1
|
Iyer SH, Yeh MY, Netzel L, Lindsey MG, Wallace M, Simeone KA, Simeone TA. Dietary and Metabolic Approaches for Treating Autism Spectrum Disorders, Affective Disorders and Cognitive Impairment Comorbid with Epilepsy: A Review of Clinical and Preclinical Evidence. Nutrients 2024; 16:553. [PMID: 38398876 PMCID: PMC10893388 DOI: 10.3390/nu16040553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Epilepsy often occurs with other neurological disorders, such as autism, affective disorders, and cognitive impairment. Research indicates that many neurological disorders share a common pathophysiology of dysfunctional energy metabolism, neuroinflammation, oxidative stress, and gut dysbiosis. The past decade has witnessed a growing interest in the use of metabolic therapies for these disorders with or without the context of epilepsy. Over one hundred years ago, the high-fat, low-carbohydrate ketogenic diet (KD) was formulated as a treatment for epilepsy. For those who cannot tolerate the KD, other diets have been developed to provide similar seizure control, presumably through similar mechanisms. These include, but are not limited to, the medium-chain triglyceride diet, low glycemic index diet, and calorie restriction. In addition, dietary supplementation with ketone bodies, polyunsaturated fatty acids, or triheptanoin may also be beneficial. The proposed mechanisms through which these diets and supplements work to reduce neuronal hyperexcitability involve normalization of aberrant energy metabolism, dampening of inflammation, promotion of endogenous antioxidants, and reduction of gut dysbiosis. This raises the possibility that these dietary and metabolic therapies may not only exert anti-seizure effects, but also reduce comorbid disorders in people with epilepsy. Here, we explore this possibility and review the clinical and preclinical evidence where available.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Timothy A. Simeone
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA; (S.H.I.); (K.A.S.)
| |
Collapse
|
2
|
Carvajal F, Sánchez-Gil A, Cardona D, Rincón-Cervera MA, Lerma-Cabrera JM. The Effect of Very-Long-Chain n-3 Polyunsaturated Fatty Acids in the Central Nervous System and Their Potential Benefits for Treating Alcohol Use Disorder: Reviewing Pre-Clinical and Clinical Data. Nutrients 2023; 15:2993. [PMID: 37447319 DOI: 10.3390/nu15132993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Alcohol use poses a significant global health concern, leading to serious physical and socioeconomic issues worldwide. The current treatment options for problematic alcohol consumption are limited, leading to the exploration of alternative approaches, such as nutraceuticals. One promising target is very-long-chain n-3 polyunsaturated fatty acids (VLC n-3 PUFAs). This review aims to compile the most relevant pre-clinical and clinical evidence on the effect of VLC n-3 PUFAs on alcohol use disorders and related outcomes. The findings suggest that VLC n-3 PUFAs may alleviate the physiological changes induced by alcohol consumption, including neuroinflammation and neurotransmitter dysregulation. Additionally, they can reduce withdrawal symptoms, improve mood, and reduce stress level, all of which are closely associated with problematic alcohol consumption. However, more research is required to fully understand the precise mechanisms by which VLC n-3 PUFAs exert their function. Furthermore, PUFAs should not be considered a standalone solution, but as a complement to other therapeutic approaches. Although preliminary evidence supports the potential therapeutic effect of VLC n-3 PUFAs on problematic alcohol consumption, additional research is needed to validate these findings and determine the optimal use of PUFAs as part of a comprehensive approach to the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Francisca Carvajal
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| | - Ainhoa Sánchez-Gil
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| | - Diana Cardona
- Health Research Center, University of Almeria, 04120 Almeria, Spain
- Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
| | - Miguel Angel Rincón-Cervera
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain
- Institute of Nutrition and Food Technology, University of Chile, Santiago 830490, Chile
| | - Jose Manuel Lerma-Cabrera
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
3
|
Chang CH, Wu HC, Hsieh YR, Lai WD, Tung TH, Huang JJ, Kao WY, Huang SY. Modulatory effect of n-3 polyunsaturated fatty acids on depressive-like behaviors in rats with chronic sleep deprivation: potential involvement of melatonin receptor pathway and brain lipidome. Food Funct 2023. [PMID: 37334912 DOI: 10.1039/d3fo01452e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Clinical evidence suggests that a bidirectional relationship is present between sleep loss and psychiatric disorders. Both melatonin receptor agonist ramelteon (RMT) and n-3 polyunsaturated fatty acids (n-3 PUFAs) exhibit antidepressant effects, while their underlying molecular mechanisms might be different. Thus, the present study aims to investigate the add-on effects and possible mechanisms of how RMT and different n-3 PUFAs modulate the melatonin receptor pathway as well as brain lipidome to ameliorate the neuropsychiatric behaviors displayed in rats under chronic sleep deprivation. Thirty-one 6-week-old male Wistar rats were divided into five groups: control (C), sleep deprivation (S), sleep deprivation treated with RMT (SR), sleep deprivation treated with RMT and eicosapentaenoic acid (C20:5n-3, EPA) (SRE), and sleep deprivation treated with RMT and docosahexaenoic acid (C22:6n-3, DHA) (SRD) groups. The results reveal that RMT plus EPA alleviated depressive-like behavior when the rats were subjected to the forced swimming test, whereas RMT plus DHA alleviated anxiety-like behavior when the rats were subjected to the elevated plus maze test. The results of a western blot analysis further revealed that compared with the rats in the S group, those in the SRE and SRD groups exhibited a significantly increased expression of MT2 in the prefrontal cortex, with greater benefits observed in the SRE group. In addition, decreased BDNF and TrkB expression levels were upregulated only in the SRE group. Lipidomic analysis further revealed possible involvement of aberrant lipid metabolism and neuropsychiatric behaviors. RMT plus EPA demonstrated promise as having the effects of reversing the levels of the potential biomarkers of depressive-like behaviors. RMT plus EPA or DHA could ameliorate depressive- and anxiety-like behaviors in sleep-deprived rats through the alteration of the lipidome and MT2 receptor pathway in the brain, whereas EPA and DHA exerted a differential effect.
Collapse
Affiliation(s)
- Chia-Hsuan Chang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
- Diet and Nutrition Department, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Hua-Chien Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yin-Ru Hsieh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
| | - Wen-De Lai
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
| | - Jun-Jie Huang
- Diet and Nutrition Department, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Wei-Yu Kao
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
CHENG Q, ZHANG Y, LIN Q, TIAN Y, BAO Y. Study on the antioxidant activity of β-sitosterol and stigmasterol from Sacha Inchi oil and Prinsepia oil added to walnut oil. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.69522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qin CHENG
- Yunnan Agricultural University, China
| | | | - Qi LIN
- Yunnan Agricultural University, China
| | - Yang TIAN
- Yunnan Agricultural University, China
| | | |
Collapse
|