1
|
Wu W, Tang H, Bi S, Xu X, Yang S, Wang Y. Shopping around: Comparing Cd(II) sorption performance of disparate functional groups-modified microcrystalline cellulose composites. Carbohydr Polym 2024; 346:122602. [PMID: 39245489 DOI: 10.1016/j.carbpol.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
The structure-function relationship of functionalized microcrystalline cellulose (MCC) composites as adsorbents remains unclear. Herein, the orange peel-derived MCC (i.e., OP-OH-H-25) was treated by different functional agents to prepare adsorbents for cadmium (Cd(II)) removal. Mercaptoacetic acid and orthophosphoric acid did not apparently impact MCC's surface site types and contents. Alternatively, they efficiently purified OP-OH-H-25 and generated OP-OH-SH and OP-OH-P samples with increased cellulose amounts. In contrast, the glycine modification produced OP-OH-NH2 with fewer sulfhydryl/carboxyl functional groups and more amide/amino sites. The pH-dependent Cd(II) removal trends by the MCC-related materials showed three successive stages with disparate sorption modes. The Cd(II) sorption kinetics processes on OP-OH-SH, OP-OH-P, and OP-OH-NH2 reached equilibrium after 0.25 h, faster than 0.5 h on OP-OH-H-25. The maximum Cd(II) sorption capacities of MCC-related adsorbents were OP-OH-P (151.81 mg/g) > OP-OH-SH (150.80 mg/g) > OP-OH-H-25 (124.90 mg/g) > > OP-OH-NH2 (55.23 mg/g). OP-OH-P exhibited the strongest Cd(II) sorption ability under the interference of mixed aquatic components. The intrinsic Cd(II) sorption mechanisms were identified as inner-sphere complexation and cation-π bond interaction. Overall, the select priority of modifying agents is orthophosphoric acid > mercaptoacetic acid > > glycine when preparing functionalized MCC adsorbents for purifying Cd(II)-polluted water systems.
Collapse
Affiliation(s)
- Wenyu Wu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Haoyue Tang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shiying Bi
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xinghua Xu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shitong Yang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Yongsheng Wang
- State key laboratory of electrical insulation and power equipment, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
2
|
Zhang X, Hua J, Zhu Y, Ding X, Zhang Q, Zhang T, Yang D, Qiu F. Birnessite-Type MnO 2 Modified Sustainable Biomass Fiber toward Adsorption Removal Heavy Metal Ion from Actual River Aquatic Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8738-8750. [PMID: 38602229 DOI: 10.1021/acs.langmuir.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
In this work, a novel birnessite-type MnO2 modified corn husk sustainable biomass fiber (MnO2@CHF) adsorbent was fabricated for efficient cadmium (Cd) removal from aquatic environments. MnO2@CHF was designed from KMnO4 hydrothermally treated with corn husk fibers. Various characterization revealed that MnO2@CHF possessed the hierarchical structure nanosheets, large specific surface area, and multiple oxygen-containing functional groups. Batch adsorption experimental results indicated that the highest Cd (II) removal rate could be obtained at the optimal conditions of adsorbent amount of 0.200 g/L, adsorption time of 600 min, pH 6.00, and temperature of 40.0 °C. Adsorption isotherm and kinetics results showed that Cd (II) adsorption behavior on MnO2@CHF was a monolayer adsorption process and dominated by chemisorption and intraparticle diffusion. The optimum adsorption capacity (Langmuir model) of Cd (II) on MnO2@CHF was 23.0 mg/g, which was higher than those of other reported common biomass adsorbent materials. Further investigation indicated that the adsorption of Cd (II) on MnO2@CHF involved mainly ion exchange, surface complexation, redox reaction, and electrostatic attraction. Moreover, the maximum Cd (II) removal rate on MnO2@CHF from natural river samples (Xicheng Canal) could reach 59.2% during the first cycle test. This study showed that MnO2@CHF was an ideal candidate in Cd (II) practical application treatment, providing references for resource utilization of agricultural wastes for heavy metal removal.
Collapse
Affiliation(s)
- Xiaoying Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiayi Hua
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolin Ding
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Qingyun Zhang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Vonnie JM, Rovina K, ‘Aqilah NMN, Felicia XWL. Development and Characterization of Biosorbent Film from Eggshell/Orange Waste Enriched with Banana Starch. Polymers (Basel) 2023; 15:2414. [PMID: 37299214 PMCID: PMC10255099 DOI: 10.3390/polym15112414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 06/12/2023] Open
Abstract
The conversion of waste into a valuable product is regarded as a promising alternative to relieving the burden of solid waste management and could be beneficial to the environment and humans. This study is focused on utilizing eggshell and orange peel enriched with banana starch to fabricate biofilm via the casting technique. The developed film is further characterized by field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The physical properties of films, including thickness, density, color, porosity, moisture content, water solubility, water absorption, and water vapor permeability, were also characterized. The removal efficiency of the metal ions onto film at different contact times, pH, biosorbent dosages, and initial concentration of Cd(II) were analyzed using atomic absorption spectroscopy (AAS). The film's surface was found to have a porous and rough structure with no cracks, which can enhance the target analytes interactions. EDX and XRD analyses confirmed that eggshell particles were made of calcium carbonate (CaCO3), and the appearance of the main peak at 2θ = 29.65° and 2θ = 29.49° proves the presence of calcite in eggshells. The FTIR indicated that the films contain various functional groups, such as alkane (C-H), hydroxyl (-OH), carbonyl (C=O), carbonate (CO32-), and carboxylic acid (-COOH) that can act as biosorption materials. According to the findings, the developed film exhibits a notable enhancement in its water barrier properties, thereby leading to improved adsorption capacity. The batch experiments showed that the film obtained the maximum removal percentage at pH = 8 and 6 g of biosorbent dose. Notably, the developed film could reach sorption equilibrium within 120 min at the initial concentration of 80 mg/L and remove 99.95% of Cd(II) in the aqueous solutions. This outcome presents potential opportunities for the application of these films in the food industry as both biosorbents and packaging materials. Such utilization can significantly enhance the overall quality of food products.
Collapse
Affiliation(s)
| | - Kobun Rovina
- Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.M.V.); (N.M.N.‘A); (X.W.L.F.)
| | | | | |
Collapse
|
4
|
Cheng H, Huang Y, Zhu Z, Yu M, Xu W, Li Z, Xiao Y. Experimental and theoretical studies on the adsorption characteristics of Si/Al-based adsorbents for lead and cadmium in incineration flue gas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159895. [PMID: 36336052 DOI: 10.1016/j.scitotenv.2022.159895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/17/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Si/Al-based adsorbents are effective adsorbents for capturing heavy metals in incineration flue gases at high temperatures in the furnace. In this work, the adsorption characteristics and adsorption mechanisms of Si/Al-based adsorbents for lead and cadmium vapors were studied using a combination of experimental and density functional theory (DFT) calculations. The trapping performance of a series of Si/Al-based adsorbents for Pb and Cd vapors was investigated using a self-designed gas-solid two-phase rapid adsorption experimental system. The results showed that kaolinite and montmorillonite exhibited better heavy metal adsorption capacity than SiO2 and Al2O3, and were significantly stronger for Pb than for Cd. Chemisorption dominated the capture of Pb/Cd by Si/Al-based adsorbents at high temperatures. The results of DFT calculations indicated that the chemisorption mechanisms dominated the adsorption of Pb and Cd species on the metakaolinite (001) surface, and the adsorption energy of Pb species on the metakaolinite surface was greater than that of Cd species. The exposed O atoms and unsaturated Al atoms of metakaolinite (001) surface were effective adsorption active sites for heavy metals and their chlorides. In the adsorption reaction, the binding of Pb/Cd atoms and surface exposed O sites, as well as the strong interaction between Cl and unsaturated Al atoms, were responsible for the capture of Pb and Cd chlorides by metakaolinite.
Collapse
Affiliation(s)
- Haoqiang Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yaji Huang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China.
| | - Zhicheng Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Mengzhu Yu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Wentao Xu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Zhiyuan Li
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yixuan Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Application of Orange Peel Waste as Adsorbent for Methylene Blue and Cd2+ Simultaneous Remediation. Molecules 2022; 27:molecules27165105. [PMID: 36014346 PMCID: PMC9416566 DOI: 10.3390/molecules27165105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
Pollution by dyes and heavy metals is one of the main concerns at the environmental level due to their toxicity and inefficient elimination by traditional water treatment. Orange peel (OP) without any treatment was applied to effectively eliminate methylene blue (MB) and cadmium ions (Cd2+) in mono- and multicomponent systems. Although the single adsorption processes for MB and Cd2+ have been investigated, the effects and mechanisms of interactions among multicomponent systems are still unclear. Batch experiments showed that in monocomponent systems, the maximum adsorption capacities were 0.7824 mmol g−1 for MB and 0.2884 mmol g−1 for Cd2+, while in multicomponent systems (Cd2+ and MB), both contaminants competed for the adsorption sites on OP. Particularly, a synergic effect was observed since the adsorption capacity of Cd2+ increased compared to the monocomponent system. Results of desorption and adsorbent reuse confirmed that the adsorbent presents good regeneration performance. The low cost of this material and its capacity for the individual or simultaneous removal of Cd2+ and MB in aqueous solutions makes it a potential adsorbent for polluted water treatment processes.
Collapse
|