia succiniproducens. After acidic and enzymatic hydrolysis, vine shoots released 35-40 g/L total sugars. Both bacterial species produced 18-21 g/L succinic acid from this hydrolysate in 120 h. Regarding grape must fermentation, A. succinogenes clearly outperformed B. succiniproducens. Yeast extract (a source of organic nitrogen and vitamins) was the only additional nutrient needed by A. succinogenes to grow on grape must. Under mathematically optimized conditions (145.7 g/L initial sugars and 24.9 g/L yeast extract), A. succinogenes generated 88.9 ± 1.4 g/L succinic acid in 96 h, reaching a succinic acid yield of 0.66 ± 0.01 g/g and a sugar consumption of 96.64 ± 0.30%. Substrate inhibition was not observed in grape musts with 125-150 g/L initial sugars, provided that an adequate amount of yeast extract was available for bacteria. Alternative nitrogen sources to yeast extract (red wine lees, white wine lees, urea, NH4Cl, and choline chloride) were not suitable for A. succinogenes in grape must. KEY POINTS: • Vine shoots and surplus grape must were assessed for succinic acid bioproduction. • Succinic acid bioproduction was 21 g/L with vine shoots and 89 g/L with grape must. • Fermentation was efficient at high sugar loads if organic N supply was adequate.
Collapse
|
7
|
Pervez MN, Mahboubi A, Uwineza C, Zarra T, Belgiorno V, Naddeo V, Taherzadeh MJ. Factors influencing pressure-driven membrane-assisted volatile fatty acids recovery and purification-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152993. [PMID: 35026250 DOI: 10.1016/j.scitotenv.2022.152993] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Volatile fatty acids (VFAs) are building block chemicals that can be produced through bioconversion of organic waste streams via anaerobic digestion as intermediate products. Purified VFAs are applicable in a wide range of industrial applications such as food, textiles, cosmetics, pharmaceuticals etc. production. The present review focuses on VFAs recovery methods and technologies such as adsorption, distillation, extraction, gas stripping, esterification and membrane based techniques etc., while presenting a discussion of their pros and cons. Moreover, a great attention has been given to the recovery of VFAs through membrane filtration as a promising sustainable clarification, fractionation and concentration approach. In this regard, a thorough overview of factors affecting membrane filtration performance for VFAs recovery has been presented. Filtration techniques such as nanofiltration and reverse osmosis have shown to be capable of recovering over 90% of VFAs content from organic effluent steams, proving the direct effect of membrane materials/surface chemistry, pore size and solution pH in recovery success level. Overall, this review presents a new insight into challenges and potentials of membrane filtration for VFAs recovery based on the effects of factors such as operational parameters, membrane properties and effluent characteristics.
Collapse
Affiliation(s)
- Md Nahid Pervez
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden; Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Clarisse Uwineza
- Swedish Centre for Resource Recovery, University of Borås, 501 90 Borås, Sweden
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | | |
Collapse
|
8
|
Kim N, Jeon J, Chen R, Su X. Electrochemical separation of organic acids and proteins for food and biomanufacturing. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Filippi K, Papapostolou H, Alexandri M, Vlysidis A, Myrtsi ED, Ladakis D, Pateraki C, Haroutounian SA, Koutinas A. Integrated biorefinery development using winery waste streams for the production of bacterial cellulose, succinic acid and value-added fractions. BIORESOURCE TECHNOLOGY 2022; 343:125989. [PMID: 34695693 DOI: 10.1016/j.biortech.2021.125989] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
An integrated biorefinery has been developed using winery wastes (grape pomace-GP, stalks-GS, wine lees-WL). Bacterial cellulose was produced from GP extracted free sugars. Grape-seed oil and polyphenols were extracted from GP. Experimental design was employed to optimize lignin removal (50.8%) from mixtures of remaining GP solids and GS via NaOH (1.19% w/v) treatment at 70°C for 30 min. Delignification liquid contained condensed tannins with 76% Stiasny number. Enzymatic hydrolysis produced a sugar-rich hydrolysate (40.2 g/L sugars). Ethanol, antioxidants, tartaric acid and nutrient-rich hydrolysate were produced from WL. The crude hydrolysates were used in fed-batch Actinobacillus succinogenes cultures for 37.2 g/L succinic acid production. The biorefinery produces 42.65 g bacterial cellulose, 24.3 g oil, 40.3 g phenolic-rich extract with 1.41 Antioxidant Activity Index, 80.2 g ethanol, 624.8 g crude tannin extract, 20.03 g tartaric acid and 157.8 g succinic acid from 1 kg of each waste stream.
Collapse
Affiliation(s)
- Katiana Filippi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Harris Papapostolou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece.
| | - Maria Alexandri
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Anestis Vlysidis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Eleni D Myrtsi
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Dimitrios Ladakis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Chrysanthi Pateraki
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Serkos A Haroutounian
- Laboratory of Nutritional Physiology and Feeding, Department of Animal Science, School of Animal Biosciences, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| |
Collapse
|
10
|
Thygesen A, Tsapekos P, Alvarado-Morales M, Angelidaki I. Valorization of municipal organic waste into purified lactic acid. BIORESOURCE TECHNOLOGY 2021; 342:125933. [PMID: 34852434 DOI: 10.1016/j.biortech.2021.125933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Municipal organic waste (biowaste) consists of food derived starch, protein and sugars, and lignocellulose derived cellulose, hemicellulose, lignin and pectin. Proper management enables nutrient recycling and sustainable production of platform chemicals such as lactic acid (LA). This review gathers the most important information regarding use of biowaste for LA fermentation covering pre-treatment, enzymatic hydrolysis, fermentation and downstream processing to achieve high purity LA. The optimal approach was found to treat the two biowaste fractions separately due to different pre-treatment and enzyme needs for achieving enzymatic hydrolysis and to do continues fermentation to achieve high cell density and high LA productivity up to 12 g/L/h for production of both L and D isomers. The specific productivity was 0.4 to 0.5 h-1 but with recalcitrant biomass, the enzymatic hydrolysis was rate limiting. Novel purification approaches included reactive distillation and emulsion liquid membrane separation yielding purities sufficient for polylactic acid production.
Collapse
Affiliation(s)
- Anders Thygesen
- Bioconversion Group, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, DK-2800 Kgs. Lyngby, Denmark.
| | - Panagiotis Tsapekos
- Bioconversion Group, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, DK-2800 Kgs. Lyngby, Denmark.
| | - Merlin Alvarado-Morales
- Bioconversion Group, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, DK-2800 Kgs. Lyngby, Denmark.
| | - Irini Angelidaki
- Bioconversion Group, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 228A, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
11
|
Szczygiełda M, Krajewska M, Zheng L, Nghiem LD, Prochaska K. Implementation of forward osmosis to concentrate alpha-ketoglutaric acid from fermentation broth: Performance and fouling analysis. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Membrane Purification Techniques for Recovery of Succinic Acid Obtained from Fermentation Broth during Bioconversion of Lignocellulosic Biomass: Current Advances and Future Perspectives. SUSTAINABILITY 2021. [DOI: 10.3390/su13126794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently, the bioconversion of biomass into biofuels and biocommodities has received significant attention. Although green technologies for biofuel and biocommodity production are advancing, the productivity and yield from these techniques are low. Over the past years, various recovery and purification techniques have been developed and successfully employed to improve these technologies. However, these technologies still require improvement regarding the energy-consumption-related costs, low yield and product purity. In the context of sustainable green production, this review presents a broad review of membrane purification technologies/methods for succinic acid, a biocommodity obtained from lignocellulosic biomass. In addition, a short overview of the global market for sustainable green chemistry and circular economy systems or zero waste approach towards a sustainable waste management is presented. Succinic acid, the available feedstocks for its production and its industrial applications are also highlighted. Downstream separation processes of succinic acid and the current studies on different downstream processing techniques are critically reviewed. Furthermore, critical analysis of membrane-based downstream processes of succinic acid production from fermentation broth is highlighted. A short review of the integrated-membrane-based process is discussed, as well, because integrating “one-pot” lignocellulosic bioconversion to succinic acid with downstream separation processing is considered a critical issue to address. In conclusion, speculations on outlook are suggested.
Collapse
|
13
|
Blandin G, Ferrari F, Lesage G, Le-Clech P, Héran M, Martinez-Lladó X. Forward Osmosis as Concentration Process: Review of Opportunities and Challenges. MEMBRANES 2020; 10:membranes10100284. [PMID: 33066490 PMCID: PMC7602145 DOI: 10.3390/membranes10100284] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/25/2022]
Abstract
In the past few years, osmotic membrane systems, such as forward osmosis (FO), have gained popularity as "soft" concentration processes. FO has unique properties by combining high rejection rate and low fouling propensity and can be operated without significant pressure or temperature gradient, and therefore can be considered as a potential candidate for a broad range of concentration applications where current technologies still suffer from critical limitations. This review extensively compiles and critically assesses recent considerations of FO as a concentration process for applications, including food and beverages, organics value added compounds, water reuse and nutrients recovery, treatment of waste streams and brine management. Specific requirements for the concentration process regarding the evaluation of concentration factor, modules and design and process operation, draw selection and fouling aspects are also described. Encouraging potential is demonstrated to concentrate streams more than 20-fold with high rejection rate of most compounds and preservation of added value products. For applications dealing with highly concentrated or complex streams, FO still features lower propensity to fouling compared to other membranes technologies along with good versatility and robustness. However, further assessments on lab and pilot scales are expected to better define the achievable concentration factor, rejection and effective concentration of valuable compounds and to clearly demonstrate process limitations (such as fouling or clogging) when reaching high concentration rate. Another important consideration is the draw solution selection and its recovery that should be in line with application needs (i.e., food compatible draw for food and beverage applications, high osmotic pressure for brine management, etc.) and be economically competitive.
Collapse
Affiliation(s)
- Gaetan Blandin
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, 08242 Manresa, Spain;
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
- Correspondence:
| | - Federico Ferrari
- Catalan Institute for Water Research (ICRA), 17003 Girona, Spain;
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
| | - Pierre Le-Clech
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia;
| | - Marc Héran
- Institut Européen des Membranes, IEM, Université de Montpellier, CNRS, ENSCM, 34090 Montpellier, France; (G.L.); (M.H.)
| | - Xavier Martinez-Lladó
- Eurecat, Centre Tecnològic de Catalunya, Water, Air and Soil Unit, 08242 Manresa, Spain;
| |
Collapse
|