1
|
ZhaYang XZ, Chen YX, Hua WD, Bai ZL, Jin YP, Zhao XW, Liu QF, Meng ZD. Integrating bioinformatics and machine learning to identify biomarkers of branched chain amino acid related genes in osteoarthritis. BMC Musculoskelet Disord 2025; 26:517. [PMID: 40420260 PMCID: PMC12105201 DOI: 10.1186/s12891-025-08779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/20/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAA) metabolism is significantly associated with osteoarthritis (OA), but the specific mechanism of BCAA related genes (BCAA-RGs) in OA is still unclear. Therefore, this research intended to identify potential biomarkers and mechanisms of action of BCAA-RGs in OA tissues. METHODS Differential genes were obtained from the Gene Expression Omnibus (GEO) database and intersections were taken with BCAA-RGs to identify candidate genes. The underlying mechanisms were revealed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, by combining three machine learning algorithms to identify genes with highly correlated OA features. In addition, created diagnostic maps and subject Receiver operating characteristic curves (ROCs) to assess the ability of the signature genes to diagnose OA and to predict their possible roles in molecular regulatory network axes and molecular signaling pathways. RESULTS Eight candidate genes were acquired by intersecting 4,178 DEGs and 14 BCAA-RGs. Subsequently, five candidate biomarkers were obtained, namely SLC3A2, SLC7A5, SLC43A2, SLC43A1, and SLC7A7. Importantly, SLC3A2 and SLC7A5 were validated by validation set and qRT-PCR. Furthermore, the nomogram constructed by SLC3A2 and SLC7A5 exhibited excellent accuracy in predicting the incidence of OA. The enrichment results demonstrated that SLC3A2 and SLC7A5 were significantly enriched in ribosome, insulin signaling pathway, olfactory transduction, etc. Meanwhile, we also found XIST regulated SLC7A5 through hsa-miR-30e-5p, and regulated SLC3A2 through hsa-miR-7-5p.OIP5-AS1 regulated SLC7A5 and SLC3A2 through hsa-miR-7-5p. By the way, 150 drugs were identified, including Acetaminophen and Acrylamide, which exhibited simultaneous targeting of these two biomarkers. CONCLUSION Based on bioinformatics, SLC3A2 and SLC7A5 were identified as biomarkers related to BCAA in OA, which may provide a new reference for the treatment and diagnosis of OA patients.
Collapse
Affiliation(s)
- Xiao-Zhi ZhaYang
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yan-Xiong Chen
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wen-Da Hua
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zheng-Lin Bai
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yun-Peng Jin
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xing-Wen Zhao
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Quan-Fu Liu
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zeng-Dong Meng
- Faculty of Medical Science, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Department of Orthopedic Surgery, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Digital Orthopedics, Kunming, Yunnan, China.
- Department of Orthopedic Surgery in The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, No.157, Jinbi Road, Xishan District, Kunming, Yunnan, 650032, China.
| |
Collapse
|
2
|
Liu X, Yang G, Xie W, Lu W, Liu G, Xiao W, Li Y. Efficacy of telerehabilitation for total knee arthroplasty: a meta-analysis based on randomized controlled trials combined with a bibliometric study. J Orthop Surg Res 2024; 19:874. [PMID: 39726029 DOI: 10.1186/s13018-024-05381-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Physical therapy (PT) is widely employed in osteoarthritis (OA). This study aimed to explore the research development of PT for OA and to identify the emerging treatment, and verify its efficacy. MATERIALS AND METHODS The Web of Science Core Collection was used to conduct the bibliometric analysis. Furthermore, a meta-analysis based on randomized controlled trials (RCTs) was performed to evaluate the identified treatment's efficacy. RESULTS A total of 3,142 articles were retrieved from the Web of Science Core Collection, and the annual publication volume shows an exponential growth trend (R2 = 0.9515). Keyword analysis demonstrated that telerehabilitation (TELE) in total knee arthroplasty (TKA) has become a hotspot since 2020. To assess the effectiveness of TELE, we conducted a meta-analysis of 25 RCTs including 4402 patients. In the total analysis, the TELE group exhibited superior outcomes compared to the traditional face-to-face (FTF) rehabilitation group in terms of pain (standardized mean differences [SMD]: - 0.15, 95% CI - 0.27 to - 0.04, P = 0.01), passive flexion (MD: 2.60, 95% CI 0.77 to 4.44, P = 0.005), quadriceps muscle strength (SMD: 0.32, 95% CI 0.04 to 0.61, P = 0.03), and cost (SMD: - 0.50, 95% CI - 0.88 to - 0.12, P = 0.009). The subgroup analysis also demonstrated that the fixed equipment-assisted telerehabilitation (FEAT) group and the mobile device-assisted telerehabilitation (MDAT) group were superior to the FTF group. Moreover, patients in the FEAT group exhibited better prognoses than those in the MDAT group. No significant differences in the other measured outcome were observed. CONCLUSION Telerehabilitation proved to be more effective than traditional FTF rehabilitation in patients who underwent TKA. Further research is warranted to compare the different TELE interventions to establish the best protocols and timing for interventions.
Collapse
Affiliation(s)
- Xu Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenhao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Gaoming Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
3
|
Xu C, Wang S, Chen X, Zhang T, Ni Z, Ji G, Wang F. Causal associations between circulating immune cells and osteoarthritis: A bidirectional mendelian randomization study. Int Immunopharmacol 2024; 142:113156. [PMID: 39278062 DOI: 10.1016/j.intimp.2024.113156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
PURPOSE Osteoarthritis (OA) is a common degenerative joint disease, with its etiology remaining poorly understood. Our study aims to explore the causal associations between immune cells and OA, with the goal of generating a new perspective for targeted intervention strategies. METHODS A bidirectional two-sample Mendelian randomization (MR) analysis was performed to estimate the causality between multiple circulating immune cells and different sites of OA. The immune cell traits analyzed included the counts of circulating white blood cells (WBC), lymphocytes, monocytes, neutrophils, eosinophils, and basophils, as well as certain subsets of T and B lymphocytes. The OA types included were OA at any site, knee OA, hip OA, spine OA, thumb OA, and hand OA. Inverse-variance weighted (IVW), MR-Egger, weight median and weight mode were used to evaluate causal effects, with IVW being the main analysis method. Sensitivity analyses were conducted to assess heterogeneity and pleiotropy. RESULTS Our findings indicated that resting regulatory T cell (Treg) absolute counts (AC) were causally associated with an increased risk for spine OA [odds ratio (OR), 1.051; 95 % confidence interval (CI), 1.018-1.086; P=0.0005, PFDR=0.0350], and spine OA showed a positive causal relationship with the neutrophils count (OR, 1.104; 95 %CI, 1.032-1.181; P=0.0039, PFDR=0.0233). Besides, OA at any site was correlated with a rise in circulating eosinophils count (OR, 1.05; 95 %CI, 1.021-1.079; P=0.0007, PFDR=0.0041), while knee OA was associated with decreased total WBC (OR, 0.945; 95 %CI, 0.912-0.979; P=0.0016, PFDR=0.0048) and monocytes counts (OR, 0.958; 95 %CI, 0.934-0.982; P=0.0007, PFDR = 0.0041). No evidence of heterogeneity or horizontal pleiotropy was detected. CONCLUSIONS Our study has demonstrated the causal associations between multiple immune cells and diverse joint OA. These results highlight the intricate interplay between immune cells and OA, suggesting potential targets for therapeutic interventions to manage disease progression and alleviate symptoms.
Collapse
Affiliation(s)
- Chenyue Xu
- Department of Joint Surgery, Hebei Medical University Third Hospital, Shijiazhuang 050051, Hebei, China.
| | - Shengjie Wang
- Department of Joint Surgery, Harrison International Peace Hospital, Hengshui 053000, Hebei, China.
| | - Xiaobo Chen
- Department of Joint Surgery, Hebei Medical University Third Hospital, Shijiazhuang 050051, Hebei, China.
| | - Tianhang Zhang
- Hebei Medical University, Shijiazhuang 050051, Hebei, China.
| | - Zhengyi Ni
- Department of Joint Surgery, Hebei Medical University Third Hospital, Shijiazhuang 050051, Hebei, China.
| | - Gang Ji
- Department of Joint Surgery, Hebei Medical University Third Hospital, Shijiazhuang 050051, Hebei, China.
| | - Fei Wang
- Department of Joint Surgery, Hebei Medical University Third Hospital, Shijiazhuang 050051, Hebei, China.
| |
Collapse
|
4
|
Chu B, Chen D, Ma S, Yang Y, Shang F, Lv W, Li Y. Novel poly(lactic-co-glycolic acid) nanoliposome-encapsulated diclofenac sodium and celecoxib enable long-lasting synergistic treatment of osteoarthritis. J Biomater Appl 2024; 39:221-234. [PMID: 38820587 DOI: 10.1177/08853282241258311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
BACKGROUND Diclofenac sodium (DS) and celecoxib (CEL) are primary anti-inflammatory agents used in the treatment of osteoarthritis (OA). Formulating these drugs into extended-release versions can effectively address the issue of multiple daily doses. In this study, we designed and synthesized a novel poly(lactic-co-glycolic acid) (PLGA) nanoliposome as a dual-drug delivery sustained-release formulation (PPLs-DS-CEL) to achieve long-lasting synergistic treatment of OA with both DS and CEL. METHODS PPLs-DS-CEL was synthesized by the reverse evaporation method and evaluated for its physicochemical properties, encapsulation efficiency, drug release kinetics and biological properties. A rat OA model was established to assess the therapeutic efficacy and biosafety of PPLs-DS-CEL. RESULTS The particle size of PPLs-DS-CEL was 218.36 ± 6.27 nm, with a potential of 32.56 ± 3.28 mv, indicating a homogeneous vesicle size. The encapsulation of DS and CEL by PPLs-DS-CEL was 95.18 ± 4.43% and 93.63 ± 5.11%, with drug loading of 9.56 ± 0.32% and 9.68 ± 0.34%, respectively. PPLs-DS-CEL exhibited low cytotoxicity and hemolysis, and was able to achieve long-lasting synergistic analgesic and anti-inflammatory therapeutic effects in OA through slow release of DS and CEL, demonstrating good biosafety properties. CONCLUSION This study developed a novel sustained-release nanoliposomes formulation capable of co-loading two drugs for the long-acting synergistic treatment of OA. It offers a new and effective therapeutic strategy for OA treatment in the clinic settings and presents a promising approach for drug delivery systems.
Collapse
Affiliation(s)
- Bo Chu
- Orthopaedics, Wuxi Xishan People's Hospital, Wuxi, China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Senlin Ma
- Department of Emergency Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong Yang
- Orthopaedics, Wuxi Xishan People's Hospital, Wuxi, China
| | - Fusheng Shang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Wei Lv
- Orthopaedics, Wuxi Xishan People's Hospital, Wuxi, China
| | - Yinghua Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
5
|
Han J, Luo J, Wang C, Kapilevich L, Zhang XA. Roles and mechanisms of copper homeostasis and cuproptosis in osteoarticular diseases. Biomed Pharmacother 2024; 174:116570. [PMID: 38599063 DOI: 10.1016/j.biopha.2024.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Copper is an essential trace element in the human body that is extensively distributed throughout various tissues. The appropriate level of copper is crucial to maintaining the life activities of the human body, and the excess and deficiency of copper can lead to various diseases. The copper levels in the human body are regulated by copper homeostasis, which maintains appropriate levels of copper in tissues and cells by controlling its absorption, transport, and storage. Cuproptosis is a distinct form of cell death induced by the excessive accumulation of intracellular copper. Copper homeostasis and cuproptosis has recently elicited increased attention in the realm of human health. Cuproptosis has emerged as a promising avenue for cancer therapy. Studies concerning osteoarticular diseases have elucidated the intricate interplay among copper homeostasis, cuproptosis, and the onset of osteoarticular diseases. Copper dysregulation and cuproptosis cause abnormal bone and cartilage metabolism, affecting related cells. This phenomenon assumes a critical role in the pathophysiological processes underpinning various osteoarticular diseases, with implications for inflammatory and immune responses. While early Cu-modulating agents have shown promise in clinical settings, additional research and advancements are warranted to enhance their efficacy. In this review, we summarize the effects and potential mechanisms of copper homeostasis and cuproptosis on bone and cartilage, as well as their regulatory roles in the pathological mechanism of osteoarticular diseases (e.g., osteosarcoma (OS), osteoarthritis (OA), and rheumatoid arthritis (RA)). We also discuss the clinical-application prospects of copper-targeting strategy, which may provide new ideas for the diagnosis and treatment of osteoarticular diseases.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Jiayi Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Cuijing Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk State University, Tomsk 634050, Russia
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China.
| |
Collapse
|
6
|
Chen Y, Cheng RJ, Wu Y, Huang D, Li Y, Liu Y. Advances in Stem Cell-Based Therapies in the Treatment of Osteoarthritis. Int J Mol Sci 2023; 25:394. [PMID: 38203565 PMCID: PMC10779279 DOI: 10.3390/ijms25010394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is a chronic, degenerative joint disease presenting a significant global health threat. While current therapeutic approaches primarily target symptom relief, their efficacy in repairing joint damage remains limited. Recent research has highlighted mesenchymal stem cells (MSCs) as potential contributors to cartilage repair, anti-inflammatory modulation, and immune regulation in OA patients. Notably, MSCs from different sources and their derivatives exhibit variations in their effectiveness in treating OA. Moreover, pretreatment and gene editing techniques of MSCs can enhance their therapeutic outcomes in OA. Additionally, the combination of novel biomaterials with MSCs has shown promise in facilitating the repair of damaged cartilage. This review summarizes recent studies on the role of MSCs in the treatment of OA, delving into their advantages and exploring potential directions for development, with the aim of providing fresh insights for future research in this critical field.
Collapse
Affiliation(s)
- Ye Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Rui-Juan Cheng
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Yinlan Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Deying Huang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (R.-J.C.); (Y.W.); (D.H.)
- Rare Diseases Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu 610041, China
| |
Collapse
|