1
|
Isparta S, Töre-Yargın G, Wagner SC, Mundorf A, Cinar Kul B, Da Graça Pereira G, Güntürkün O, Ocklenburg S, Freund N, Salgirli Demirbas Y. Measuring paw preferences in dogs, cats and rats: Design requirements and innovations in methodology. Laterality 2024; 29:246-282. [PMID: 38669348 DOI: 10.1080/1357650x.2024.2341459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Studying behavioural lateralization in animals holds great potential for answering important questions in laterality research and clinical neuroscience. However, comparative research encounters challenges in reliability and validity, requiring new approaches and innovative designs to overcome. Although validated tests exist for some species, there is yet no standard test to compare lateralized manual behaviours between individuals, populations, and animal species. One of the main reasons is that different fine-motor abilities and postures must be considered for each species. Given that pawedness/handedness is a universal marker for behavioural lateralization across species, this article focuses on three commonly investigated species in laterality research: dogs, cats, and rats. We will present six apparatuses (two for dogs, three for cats, and one for rats) that enable an accurate assessment of paw preference. Design requirements and specifications such as zoometric fit for different body sizes and ages, reliability, robustness of the material, maintenance during and after testing, and animal welfare are extremely important when designing a new apparatus. Given that the study of behavioural lateralization yields crucial insights into animal welfare, laterality research, and clinical neuroscience, we aim to provide a solution to these challenges by presenting design requirements and innovations in methodology across species.
Collapse
Affiliation(s)
- Sevim Isparta
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University Bochum, Bochum, Germany
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Gülşen Töre-Yargın
- Brunel Design School College of Engineering Design & Physical Sciences, Brunel University London, Uxbridge, UK
- METU/BILTIR-UTEST Product Usability Unit, Department of Industrial Design, Middle East Technical University, Ankara, Turkey
| | - Selina C Wagner
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bengi Cinar Kul
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Goncalo Da Graça Pereira
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Almada, Portugal
| | - Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University Bochum, Bochum, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr University Bochum, Bochum, Germany
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University Bochum, Bochum, Germany
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
2
|
Rogers LJ. Knowledge of lateralized brain function can contribute to animal welfare. Front Vet Sci 2023; 10:1242906. [PMID: 37601762 PMCID: PMC10436595 DOI: 10.3389/fvets.2023.1242906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The specialized functions of each hemisphere of the vertebrate brain are summarized together with the current evidence of lateralized behavior in farm and companion animals, as shown by the eye or ear used to attend and respond to stimuli. Forelimb preference is another manifestation of hemispheric lateralization, as shown by differences in behavior between left- and right-handed primates, left- and right-pawed dogs and cats, and left- and right-limb-preferring horses. Left-limb preference reflects right hemisphere use and is associated with negative cognitive bias. Positive cognitive bias is associated with right-limb and left-hemisphere preferences. The strength of lateralization is also associated with behavior. Animals with weak lateralization of the brain are unable to attend to more than one task at a time, and they are more easily stressed than animals with strong lateralization. This difference is also found in domesticated species with strong vs. weak limb preferences. Individuals with left-limb or ambilateral preference have a bias to express functions of the right hemisphere, heightened fear and aggression, and greater susceptibility to stress. Recognition of lateralized behavior can lead to improved welfare by detecting those animals most likely to suffer fear and distress and by indicating housing conditions and handling procedures that cause stress.
Collapse
Affiliation(s)
- Lesley J. Rogers
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| |
Collapse
|
3
|
Salgirli Demirbas Y, Isparta S, Saral B, Keskin Yılmaz N, Adıay D, Matsui H, Töre-Yargın G, Musa SA, Atilgan D, Öztürk H, Kul BC, Şafak CE, Ocklenburg S, Güntürkün O. Acute and chronic stress alter behavioral laterality in dogs. Sci Rep 2023; 13:4092. [PMID: 36906713 PMCID: PMC10008577 DOI: 10.1038/s41598-023-31213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Dogs are one of the key animal species in investigating the biological mechanisms of behavioral laterality. Cerebral asymmetries are assumed to be influenced by stress, but this subject has not yet been studied in dogs. This study aims to investigate the effect of stress on laterality in dogs by using two different motor laterality tests: the Kong™ Test and a Food-Reaching Test (FRT). Motor laterality of chronically stressed (n = 28) and emotionally/physically healthy dogs (n = 32) were determined in two different environments, i.e., a home environment and a stressful open field test (OFT) environment. Physiological parameters including salivary cortisol, respiratory rate, and heart rate were measured for each dog, under both conditions. Cortisol results showed that acute stress induction by OFT was successful. A shift towards ambilaterality was detected in dogs after acute stress. Results also showed a significantly lower absolute laterality index in the chronically stressed dogs. Moreover, the direction of the first paw used in FRT was a good predictor of the general paw preference of an animal. Overall, these results provide evidence that both acute and chronic stress exposure can change behavioral asymmetries in dogs.
Collapse
Affiliation(s)
| | - Sevim Isparta
- Biopsychology, Department of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany.
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
| | - Begum Saral
- Department of Physiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Nevra Keskin Yılmaz
- Department of Internal Medicine, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Deniz Adıay
- Department of Internal Medicine, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Hiroshi Matsui
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Hokkaido, Japan
| | - Gülşen Töre-Yargın
- Department of Industrial Design, Middle East Technical University, Ankara, Turkey
| | - Saad Adam Musa
- Department of Physiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Durmus Atilgan
- Department of Physiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Hakan Öztürk
- Department of Physiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Bengi Cinar Kul
- Department of Genetics, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - C Etkin Şafak
- Department of Physiology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Sebastian Ocklenburg
- Biopsychology, Department of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
| | - Onur Güntürkün
- Biopsychology, Department of Psychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Testing of Behavioural Asymmetries as Markers for Brain Lateralization of Emotional States in Pet Dogs: A Critical Review. Neurosci Biobehav Rev 2022; 143:104950. [DOI: 10.1016/j.neubiorev.2022.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
5
|
Giaddui D, Porreca DS, Tiwari E, Frara NA, Hobson LJ, Barbe MF, Braverman AS, Brown JM, Pontari MA, Ruggieri Sr. MR. Lateralization of bladder function in normal female canines. PLoS One 2022; 17:e0264382. [PMID: 35231045 PMCID: PMC8887770 DOI: 10.1371/journal.pone.0264382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to identify potential lateralization of bladder function. Electrical stimulation of spinal roots or the pelvic nerve’s anterior vesical branch was performed bilaterally in female dogs. The percent difference between the left and right stimulation-induced increased detrusor pressure was determined. Bladders were considered left or right-sided if differences were greater or less than 25% or 10%. Based on differences of 25%, upon stimulation of spinal roots, bladders were left-sided in 17/44 (38.6%), right-sided in 12/44 (27.2%) and bilateral in 15/44 (34.2%). Using ± 10%, 48% had left side dominance (n = 21/44), 39% had right side dominance (n = 17/44), and 14% were bilateral (n = 6/44). With stimulation of the pelvic nerve’s anterior vesical branch in 19 dogs, bladders were left-sided in 8 (42.1%), right-sided in 6 (31.6%) and bilateral in 5 (26.3%) using 25% differences and left side dominance in 8 (43%), right sided in 7 (37%) and bilateral in 4 (21%) using 10% differences. These data suggest lateralization of innervation of the female dog bladder with left- and right-sided lateralization occurring at similar rates. Lateralization often varied at different spinal cord levels within the same animal.
Collapse
Affiliation(s)
- Dania Giaddui
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Danielle S. Porreca
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Ekta Tiwari
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Nagat A. Frara
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Lucas J. Hobson
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Mary F. Barbe
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Alan S. Braverman
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Justin M. Brown
- Department of Neurosurgery, Neurosurgery Paralysis Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Michel A. Pontari
- Department of Urology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Ruggieri Sr.
- Department of Cardiovascular Sciences and Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Shriners Hospitals for Children of Philadelphia, Pennsylvania, Philadelphia, United States of America
| |
Collapse
|
6
|
Siniscalchi M, d’Ingeo S, Quaranta A. Lateralized emotional functioning in domestic animals. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2021.105282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Wells DL. Paw preference as a tool for assessing emotional functioning and welfare in dogs and cats: A review. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2020.105148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Abstract
We know a good deal about brain lateralization in birds and a good deal about animal welfare, but relatively little about whether there is a noteworthy relationship between avian welfare and brain lateralization. In birds, the left hemisphere is specialised to categorise stimuli and to discriminate preferred categories from distracting stimuli (e.g., food from an array of inedible objects), whereas the right hemisphere responds to small differences between stimuli, controls social behaviour, detects predators and controls attack, fear and escape responses. In this paper, we concentrate on visual lateralization and the effect of light exposure of the avian embryo on the development of lateralization, and we consider its role in the welfare of birds after hatching. Findings suggest that light-exposure during incubation has a general positive effect on post-hatching behaviour, likely because it facilitates control of behaviour by the left hemisphere, which can suppress fear and other distress behaviour controlled by the right hemisphere. In this context, particular attention needs to be paid to the influence of corticosterone, a stress hormone, on lateralization. Welfare of animals in captivity, as is well known, has two cornerstones: enrichment and reduction of stress. What is less well-known is the link between the influence of experience on brain lateralization and its consequent positive or negative outcomes on behaviour. We conclude that the welfare of birds may be diminished by failure to expose the developing embryos to light but we also recognise that more research on the association between lateralization and welfare is needed.
Collapse
|