1
|
Faria D, Carvalho APAD, Conte-Junior CA. Fermentation of Biomass and Residues from Brazilian Agriculture for 2G Bioethanol Production. ACS OMEGA 2024; 9:40298-40314. [PMID: 39372026 PMCID: PMC11447871 DOI: 10.1021/acsomega.4c06579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 10/08/2024]
Abstract
Brazil is one of the world's leading producers of staple foods and bioethanol. Lignocellulosic residual sources have been proposed as a promising feedstock for 2G bioethanol and to reduce competition between food and fuels. This work aims to discuss residual biomass from Brazilian agriculture as lignocellulosic feedstock for 2G bioethanol production as bagasse, stalk, stem, and peels, using biorefining concepts to increase ethanol yields. Herein, we focused on biomass chemical characteristics, pretreatment, microorganisms, and optimization of process parameters that define ethanol yields for bench-scale fermentation. Although several techniques, such as carbon capture, linking enzymes to supports, and a consortium of microorganisms, emerge as future alternatives in bioethanol synthesis, these technologies entail necessary optimization efforts before commercial availability. Overcoming these challenges is essential to linking technological innovation to synthesizing environmentally friendly fuels and searching other biomass wastes for 2G bioethanol to increase the biofuel industry's potential. Thus, this work is the first to discuss underutilized lignocellulosic feedstock from other agrifoods beyond sugar cane or corn, such as babassu, tobacco, cassava, orange, cotton, soybean, potatoes, and rice. Residual biomasses combined with optimized pretreatment and mixed fermentation increase hydrolysis efficiency, fermentation, and purification. Therefore, more than a product with a high added value, bioethanol synthesis from Brazilian residual biomass prevents waste production.
Collapse
Affiliation(s)
- Douglas
José Faria
- Department
of Biochemistry, Chemistry Institute, Federal
University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Research
Support Group on Nanomaterials, Polymers, and Interaction with Biosystems
(BioNano), Chemistry Institute, Federal
University of Rio de Janeiro, Rio
de Janeiro, RJ 21941909, Brazil
- Center
for Food Analysis (NAL), Technological Development Support Laboratory
(LADETEC), Federal University of Rio de
Janeiro, Rio de Janeiro, RJ 21941598, Brazil
| | - Anna Paula Azevedo de Carvalho
- Department
of Biochemistry, Chemistry Institute, Federal
University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Research
Support Group on Nanomaterials, Polymers, and Interaction with Biosystems
(BioNano), Chemistry Institute, Federal
University of Rio de Janeiro, Rio
de Janeiro, RJ 21941909, Brazil
- Center
for Food Analysis (NAL), Technological Development Support Laboratory
(LADETEC), Federal University of Rio de
Janeiro, Rio de Janeiro, RJ 21941598, Brazil
- Graduate
Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
| | - Carlos Adam Conte-Junior
- Department
of Biochemistry, Chemistry Institute, Federal
University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
- Research
Support Group on Nanomaterials, Polymers, and Interaction with Biosystems
(BioNano), Chemistry Institute, Federal
University of Rio de Janeiro, Rio
de Janeiro, RJ 21941909, Brazil
- Center
for Food Analysis (NAL), Technological Development Support Laboratory
(LADETEC), Federal University of Rio de
Janeiro, Rio de Janeiro, RJ 21941598, Brazil
- Graduate
Program in Chemistry (PGQu), Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941909, Brazil
| |
Collapse
|
2
|
Soares LB, da Silveira JM, Biazi LE, Longo L, de Oliveira D, Furigo Júnior A, Ienczak JL. An overview on fermentation strategies to overcome lignocellulosic inhibitors in second-generation ethanol production using cell immobilization. Crit Rev Biotechnol 2023; 43:1150-1171. [PMID: 36162829 DOI: 10.1080/07388551.2022.2109452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
The development of technologies to ferment carbohydrates (mainly glucose and xylose) obtained from the hydrolysis of lignocellulosic biomass for the production of second-generation ethanol (2G ethanol) has many economic and environmental advantages. The pretreatment step of this biomass is industrially performed mainly by steam explosion with diluted sulfuric acid and generates hydrolysates that contain inhibitory compounds for the metabolism of microorganisms, harming the next step of ethanol production. The main inhibitors are: organic acids, furan, and phenolics. Several strategies can be applied to decrease the action of these compounds in microorganisms, such as cell immobilization. Based on data published in the literature, this overview will address the relevant aspects of cell immobilization for the production of 2G ethanol, aiming to evaluate this method as a strategy for protecting microorganisms against inhibitors in different modes of operation for fermentation. This is the first overview to date that shows the relation between inhibitors, cells immobilization, and fermentation operation modes for 2G ethanol. In this sense, the state of the art regarding the main inhibitors in 2G ethanol and the most applied techniques for cell immobilization, besides batch, repeated batch and continuous fermentation using immobilized cells, in addition to co-culture immobilization and co-immobilization of enzymes, are presented in this work.
Collapse
Affiliation(s)
- Lauren Bergmann Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luiz Eduardo Biazi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Liana Longo
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Agenor Furigo Júnior
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jaciane Lutz Ienczak
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
3
|
Wang J, Zhang J, Wang S, Liu W, Jing W, Yu H. Isolation and Extraction of Monomers from Insoluble Dietary Fiber. Foods 2023; 12:2473. [PMID: 37444211 DOI: 10.3390/foods12132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Insoluble dietary fiber is a macromolecular polysaccharide aggregate composed of pectin, glycoproteins, lignin, cellulose, and hemicellulose. All agricultural by-products contain significant levels of insoluble dietary fiber. With the recognition of the increasing scarcity of non-renewable energy sources, the conversion of single components of dietary fiber into renewable energy sources and their use has become an ongoing concern. The isolation and extraction of single fractions from insoluble dietary fiber is one of the most important recent research directions. The continuous development of technologies for the separation and extraction of single components is aimed at expanding the use of cellulose, hemicellulose, and lignin for food, industrial, cosmetic, biomedical, and other applications. Here, to expand the use of single components to meet the new needs of future development, separation and extraction methods for single components are summarized, in addition to the prospects of new raw materials in the future.
Collapse
Affiliation(s)
- Junyao Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Soybean Industry Technology System Processing Laboratory, Changchun 130118, China
| | - Jiarui Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Soybean Industry Technology System Processing Laboratory, Changchun 130118, China
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Soybean Industry Technology System Processing Laboratory, Changchun 130118, China
| | - Wenhao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Soybean Industry Technology System Processing Laboratory, Changchun 130118, China
| | - Wendan Jing
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Soybean Industry Technology System Processing Laboratory, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
- National Soybean Industry Technology System Processing Laboratory, Changchun 130118, China
| |
Collapse
|
5
|
Tang H, Zhou Z, Chen Z, Ju X, Li L. Development of a sugar isomerase cascade to convert D-xylose to rare sugars. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Arnthong J, Ponjarat J, Bussadee P, Deenarn P, Prommana P, Phienluphon A, Charoensri S, Champreda V, Zhao XQ, Suwannarangsee S. Enhanced surface display efficiency of β-glucosidase in Saccharomyces cerevisiae by disruption of cell wall protein-encoding genes YGP1 and CWP2. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|