1
|
Chen Z, Wang L. Process simulation and evaluation of scaled-up biocatalytic systems: Advances, challenges, and future prospects. Biotechnol Adv 2024; 77:108470. [PMID: 39437878 DOI: 10.1016/j.biotechadv.2024.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
With the increased demand for bio-based products and the rapid development of biomanufacturing technologies, biocatalytic reactions including microorganisms and enzyme based, have become promising approaches. Prior to the scale-up of production process, environmental and economic feasibility analysis are essential for the development of a sustainable and intelligent bioeconomy in the context of industry 4.0. To achieve these goals, process simulation supports system optimization, improves energy and resource utilization efficiencies, and supports digital bioprocessing. However, due to the insufficient understanding of cellular metabolism and interaction mechanisms, there is still a lack of rational and transparent simulation tools to efficiently simulate, control, and optimize microbial/enzymatic reaction processes. Therefore, there is an urgent need to develop frameworks that integrate kinetic modeling, process simulation, and sustainability analysis for bioreaction simulations and their optimization. This review summarizes and compares the advantages and disadvantages of different process simulation software and models in simulating biocatalytic processes, identifies the limitations of traditional reaction kinetics models, and proposes the requirement of simulations close to real reactions. In addition, we explore the current state of kinetic modeling at the microscopic scale and how process simulation can be linked to kinetic models of cellular metabolism and computational fluid dynamics modeling. Finally, this review discusses the requirement of sensitivity analysis and how machine learning can assist with optimization of simulations to improve energy efficiency and product yields from techno-economic and life cycle assessment perspectives.
Collapse
Affiliation(s)
- Zhonghao Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lei Wang
- Zhejiang Key Laboratory of Low-Carbon Intelligent Synthetic Biology, Westlake University, Hangzhou, Zhejiang 310030, China; School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
2
|
Thakur V, Baghmare P, Verma A, Verma JS, Geed SR. Recent progress in microbial biosurfactants production strategies: Applications, technological bottlenecks, and future outlook. BIORESOURCE TECHNOLOGY 2024; 408:131211. [PMID: 39102966 DOI: 10.1016/j.biortech.2024.131211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Biosurfactants are surface-active compounds produced by numerous microorganisms. They have gained significant attention due to their wide applications in food, pharmaceuticals, cosmetics, agriculture, and environmental remediation. The production efficiency and yield of microbial biosurfactants have improved significantly through the development and optimization of different process parameters. This review aims to provide an in-depth analysis of recent trends and developments in microbial biosurfactant production strategies, including submerged, solid-state, and co-culture fermentation. Additionally, review discusses biosurfactants' applications, challenges, and future perspectives. It highlights their advantages over chemical surfactants, emphasizing their biodegradability, low toxicity, and diverse chemical structures. However, the critical challenges in commercializing include high production costs and low yield. Strategies like genetic engineering, process optimization, and downstream processing, have been employed to address these challenges. The review provides insights into current commercial producers and highlights future perspectives such as novel bioprocesses, efficient microbial strains, and exploring their applications in emerging industries.
Collapse
Affiliation(s)
- Vishal Thakur
- School of Biotechnology, RGPV Bhopal, Madhya Pradesh, 462033, India; CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Pawan Baghmare
- School of Biotechnology, RGPV Bhopal, Madhya Pradesh, 462033, India; CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Ashish Verma
- Department of Bioengineering, Integral University, Lucknow 226026, India
| | - Jitendra Singh Verma
- CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India.
| | | |
Collapse
|
3
|
Wang Z, Liu C, Shi Y, Huang M, Song Z, Simal-Gandara J, Li N, Shi J. Classification, application, multifarious activities and production improvement of lipopeptides produced by Bacillus. Crit Rev Food Sci Nutr 2024; 64:7451-7464. [PMID: 36876514 DOI: 10.1080/10408398.2023.2185588] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Lipopeptides, a class of compounds consisting of a peptide ring and a fatty acid chain, are secondary metabolites produced by Bacillus spp. As their hydrophilic and oleophilic properties, lipopeptides are widely used in food, medicine, environment and other industrial or agricultural fields. Compared with artificial synthetic surfactants, microbial lipopeptides have the advantages of low toxicity, high efficiency and versatility, resulting in urgent market demand and broad development prospect of lipopeptides. However, due to the complex metabolic network and precursor requirements of synthesis, the specific and strict synthesis pathway, and the coexistence of multiple homologous substances, the production of lipopeptides by microorganisms has the problems of high cost and low production efficiency, limiting the mass production of lipopeptides and large-scale application in industry. This review summarizes the types of Bacillus-produced lipopeptides and their biosynthetic pathways, introduces the versatility of lipopeptides, and describes the methods to improve the production of lipopeptides, including genetic engineering and optimization of fermentation conditions.
Collapse
Affiliation(s)
- Zhimin Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Yingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Mingming Huang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zunyang Song
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
4
|
Mi J, Cheng J, Ng KH, Yan N. Biomass to green surfactants: Microwave-assisted transglycosylation of wheat bran for alkyl glycosides production. BIORESOURCE TECHNOLOGY 2024; 401:130738. [PMID: 38670290 DOI: 10.1016/j.biortech.2024.130738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Depolymerization of carbohydrate biomass using a long-chain alcohol (transglycosylation) to produce alkyl glycoside-based bio-surfactants has been gaining industrial interest. This study introduces microwave-assisted transglycosylation in transforming wheat bran, a substantial agricultural side stream, into these valuable compounds. Compared to traditional heating, microwave-assisted processing significantly enhances the product yield by 53 % while reducing the reaction time by 72 %, achieving a yield of 29 % within 5 h. This enhancement results from the microwave's capacity to activate intermolecular hydrogen and glycosidic bonds, thereby facilitating transglycosylation. Life-cycle assessment and techno-economic analysis demonstrate the benefits of microwave heating in reducing energy consumption by 42 %, CO2 emissions by 56 %, and equipment, operational and production costs by 44 %, 35 % and 30 %, respectively. The study suggests that microwave heating is a promising approach for efficiently producing bio-surfactants from agricultural wastes, with potential cost reductions and environmental benefits that could enhance industrial biomass conversion processes.
Collapse
Affiliation(s)
- Junyu Mi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; Wilmar Innovation Centre, 28 Biopolis Road, Wilmar International Limited, 138568, Singapore
| | - Jiong Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore; School of Environmental Science and Engineering, State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Kian Hong Ng
- Wilmar Innovation Centre, 28 Biopolis Road, Wilmar International Limited, 138568, Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
5
|
Poveda-Giraldo JA, Solarte-Toro JC, Treinen C, Noll P, Henkel M, Hausmann R, Cardona Alzate CA. Assessing the feasibility and sustainability of a surfactin production process: a techno-economic and environmental analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32217-0. [PMID: 38592628 DOI: 10.1007/s11356-024-32217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Biosurfactants have been profiled as a sustainable replacement for chemical-based surfactants since these bio-based molecules have higher biodegradability. Few research papers have focused on assessing biosurfactant production to elucidate potential bottlenecks. This research aims to assess the techno-economic and environmental performance of surfactin production in a potential scale of 65m3, considering different product yields and involving the European energy crisis of 2021-2022. The conceptual design, simulation, techno-economic, and environmental assessments were done by applying process engineering concepts and software tools such as Aspen Plus v.9.0 and SimaPro v.8.3.3. The results demonstrated the high economic potential of surfactin production since the higher values in the market offset the low fermentation yields, low recovery efficiency, and high capital investment. The sensitivity analysis of the economic assessment elucidated a minimum surfactin selling price between 29 and 31 USD/kg of surfactin, while a minimum processing scale for economic feasibility between 4 and 5 kg/h is needed to reach an equilibrium point. The environmental performance must be improved since the carbon footprint was 43 kg CO2eq/kg of surfactin. The downstream processing and energy demand are the main bottlenecks since these aspects contribute to 63 and 25% of the total emissions. The fermentation process and downstream process are key factors for future optimization and research.
Collapse
Affiliation(s)
- Johnny Alejandro Poveda-Giraldo
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Instituto de Biotecnología y Agroindustria, Km 07 Vía Al Magdalena, Manizales, Colombia
| | - Juan Camilo Solarte-Toro
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Instituto de Biotecnología y Agroindustria, Km 07 Vía Al Magdalena, Manizales, Colombia
| | - Chantal Treinen
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Philipp Noll
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Marius Henkel
- Cellular Agriculture, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150k), University of Hohenheim, Fruwirthstr. 12, 70599, Stuttgart, Germany
| | - Carlos Ariel Cardona Alzate
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Instituto de Biotecnología y Agroindustria, Km 07 Vía Al Magdalena, Manizales, Colombia.
| |
Collapse
|
6
|
Santos BLP, Vieira IMM, Ruzene DS, Silva DP. Unlocking the potential of biosurfactants: Production, applications, market challenges, and opportunities for agro-industrial waste valorization. ENVIRONMENTAL RESEARCH 2024; 244:117879. [PMID: 38086503 DOI: 10.1016/j.envres.2023.117879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Biosurfactants are eco-friendly compounds with unique properties and promising potential as sustainable alternatives to chemical surfactants. The current review explores the multifaceted nature of biosurfactant production and applications, highlighting key fermentative parameters and microorganisms able to convert carbon-containing sources into biosurfactants. A spotlight is given on biosurfactants' obstacles in the global market, focusing on production costs and the challenges of large-scale synthesis. Innovative approaches to valorizing agro-industrial waste were discussed, documenting the utilization of lignocellulosic waste, food waste, oily waste, and agro-industrial wastewater in the segment. This strategy strongly contributes to large-scale, cost-effective, and environmentally friendly biosurfactant production, while the recent advances in waste valorization pave the way for a sustainable society.
Collapse
Affiliation(s)
| | | | - Denise Santos Ruzene
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil
| | - Daniel Pereira Silva
- Northeastern Biotechnology Network, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Center for Exact Sciences and Technology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Biotechnology, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil; Graduate Program in Intellectual Property Science, Federal University of Sergipe, 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
7
|
Gadkari S, Narisetty V, Maity SK, Manyar H, Mohanty K, Jeyakumar RB, Pant KK, Kumar V. Techno-Economic Analysis of 2,3-Butanediol Production from Sugarcane Bagasse. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:8337-8349. [PMID: 37292450 PMCID: PMC10245391 DOI: 10.1021/acssuschemeng.3c01221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/05/2023] [Indexed: 06/10/2023]
Abstract
Sugarcane bagasse (SCB) is a significant agricultural residue generated by sugar mills based on sugarcane crop. Valorizing carbohydrate-rich SCB provides an opportunity to improve the profitability of sugar mills with simultaneous production of value-added chemicals, such as 2,3-butanediol (BDO). BDO is a prospective platform chemical with multitude of applications and huge derivative potential. This work presents the techno-economic and profitability analysis for fermentative production of BDO utilizing 96 MT of SCB per day. The study considers plant operation in five scenarios representing the biorefinery annexed to a sugar mill, centralized and decentralized units, and conversion of only xylose or total carbohydrates of SCB. Based on the analysis, the net unit production cost of BDO in the different scenarios ranged from 1.13 to 2.28 US$/kg, while the minimum selling price varied from 1.86 to 3.99 US$/kg. Use of the hemicellulose fraction alone was shown to result in an economically viable plant; however, this was dependent on the condition that the plant would be annexed to a sugar mill which could supply utilities and the feedstock free of cost. A standalone facility where the feedstock and utilities were procured was predicted to be economically feasible with a net present value of about 72 million US$, when both hemicellulose and cellulose fractions of SCB were utilized for BDO production. Sensitivity analysis was also conducted to highlight some key parameters affecting plant economics.
Collapse
Affiliation(s)
- Siddharth Gadkari
- Department
of Chemical and Process Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Vivek Narisetty
- School
of Water, Energy and Environment, Cranfield
University, Guildford MK43 0AL, U.K.
| | - Sunil K. Maity
- Department
of Chemical Engineering, Indian Institute
of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India
| | - Haresh Manyar
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast, Northern Ireland BT9 5AG, U.K.
| | - Kaustubha Mohanty
- Department
of Chemical Engineering, Indian Institute
of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rajesh Banu Jeyakumar
- Department
of Life Sciences, Central University of
Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - Kamal Kishore Pant
- Department
of Chemical Engineering, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - Vinod Kumar
- School
of Water, Energy and Environment, Cranfield
University, Guildford MK43 0AL, U.K.
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
8
|
The Potential of Bacilli-Derived Biosurfactants as an Additive for Biocontrol against Alternaria alternata Plant Pathogenic Fungi. Microorganisms 2023; 11:microorganisms11030707. [PMID: 36985279 PMCID: PMC10056989 DOI: 10.3390/microorganisms11030707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Fungal diseases caused by Alternaria alternata constitute a significant threat to the production and quality of a wide range of crops, including beans, fruits, vegetables, and grains. Traditional methods for controlling these diseases involve synthetic chemical pesticides, which can negatively impact the environment and human health. Biosurfactants are natural, biodegradable secondary metabolites of microorganisms that have also been shown to possibly have antifungal activity against plant pathogenic fungi, including A. alternata being sustainable alternatives to synthetic pesticides. In this study, we investigated the potential of biosurfactants of three bacilli (Bacillus licheniformis DSM13, Bacillus subtilis DSM10, and Geobacillus stearothermophilus DSM2313) as a biocontrol agent against A. alternata on beans as a model organism. For this fermentation, we describe using an in-line biomass sensor monitoring both permittivity and conductivity, which are expected to correlate with cell concentration and products, respectively. After the fermentation of biosurfactants, we first characterised the properties of the biosurfactant, including their product yield, surface tension decrement capability, and emulsification index. Then, we evaluated the antifungal properties of the crude biosurfactant extracts against A. alternata, both in vitro and in vivo, by analysing various plant growth and health parameters. Our results showed that bacterial biosurfactants effectively inhibited the growth and reproduction of A. alternata in vitro and in vivo. B. licheniformis manufactured the highest amount of biosurfactant (1.37 g/L) and demonstrated the fastest growth rate, while G. stearothermophilus produced the least amount (1.28 g/L). The correlation study showed a strong positive relationship between viable cell density VCD and OD600, as well as a similarly good positive relationship between conductivity and pH. The poisoned food approach in vitro demonstrated that all three strains suppressed mycelial development by 70–80% when applied with the highest tested dosage of 30%. Regarding in vivo investigations, B. subtilis post-infection treatment decreased the disease severity to 30%, whereas B. licheniformis and G. stearothermophilus post-infection treatment reduced disease severity by 25% and 5%, respectively. The study also revealed that the plant’s total height, root length, and stem length were unaffected by the treatment or the infection.
Collapse
|
9
|
Czinkóczky R, Sakiyo J, Eszterbauer E, Németh Á. Prediction of surfactin fermentation with Bacillus subtilis DSM10 by response surface methodology optimized artificial neural network. Cell Biochem Funct 2023; 41:234-242. [PMID: 36655349 DOI: 10.1002/cbf.3776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
Biosurfactants produced by Bacillus species are an emerging group of surface-active molecules. They have excellent surface tension reducer and high emulsifier properties. Generally, the biosurfactant fermentation leads to a low product concentration. Therefore, our goal was to investigate Bacillus subtilis DSM10 production and improve the biosurfactant content in the broth by media optimization via response surface methodology. The optimal combinations of the investigated factors were determined as the following: pH = 9, glucose = 20 g/L, and NH4 NO3 = 2 g/L. Under the optimized conditions, the formed surfactin strain reduced surface tension in the broth by 48% (from 72 to 37 mN/m) and the isolated product by 63% (from 72 to 27 mN/m). An artificial neural network was built based on the results of response surface methodology to predict the product quality and the harvesting time of broth. Thus, finally, the model can predict the final cell and product amount, and even their time course, with around 90% reliability.
Collapse
Affiliation(s)
- Réka Czinkóczky
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Jesse Sakiyo
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Edina Eszterbauer
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Áron Németh
- Department of Applied Biotechnology and Food Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
10
|
Mgbechidinma CL, Akan OD, Zhang C, Huang M, Linus N, Zhu H, Wakil SM. Integration of green economy concepts for sustainable biosurfactant production - A review. BIORESOURCE TECHNOLOGY 2022; 364:128021. [PMID: 36167175 DOI: 10.1016/j.biortech.2022.128021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The link between increasing global population, food demand, industrialization, and agricultural waste is strong. Decomposing by-products from food cycles can introduce harmful toxic heavy metals, active degrading microbes, and enzymes to the environment. Additionally, high greenhouse gas emissions from the decomposing wastes contribute to global change and a high carbon economy. The bioeconomy and circular economy of biosurfactant production utilize these cheap feedstocks and promote waste to valuable product initiatives. Waste reduction, reuse, and recycling in an integrating green economy bioprocess ensure the sustainability of novel, cost-effective, safe, and renewable health-grade biosurfactants. This work reviews green economy concepts integration with sustainable biosurfactant production and its application in health-related industries. Benefits from recent advances in the production, characterization, and health-wise classification of biosurfactants were further discussed, including its limitations, techno-economic assessment, market evaluations, possible roadblocks, and future directions.
Collapse
Affiliation(s)
- Chiamaka Linda Mgbechidinma
- Integrated Life Sciences, University of Georgia, Athens, GA 30602, USA; Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Department of Microbiology, University of Ibadan, Ibadan, Oyo State 200243, Nigeria
| | - Otobong Donald Akan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China; Microbiology Department, Akwa-Ibom State University, Akwa-Ibom State, Nigeria
| | - Chunfang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Mengzhen Huang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China
| | - Nsemeke Linus
- Biochemistry Department, University of Uyo, Uyo, Nigeria
| | - He Zhu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Hunan 41004, China; College of Food Science and Engineering, Shandong Agriculture and Engineering University, Shandong, China
| | | |
Collapse
|
11
|
Gudiña EJ, Teixeira JA. Bacillus licheniformis: The unexplored alternative for the anaerobic production of lipopeptide biosurfactants? Biotechnol Adv 2022; 60:108013. [PMID: 35752271 DOI: 10.1016/j.biotechadv.2022.108013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/27/2022] [Accepted: 06/19/2022] [Indexed: 11/02/2022]
Abstract
Microbial biosurfactants have attracted the attention of researchers and companies for the last decades, as they are considered promising candidates to replace chemical surfactants in numerous applications. Although in the last years, considerable advances were performed regarding strain engineering and the use of low-cost substrates in order to reduce their production costs, one of the main bottlenecks is their production at industrial scale. Conventional aerobic biosurfactant production processes result in excessive foaming, due to the use of high agitation and aeration rates necessary to increase dissolved oxygen concentration to allow microbial growth and biosurfactant production. Different approaches have been studied to overcome this problem, although with limited success. A not widely explored alternative is the development of foam-free processes through the anaerobic growth of biosurfactant-producing microorganisms. Surfactin, produced by Bacillus subtilis, is the most widely studied lipopeptide biosurfactant, and the most powerful biosurfactant known so far. Bacillus licheniformis strains produce lichenysin, a lipopeptide biosurfactant which structure is similar to surfactin. However, despite its extraordinary surface-active properties and potential applications, lichenysin has been scarcely studied. According to previous studies, B. licheniformis is better adapted to anaerobic growth than B. subtilis, and could be a good alternative for the anaerobic production of lipopeptide biosurfactants. In this review, the potential and limitations of surfactin and lichenysin production under anaerobic conditions will be analyzed, and the possibility of implementing foam-free processes for lichenysin production, in order to expand the market and applications of biosurfactants in different fields, will be discussed.
Collapse
Affiliation(s)
- Eduardo J Gudiña
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - José A Teixeira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
12
|
Oraby A, Rupp S, Zibek S. Techno-Economic Analysis as a Driver for Optimisation of Cellobiose Lipid Fermentation and Purification. Front Bioeng Biotechnol 2022; 10:913351. [PMID: 35782519 PMCID: PMC9249125 DOI: 10.3389/fbioe.2022.913351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cellobiose lipids (CL) are glycolipids synthesized by Ustilaginaceae species with potential application as detergents or in cosmetics. This study identified process optimisation potential for CL fermentation based on process modelling and techno-economic analysis. Using a stoichiometric equation based on laboratory data, we calculated the maximum possible CL yield YP/S of 0.45 gCL·gglucose−1 at the biomass yield of 0.10 gBiomass·gglucose−1 with an Ustilago maydis strain. Due to substrate inhibition that may occur at high glucose concentrations, a fed-batch process to increase biomass and CL concentrations was considered in our model. Simulation of different process scenarios showed that the choice of aeration units with high oxygen transfer rates and adaptation of power input to oxygen uptake can significantly decrease electricity consumption. We further assessed scenarios with different fermentation media and CL purification methods, suggesting additional process optimisation potential. Here the omission of vitamins from the fermentation medium proved to be a possible mean to enhance process economy, without compromising CL productivity.
Collapse
Affiliation(s)
- Amira Oraby
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
- *Correspondence: Susanne Zibek,
| |
Collapse
|
13
|
Oraby أميرة عرابي A, Weickardt I, Zibek S. Foam Fractionation Methods in Aerobic Fermentation Processes. Biotechnol Bioeng 2022; 119:1697-1711. [PMID: 35394649 DOI: 10.1002/bit.28102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/01/2022] [Accepted: 03/27/2022] [Indexed: 11/07/2022]
Abstract
Inherently occurring foam formation during aerobic fermentations of surface-active compounds can be exploited by fractionating the foam. This also serves as the first downstream processing step for product concentration and is used for in situ product recovery. Compared to other foam prevention methods, it does not interfere with fermentation parameters or alter broth composition. Nevertheless, parameters affecting the foaming behaviour are complex. Therefore, the specific foam fractionation designs need to be engineered for each fermentation individually. This still hinders a widespread industrial application. However, few available commercial approaches demonstrate the applicability of foam columns on an industrial scale. This systematic literature review highlights relevant design aspects and process demands that need to be considered for an application to fermentations and proposes a classification of foam fractionation designs and methods. It further analyses substance-specific characteristics associated with foam fractionation. Finally, solutions for current challenges are presented, and future perspectives are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Amira Oraby أميرة عرابي
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany.,Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Isabell Weickardt
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Susanne Zibek
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany.,Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| |
Collapse
|
14
|
Flow Patterns of Multiple Axial‐Radial Impellers for Potential Use in Aerated Stirred Tanks. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Hu M, Yu J, Zhang H, Xu Q. An efficient method for the recovery and separation of surfactin from fermentation broth by extraction-back extraction. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Vassaux A, Rannou M, Peers S, Daboudet T, Jacques P, Coutte F. Impact of the Purification Process on the Spray-Drying Performances of the Three Families of Lipopeptide Biosurfactant Produced by Bacillus subtilis. Front Bioeng Biotechnol 2022; 9:815337. [PMID: 35004661 PMCID: PMC8727909 DOI: 10.3389/fbioe.2021.815337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 12/30/2022] Open
Abstract
Lipopeptides produced by Bacillus subtilis display many activities (surfactant, antimicrobial, and antitumoral), which make them interesting compounds with a wide range of applications. During the past years, several processes have been developed to enable their production and purification with suitable yield and purity. The already implemented processes mainly end with a critical drying step, which is currently achieved by freeze-drying. In this study, the possibility to replace this freeze-drying step with a spray-drying one, more suited to industrial applications, was analyzed. After evaluating their thermal resistance, we have developed a spray-drying methodology applicable for the three lipopeptides families produced by B. subtilis, i.e., surfactin, mycosubtilin (iturin family), and plipastatin (fengycin family). For each lipopeptide, the spray-drying procedure was applied at three steps of the purification process by ultrafiltration (supernatant, diafiltered solution, and pre-purified fraction). The analysis of the activities of each spray-dried lipopeptide showed that this drying method is not decreasing its antimicrobial and biosurfactant properties. The methodology developed in this study enabled for the first time the spray-drying of surfactin, without adjuvants’ addition and regardless of the purification step considered. In the case of fengycin and mycosubtilin, only diafiltered solution and purified fraction could be successfully spray-dried without the addition of adjuvant. Maltodextrin addition was also investigated as the solution for the direct drying of supernatant. As expected, the performances of the spray-drying step and the purity of the powder obtained are highly related to the purification step at which the product was dried. Interestingly, the impact of mycosubtilin concentration on spray-drying yield was also evidenced.
Collapse
Affiliation(s)
- Antoine Vassaux
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Équipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, Lille, France
| | - Marie Rannou
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Équipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, Lille, France
| | | | - Théo Daboudet
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Équipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, Lille, France
| | - Philippe Jacques
- LIPOFABRIK, Villeneuve d'Ascq, France.,TERRA Teaching and Research Centre, Université de Liège, UMRt BioEcoAgro 1158-INRAE, Équipe Métabolites Secondaires D'origine Microbienne, MiPI, Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - François Coutte
- Université de Lille, UMRt BioEcoAgro 1158-INRAE, Équipe Métabolites Secondaires d'Origine Microbienne, Institut Charles Viollette, Lille, France.,LIPOFABRIK, Villeneuve d'Ascq, France
| |
Collapse
|
17
|
Speight RE, Navone L, Gebbie LK, Blinco JAL, Bryden WL. Platforms to accelerate biomanufacturing of enzyme and probiotic animal feed supplements: discovery considerations and manufacturing implications. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Geraldi A, Famunghui M, Abigail M, Siona Saragih CF, Febitania D, Elmarthenez H, Putri CA, Putri Merdekawati UAS, Sadila AY, Wijaya NH. Screening of antibacterial activities of Bacillus spp. isolated from the Parangkusumo coastal sand dunes, Indonesia. BIO INTEGRATION 2022. [DOI: 10.15212/bioi-2022-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background: The emergence of multidrug-resistant bacteria because of poor understanding of the issue and the misuse of antibiotics has become global health concern. Therefore, the discovery of novel antibacterial drugs is urgently needed. New antibacterial compounds may be found in the Bacillus species, which are abundant in sand dune ecosystems. Herein, we examined samples from the Parangkusumo coastal sand dunes in Indonesia.Methods: Samples were collected from three areas in the sand dunes (the area closest to the sea, the core area of sand dunes, and the area farthest from the sea). The samples were inoculated on Luria Bertani agar. Morphological and molecular identification was performed on the basis of 16S rRNA. The samples’ antimicrobial activity was evaluated with the disc diffusion method and compared with that of opportunistic pathogenic bacteria.Results: Five species of Bacillus were successfully isolated from the Parangkusumo coastal sand dunes. To our knowledge, this is the first report of the isolation of Bacillus aryabhattai in Indonesia. All samples showed antimicrobial activity against pathogenic bacteria. B. velezensis and B. subtilis showed antibacterial activity against Gram-positive bacteria, whereas B. aryabhattai and B. megaterium showed antibacterial activity against Gram-negative bacteria, and B. spizizenii showed antibacterial activity toward Gram-positive and Gram-negative bacteria.Conclusion: Five Bacillus species were successfully isolated from the Parangkusumo coastal sand dunes, Indonesia, and all samples showed antimicrobial activity toward opportunistic pathogenic bacteria. The crude antimicrobial compounds from B. megaterium, B. aryabhattai, B. subtilis, and B. spizizenii showed the highest growth-inhibition activity against E. coli, P. aeruginosa, B. cereus, and S. aureus, respectively.
Collapse
Affiliation(s)
- Almando Geraldi
- University-Center of Excellence-Research Center for Bio-Molecule Engineering, Universitas Airlangga, Surabaya 60115, Indonesia
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Margareth Famunghui
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Mercyana Abigail
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | | | - Devina Febitania
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Henrietta Elmarthenez
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Cinantya Aulia Putri
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | | | - Aliffa Yusti Sadila
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Nabilla Hapsari Wijaya
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
19
|
Mei Y, Yang Z, Kang Z, Yu F, Long X. Enhanced surfactin fermentation via advanced repeated fed-batch fermentation with increased cell density stimulated by EDTA–Fe (II). FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Carolin C F, Kumar PS, Ngueagni PT. A review on new aspects of lipopeptide biosurfactant: Types, production, properties and its application in the bioremediation process. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124827. [PMID: 33352424 DOI: 10.1016/j.jhazmat.2020.124827] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Nowadays, the worldwide search regarding renewable products from natural resources is increasing due to the toxicity of chemical counterparts. Biosurfactants are surface-active compounds that contain several physiological functions that are used in industries like food, pharmaceutical, petroleum and agriculture. Microbial lipopeptides have gained more attention among the researchers for their low toxicity, efficient action and good biodegradability when compared with other surfactants. Because of their versatile properties, lipopeptide compounds are utilized in the remediation of organic and inorganic pollutants. This review presented a depth evaluation of lipopeptide surfactants in the bioremediation process and their properties to maintain a sustainable environment. Lipopeptide can acts as a replacement to chemical surfactants only if they meet industrial-scale production and low-cost substrates. This review also demonstrated the production of a lipopeptide biosurfactant from a low-cost substrate and depicted plausible techniques to manage the substrate residues to determine its ability in the different applications particularly in the bioremediation process.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India.
| | - P Tsopbou Ngueagni
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India; Laboratoire de Chimie Inorganique Appliquée, Faculté des Sciences, Université de Yaoundé I, B.P: 812, Yaoundé, Cameroon
| |
Collapse
|
21
|
Théatre A, Cano-Prieto C, Bartolini M, Laurin Y, Deleu M, Niehren J, Fida T, Gerbinet S, Alanjary M, Medema MH, Léonard A, Lins L, Arabolaza A, Gramajo H, Gross H, Jacques P. The Surfactin-Like Lipopeptides From Bacillus spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range. Front Bioeng Biotechnol 2021; 9:623701. [PMID: 33738277 PMCID: PMC7960918 DOI: 10.3389/fbioe.2021.623701] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
Surfactin is a lipoheptapeptide produced by several Bacillus species and identified for the first time in 1969. At first, the biosynthesis of this remarkable biosurfactant was described in this review. The peptide moiety of the surfactin is synthesized using huge multienzymatic proteins called NonRibosomal Peptide Synthetases. This mechanism is responsible for the peptide biodiversity of the members of the surfactin family. In addition, on the fatty acid side, fifteen different isoforms (from C12 to C17) can be incorporated so increasing the number of the surfactin-like biomolecules. The review also highlights the last development in metabolic modeling and engineering and in synthetic biology to direct surfactin biosynthesis but also to generate novel derivatives. This large set of different biomolecules leads to a broad spectrum of physico-chemical properties and biological activities. The last parts of the review summarized the numerous studies related to the production processes optimization as well as the approaches developed to increase the surfactin productivity of Bacillus cells taking into account the different steps of its biosynthesis from gene transcription to surfactin degradation in the culture medium.
Collapse
Affiliation(s)
- Ariane Théatre
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, Gembloux, Belgium
| | - Carolina Cano-Prieto
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Marco Bartolini
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Yoann Laurin
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.,Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Joachim Niehren
- Inria Lille, and BioComputing Team of CRISTAL Lab (CNRS UMR 9189), Lille, France
| | - Tarik Fida
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Saïcha Gerbinet
- Chemical Engineering, Products, Environment, and Processes, University of Liège, Liège, Belgium
| | - Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Angélique Léonard
- Chemical Engineering, Products, Environment, and Processes, University of Liège, Liège, Belgium
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Ana Arabolaza
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Philippe Jacques
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, Gembloux, Belgium
| |
Collapse
|
22
|
Microbial-derived glycolipids in the sustainable formulation of biomedical and personal care products: A consideration of the process economics towards commercialization. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
23
|
Rocha PM, Dos Santos Mendes AC, de Oliveira Júnior SD, de Araújo Padilha CE, de Sá Leitão ALO, da Costa Nogueira C, de Macedo GR, Dos Santos ES. Kinetic study and characterization of surfactin production by Bacillus subtilis UFPEDA 438 using sugarcane molasses as carbon source. Prep Biochem Biotechnol 2020; 51:300-308. [PMID: 32914662 DOI: 10.1080/10826068.2020.1815055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study evaluated the surfactin production by Bacillus subtilis UFPEDA 438 using sugarcane molasses as a substrate. The effects of the cultivation conditions (temperature, agitation and aeration ratio) on the biosurfactant production and kinetic parameters were investigated. Characteristics of the biosurfactant were obtained after analyses of the emulsification index (EI) and critical micellar concentration (CMC) of the fermentation broth. The results showed that in relation to the product its formation kinetics is strongly affected by operational conditions. It was also observed that surfactin production can be partially dependent or fully independent on microbial growth. The maximum values of surfactin concentration (199.45 ± 0.13 mg/L) and productivity (8,187 mg/L.h) were obtained in the culture under cultivation time of 24 h, temperature of 36 °C, agitation of 100 rpm and aeration ratio of 0.4. Under optimal conditions, the fermentation broth achieved good emulsification capacity (EI >40%) and CMC value of 20.73 mg/L. The results revealed that Bacillus subtilis UFPEDA 438 is a good producer of biosurfactant and that sugarcane molasses is a viable substrate for the production of surfactin.
Collapse
Affiliation(s)
- Patrícia Maria Rocha
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Ana Carmen Dos Santos Mendes
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Sérgio Dantas de Oliveira Júnior
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Carlos Eduardo de Araújo Padilha
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Ana Laura Oliveira de Sá Leitão
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Cleitiane da Costa Nogueira
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Gorete Ribeiro de Macedo
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Everaldo Silvino Dos Santos
- Chemical Engineering Department, Biochemical Engineering Laboratory, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|