1
|
Wei Y, Li F, Zheng Y, Liang Y, Du Y, Yu H. Strengthening core-region hydrogen-bond networks and rigidifying surface loop to enhance thermostability of an (R)-selective transaminase converting chiral hydroxyl amines. J Biotechnol 2025; 402:39-50. [PMID: 40058651 DOI: 10.1016/j.jbiotec.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/16/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Transaminases have important applications in the synthesis of drug intermediates such as chiral amines. However, natural transaminases exhibit suboptimal thermal stability, limiting their further applications. Building upon an Rhodobacter sp.-derived (R)-selective transaminase (RbTA), we report a dual-region coupling engineering approach to improve thermostability of RbTA by strengthening the core hydrogen-bond networks and rigidifying the flexible surface loop. Through single strategy, we identified 4 thermostability improved single mutations, among which I249Q demonstrated the most substantial improvement, achieving a 18-fold increase in half-life (t1/240) and a 11.2 ℃ increase in T5010. Then in strategic coupling, the synergistic effect of dual-region modification was observed in both thermal stability and activity enhancement, as mutant with the best high-temperature catalytic performance, R136P/F228Y, had its T5010 improved by 7.1℃ and exhibited a 4.2-fold increase in kcat/Km towards (R)-3-amino-1-butanol. Finally, R136P/F228Y achieved a 20.5 % improvement in conversion over WT in an analytical-scale synthesis in 72 h at a 5 ℃ elevated catalytic temperature. Molecular dynamics simulations demonstrated that the synergy of the formation of new hydrogen bonds and decrease in flexibility accounted for the thermostability improvements. This study provides guidance for enhancing thermostability of similar fold-type enzymes without impairing enzymatic activity in an efficient manner.
Collapse
Affiliation(s)
- Yuwen Wei
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Fulong Li
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Yukun Zheng
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Youxiang Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Yan Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; State Key Laboratory of Green Biomanufacturing, Beijing, China; Beijing Key Laboratory of Recombinant Protein Synthetic Biomanufacturing, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
2
|
Juretić D. Exploring the Evolution-Coupling Hypothesis: Do Enzymes' Performance Gains Correlate with Increased Dissipation? ENTROPY (BASEL, SWITZERLAND) 2025; 27:365. [PMID: 40282600 PMCID: PMC12025749 DOI: 10.3390/e27040365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/14/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
The research literature presents divergent opinions regarding the role of dissipation in living systems, with views ranging from it being useless to it being essential for driving life. The implications of universal thermodynamic evolution are often overlooked or considered controversial. A higher rate of entropy production indicates faster thermodynamic evolution. We calculated enzyme-associated dissipation under steady-state conditions using minimalistic models of enzyme kinetics when all microscopic rate constants are known. We found that dissipation is roughly proportional to the turnover number, and a log-log power-law relationship exists between dissipation and the catalytic efficiency of enzymes. "Perfect" specialized enzymes exhibit the highest dissipation levels and represent the pinnacle of biological evolution. The examples that we analyzed suggested two key points: (a) more evolved enzymes excel in free-energy dissipation, and (b) the proposed evolutionary trajectory from generalist to specialized enzymes should involve increased dissipation for the latter. Introducing stochastic noise in the kinetics of individual enzymes may lead to optimal performance parameters that exceed the observed values. Our findings indicate that biological evolution has opened new channels for dissipation through specialized enzymes. We also discuss the implications of our results concerning scaling laws and the seamless coupling between thermodynamic and biological evolution in living systems immersed in out-of-equilibrium environments.
Collapse
Affiliation(s)
- Davor Juretić
- Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia
| |
Collapse
|
3
|
Zhang L, Hong Y, Lu J, Wang Y, Luo W. Semi-rational engineering of ω-transaminase for enhanced enzymatic activity to 2-ketobutyrate. Enzyme Microb Technol 2024; 180:110505. [PMID: 39197216 DOI: 10.1016/j.enzmictec.2024.110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
Transaminases (EC 2.6.1.X, TAs) are important biocatalysts in the synthesis of chiral amines, and have significant value in the field of medicine. However, TAs suffer from low enzyme activity and poor catalytic efficiency in the synthesis of chiral amines or non-natural amino acids, which hinders their industrial applications. In this study, a novel TA derived from Paracoccus pantotrophus (ppTA) that was investigated in our previous study was employed with a semi-rational design strategy to improve its enzyme activity to 2-ketobutyrate. By using homology modeling and molecular docking, four surrounding sites in the substrate-binding S pocket were selected as potential mutational sites. Through alanine scanning and saturation mutagenesis, the optimal mutant V153A with significantly improved enzyme activity was finally obtained, which was 578 % higher than that of the wild-type ppTA (WT). Furthermore, the mutant enzyme ppTA-V153A also exhibited slightly improved temperature and pH stability compared to WT. Subsequently, the mutant was used to convert 2-ketobutyrate for the preparation of L-2-aminobutyric acid (L-ABA). The mutant can tolerate 300 mM 2-ketobutyrate with a conversion rate of 74 %, which lays a solid foundation for the preparation of chiral amines.
Collapse
Affiliation(s)
- Lili Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Hong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiapeng Lu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yi Wang
- Department of Biological and Agricultural Engineering, University of California, Davis 1 Shields Ave, Davis, CA 95616, USA
| | - Wei Luo
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA. Efficient and easible biocatalysts: Strategies for enzyme improvement. A review. Int J Biol Macromol 2024; 276:133978. [PMID: 39038570 DOI: 10.1016/j.ijbiomac.2024.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.
Collapse
Affiliation(s)
- Samah Hashim Albayati
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anmar Ghanim Taki
- Department of Radiology Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
5
|
Zhu FY, Huang MY, Zheng K, Zhang XJ, Cai X, Huang LG, Liu ZQ, Zheng YG. Designing a novel (R)-ω-transaminase for asymmetric synthesis of sitagliptin intermediate via motif swapping and semi-rational design. Int J Biol Macromol 2023; 253:127348. [PMID: 37820904 DOI: 10.1016/j.ijbiomac.2023.127348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
The application of (R)-ω-transaminases as biocatalysts for chiral amine synthesis has been hampered by inadequate stereoselectivity and narrow substrate spectrum. Herein, an effective evolution strategy for (R)-ω-transaminase designing for the asymmetric synthesis of sitagliptin intermediate is presented. Since natural transaminases lack activity toward bulky prositagliptin ketone, transaminase scaffolds with catalytic machinery and activity toward the truncated prositagliptin ketone were firstly screened based on substrate walking principle. A transaminase chimera was established synchronously conferring catalytic activity and (R)-selectivity toward prositagliptin ketone through motif swapping, followed by stepwise evolution. The process resulted in a "best" engineered variant MwTAM8, which exhibited 79.2-fold higher activity than the chimeric scaffold MwTAMc. Structural analysis revealed that the heightened activity is mainly due to the enlarged and adaptive substrate pocket and tunnel. The novel (R)-transaminase exhibited unsatisfied industrial operation stability, which is expected to further modify the protein to enhance its tolerance to temperature, pH, and organic solvents to meet sustainable industrial demands. This study underscores a useful evolution strategy of engineering biocatalysts to confer new properties and functions on enzymes for synthesizing high-value drug intermediates.
Collapse
Affiliation(s)
- Fang-Ying Zhu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Meng-Yu Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Ken Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xiao-Jian Zhang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xue Cai
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Liang-Gang Huang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
6
|
Li G, Jia L, Wang K, Sun T, Huang J. Prediction of Thermostability of Enzymes Based on the Amino Acid Index (AAindex) Database and Machine Learning. Molecules 2023; 28:8097. [PMID: 38138586 PMCID: PMC10746113 DOI: 10.3390/molecules28248097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The combination of wet-lab experimental data on multi-site combinatorial mutations and machine learning is an innovative method in protein engineering. In this study, we used an innovative sequence-activity relationship (innov'SAR) methodology based on novel descriptors and digital signal processing (DSP) to construct a predictive model. In this paper, 21 experimental (R)-selective amine transaminases from Aspergillus terreus (AT-ATA) were used as an input to predict higher thermostability mutants than those predicted using the existing data. We successfully improved the coefficient of determination (R2) of the model from 0.66 to 0.92. In addition, root-mean-squared deviation (RMSD), root-mean-squared fluctuation (RMSF), solvent accessible surface area (SASA), hydrogen bonds, and the radius of gyration were estimated based on molecular dynamics simulations, and the differences between the predicted mutants and the wild-type (WT) were analyzed. The successful application of the innov'SAR algorithm in improving the thermostability of AT-ATA may help in directed evolutionary screening and open up new avenues for protein engineering.
Collapse
Affiliation(s)
- Gaolin Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Lili Jia
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China;
| | - Kang Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China;
| |
Collapse
|
7
|
Li X, Chen B, Chen W, Pu Z, Qi X, Yang L, Wu J, Yu H. Customized multiple sequence alignment as an effective strategy to improve performance of Taq DNA polymerase. Appl Microbiol Biotechnol 2023; 107:6507-6525. [PMID: 37658164 DOI: 10.1007/s00253-023-12744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Engineering Taq DNA polymerase (TaqPol) for improved activity, stability and sensitivity was critical for its wide applications. Multiple sequence alignment (MSA) has been widely used in engineering enzymes for improved properties. Here, we first designed TaqPol mutations based on MSA of 2756 sequences from both thermophilic and non-thermophilic organisms. Two double mutations were generated including a variant H676F/R677G showing a decrease in both activity and stability, and a variant Y686R/E687K showing an improved activity, but a decreased stability. Mutations targeted on coevolutionary residues of Arg677 and Tyr686 were then applied to rescue stability or activity loss of the double mutants, which achieved a partial success. Sequence analysis revealed that the two mutations are abundant in non-thermophilic sequences but not in thermophilic homologues. Then, a small-scale MSA containing sequences from only thermophilic organisms was applied to predict 13 single variants and two of them, E507Q and E734N showed a simultaneous increase in both stability and activity, even in sensitivity. A customized MSA was hence more effective in engineering a thermophilic enzyme and could be used in engineering other enzymes. Molecular dynamics simulations revealed the impact of mutations on the protein dynamics and interactions between TaqPol and substrates. KEY POINTS: • The pool of sequence for alignment is critical to engineering Taq DNA polymerase. • The variants with low properties can be rescued by mutations in coevolving network. • Improving binding with DNA can improve DNA polymerase stability and activity.
Collapse
Affiliation(s)
- Xinjia Li
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Binbin Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Wanyi Chen
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Zhongji Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Xin Qi
- Building No.4, Zhongguancun Dongsheng International Science Park, No. 1 North Yongtaizhuang Road, Haidian District, Beijing, 100192, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
8
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Recent advances in simultaneous thermostability-activity improvement of industrial enzymes through structure modification. Int J Biol Macromol 2023; 232:123440. [PMID: 36708895 DOI: 10.1016/j.ijbiomac.2023.123440] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Engineered thermostable microbial enzymes are widely employed to catalyze chemical reactions in numerous industrial sectors. Although high thermostability is a prerequisite of industrial applications, enzyme activity is usually sacrificed during thermostability improvement. Therefore, it is vital to select the common and compatible strategies between thermostability and activity improvement to reduce mutants̕ libraries and screening time. Three functional protein engineering approaches, including directed evolution, rational design, and semi-rational design, are employed to manipulate protein structure on a genetic basis. From a structural standpoint, integrative strategies such as increasing substrate affinity; introducing electrostatic interaction; removing steric hindrance; increasing flexibility of the active site; N- and C-terminal engineering; and increasing intramolecular and intermolecular hydrophobic interactions are well-known to improve simultaneous activity and thermostability. The current review aims to analyze relevant strategies to improve thermostability and activity simultaneously to circumvent the thermostability and activity trade-off of industrial enzymes.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Fan F, Liu C, Cao J, Lyu C, Qiu S, Hu S, Sun T, Mei J, Wang H, Li Y, Zhao W, Mei L, Huang J. Turning thermostability of Aspergillus terreus (R)-selective transaminase At-ATA by synthetic shuffling. J Biotechnol 2023; 364:66-74. [PMID: 36708998 DOI: 10.1016/j.jbiotec.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
As versatile and green biocatalysts for the asymmetric amination of ketones, the insufficient thermostability of transaminases always limits its broad application in the pharmaceutical and fine chemical industries. Here, synthetic shuffling technology was used to enhance stability of (R)-selective transaminase from Aspergillus terreus. The results showed that 30 out of 5000 mutants had improved thermostability by color-based screening method, among which mutants with residual enzyme activity higher than 50% at 45 °C for 10 min were selected for further analysis. Especially, the half-inactivation temperature (T5010), half-life (t1/2), and melting temperature (Tm) of the best mutant M14 (M280C-H210N-M150C-F115L) were 13.7 °C, 165.8 min, and 13.9 °C higher than that of the wild type (WT), respectively. M14 also exhibited a significant biocatalytic efficiency toward acetophenone and 1-acetylnaphthalene, the yield of which were 265.6% and 117.5% higher than WT, respectively. Based on molecular dynamics simulation, improved catalytic efficiency of M14 could be attributed to its increased hydrogen bonds interaction around the mutation sites. Additionally, the introduction of disulfide bond combined with above mutations has a synergistic effect on the improved protein thermostability.
Collapse
Affiliation(s)
- Fangfang Fan
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chunyan Liu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiaren Cao
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Changjiang Lyu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Shuai Qiu
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Sheng Hu
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Jiaqi Mei
- Hangzhou Huadong Medicine Group Co. Ltd, Hangzhou 310011, China
| | - Hongpeng Wang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Ye Li
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Weirui Zhao
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China
| | - Lehe Mei
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China; Jinhua Advanced Research Institute, Jinhua 321019, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jun Huang
- Key Laboratory of Chemical and Biological Processing Technology for Farm Products of Zhejiang Province, Zhejiang Provincial Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| |
Collapse
|
10
|
Engineering Novel ( R)-Selective Transaminase for Efficient Symmetric Synthesis of d-Alanine. Appl Environ Microbiol 2022; 88:e0006222. [PMID: 35465694 DOI: 10.1128/aem.00062-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
d-Alanine belongs to nonessential amino acids that have diverse applications in the fields of food and health care. (R)-transaminase [(R)-TA]-catalyzed asymmetric amination of pyruvate is a feasible alternative for the synthesis of d-alanine, but low catalytic efficiency and thermostability limit enzymatic utilization. In this work, several potential (R)-TAs were discovered using NCBI database mining synchronously with enzymatic structure-function analysis, among which Capronia epimyces TA (CeTA) showed the highest activity for amination of pyruvate using (R)-α-methylbenzylamine as the donor. Furthermore, enzymatic residues surrounding a large catalysis pocket were subjected to saturation and combinatorial mutagenesis, and positive mutant F113T showed dramatic improvement in activity and thermostability. Molecular modeling indicated that the substitution of phenylalanine with threonine afforded alleviation of steric hindrance in the pocket and induced formation of additional hydrogen bonds with neighboring residues. Finally, using recombinant cells containing F113T as a biocatalyst, the conversion yield of amination of 100 mM pyruvate to d-alanine achieved up to 95.2%, which seemed to be the highest level in the literature regarding synthesis of d-alanine using TAs. The inherent characteristics rendered CeTA F113T a promising platform for efficient preparation of d-alanine operating with high productivity. IMPORTANCE d-Alanine is an important compound with many valuable applications. Its asymmetric synthesis employing (R)-ω-TA is considered an attractive choice. According to the stereoselectivity, ω-TAs have either (R)- or (S)-enantiopreference. There has been a variety of literature regarding screening, characterizing, and molecular modification of (S)-ω-TAs; in contrast, the research about (R)-ω-TA has lagged behind. In this work, we identify several (R)-ω-TAs and succeeded in creating mutant F113T, which showed not only better efficiency toward pyruvate but also higher thermostability compared with the original enzyme. The obtained original enzymes and positive mutants displayed important application value for pushing symmetric synthesis of d-alanine to a higher level.
Collapse
|
11
|
Thermostabilizing ketoreductase ChKRED20 by consensus mutagenesis at dimeric interfaces. Enzyme Microb Technol 2022; 158:110052. [DOI: 10.1016/j.enzmictec.2022.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/15/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022]
|
12
|
Pagar AD, Jeon H, Khobragade TP, Sarak S, Giri P, Lim S, Yoo TH, Ko BJ, Yun H. Non-Canonical Amino Acid-Based Engineering of ( R)-Amine Transaminase. Front Chem 2022; 10:839636. [PMID: 35295971 PMCID: PMC8918476 DOI: 10.3389/fchem.2022.839636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Non-canonical amino acids (ncAAs) have been utilized as an invaluable tool for modulating the active site of the enzymes, probing the complex enzyme mechanisms, improving catalytic activity, and designing new to nature enzymes. Here, we report site-specific incorporation of p-benzoyl phenylalanine (pBpA) to engineer (R)-amine transaminase previously created from d-amino acid aminotransferase scaffold. Replacement of the single Phe88 residue at the active site with pBpA exhibits a significant 15-fold and 8-fold enhancement in activity for 1-phenylpropan-1-amine and benzaldehyde, respectively. Reshaping of the enzyme's active site afforded an another variant F86A/F88pBpA, with 30% higher thermostability at 55°C without affecting parent enzyme activity. Moreover, various racemic amines were successfully resolved by transaminase variants into (S)-amines with excellent conversions (∼50%) and enantiomeric excess (>99%) using pyruvate as an amino acceptor. Additionally, kinetic resolution of the 1-phenylpropan-1-amine was performed using benzaldehyde as an amino acceptor, which is cheaper than pyruvate. Our results highlight the utility of ncAAs for designing enzymes with enhanced functionality beyond the limit of 20 canonical amino acids.
Collapse
Affiliation(s)
- Amol D. Pagar
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | | | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Pritam Giri
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Seonga Lim
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women’s University, Seoul, South Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
13
|
Hot spots-making directed evolution easier. Biotechnol Adv 2022; 56:107926. [DOI: 10.1016/j.biotechadv.2022.107926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 01/20/2023]
|
14
|
Giessel A, Dousis A, Ravichandran K, Smith K, Sur S, McFadyen I, Zheng W, Licht S. Therapeutic enzyme engineering using a generative neural network. Sci Rep 2022; 12:1536. [PMID: 35087131 PMCID: PMC8795449 DOI: 10.1038/s41598-022-05195-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/15/2021] [Indexed: 12/31/2022] Open
Abstract
Enhancing the potency of mRNA therapeutics is an important objective for treating rare diseases, since it may enable lower and less-frequent dosing. Enzyme engineering can increase potency of mRNA therapeutics by improving the expression, half-life, and catalytic efficiency of the mRNA-encoded enzymes. However, sequence space is incomprehensibly vast, and methods to map sequence to function (computationally or experimentally) are inaccurate or time-/labor-intensive. Here, we present a novel, broadly applicable engineering method that combines deep latent variable modelling of sequence co-evolution with automated protein library design and construction to rapidly identify metabolic enzyme variants that are both more thermally stable and more catalytically active. We apply this approach to improve the potency of ornithine transcarbamylase (OTC), a urea cycle enzyme for which loss of catalytic activity causes a rare but serious metabolic disease.
Collapse
Affiliation(s)
- Andrew Giessel
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA.
| | - Athanasios Dousis
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA
| | | | - Kevin Smith
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA
| | - Sreyoshi Sur
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA
| | - Iain McFadyen
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA
| | - Wei Zheng
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA
| | - Stuart Licht
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
15
|
Zhou M, Li Y. Modification of PAE-degrading Esterase(CarEW) for Higher Degradation Efficiency Through Integrated Homology Modeling, Molecular Docking, and Molecular Dynamics Simulation. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-1433-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Tan Z, Li X, Shi H, Yin X, Zhu X, Bilal M, Onchari MM. Enhancing the methanol tolerance of Candida antarctica lipase B by saturation mutagenesis for biodiesel preparation. 3 Biotech 2022; 12:22. [PMID: 35036270 PMCID: PMC8695645 DOI: 10.1007/s13205-021-03095-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/13/2021] [Indexed: 01/03/2023] Open
Abstract
Methanol tolerance of lipase is one of the important factors affecting its esterification ability in biodiesel preparation. By B factor indicated prediction of Candida antarctica lipase B (CalB) surface amino acids, eight sites (Val139, Ala146, Leu147, Pro218, Val286, Ala287, Val306, and Gly307) with high B value indicating more flexibility were chosen to perform saturation mutagenesis. High-methanol-tolerant variants, CalB-P218W and -V306N, created larger haloes on emulsified tributyrin solid plate including 15% (v/v) methanol and showed 19% and 31% higher activity over wild-type CalB (CalB-WT), respectively. By modeling, a newly formed hydrogen bond in CalB-V306N and hydrophobic force in CalB-P218W contributing more stability in protein may have resulted in increased methanol tolerance. CalB-P218W and -V306N transesterified the soybean oil into biodiesel at 30 °C by 85% and 89% yield, respectively, over 82% by CalB-WT for 24 h reactions. These results may provide a basis for molecular engineering of CalB and expand its applications in fuel industries. The as-developed semi-rational method could be utilized to enhance the stabilities of many other industrial enzymes.
Collapse
Affiliation(s)
- Zhongbiao Tan
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1E Meicheng Road, Huai’an, 223003 People’s Republic of China
| | - Xiangqian Li
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1E Meicheng Road, Huai’an, 223003 People’s Republic of China
| | - Hao Shi
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1E Meicheng Road, Huai’an, 223003 People’s Republic of China
| | - Xiulian Yin
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1E Meicheng Road, Huai’an, 223003 People’s Republic of China
| | - Xiaoyan Zhu
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1E Meicheng Road, Huai’an, 223003 People’s Republic of China
| | - Muhammad Bilal
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1E Meicheng Road, Huai’an, 223003 People’s Republic of China
| | - Mary Mongina Onchari
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, School of Life Science and Food Engineering, Huaiyin Institute of Technology, 1E Meicheng Road, Huai’an, 223003 People’s Republic of China
| |
Collapse
|