1
|
Ng KY, Muhammad N, Mohd Noor SNF, Rahim SZA, Saleh MS, Muhammad NA, Ahmad AH, Muduli K. Effects of fused deposition modeling (FDM) printing parameters on quality aspects of polycaprolactone (PCL) for coronary stent applications: A review. J Biomater Appl 2025:8853282251334880. [PMID: 40241433 DOI: 10.1177/08853282251334880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Fused deposition modeling (FDM) is emerging as a promising technique for manufacturing bioresorbable stents (BRS), particularly for coronary artery disease treatment. Polycaprolactone (PCL) has emerged as a favored material due to its biocompatibility, controlled degradation rate and mechanical properties. This review provides a comprehensive analysis of the effects of key FDM printing parameters on the quality aspects of PCL-based BRS, focusing on morphological, mechanical and biological characteristics. This review also highlights inconsistencies in previous studies, particularly in the impact of these parameters on stent dimensions and mechanical properties, emphasizing the need for standardization in experimental methodologies. Additionally, the current gaps in research related to the mechanical and biological performances of PCL-based BRS are discussed, with a call for further studies on long-term effects. This review aims to guide future research by offering insights into optimizing FDM parameters for improving the overall performance and clinical outcomes of PCL-based BRS.
Collapse
Affiliation(s)
- Kuang Yee Ng
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia
| | - Noorhafiza Muhammad
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia
- Geopolymer and Green Technology, Centre of Excellence Geopolymer and Green Technology, Universiti Malaysia Perlis, Arau, Malaysia
| | - Siti Noor Fazliah Mohd Noor
- Dental Stimulation and Virtual Learning, Research Excellence Consortium, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Shayfull Zamree Abd Rahim
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia
- Geopolymer and Green Technology, Centre of Excellence Geopolymer and Green Technology, Universiti Malaysia Perlis, Arau, Malaysia
| | - Mohd Shuhidan Saleh
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis, Arau, Malaysia
| | - Nur Amalina Muhammad
- School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Malaysia
| | - Asnul Hadi Ahmad
- Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Malaysia
| | - Kamalakanta Muduli
- Mechanical Engineering Department, Papua New Guinea University of Technology, Lae, Papua New Guinea
| |
Collapse
|
2
|
Huang Y, Zhai L. Structural optimization, compressive strength analysis, and application exploration of triply periodic minimal surfaces (TPMS) in interior design. Sci Rep 2025; 15:11026. [PMID: 40164673 PMCID: PMC11958741 DOI: 10.1038/s41598-025-95778-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
In modern interior design, the selection of materials and structural optimization are critical to achieving both functionality and aesthetic appeal. Triply periodic minimal surfaces (TPMS), with their outstanding mechanical properties and lightweight characteristics, have increasingly attracted the attention of designers. In this study, Gyroid (G) TPMS structures were fabricated using LCD-based photopolymerization technology, and ten models with periodic parameter T ranging from [1/5, 2] were designed. Finite element simulations and experimental validations were employed to thoroughly analyze the structural optimization and compressive strength of G surfaces, particularly when T = 1/3. The results revealed that at T = 1/3, G surfaces exhibited minimal stress concentration, a moderate number of meshes, and optimal values for compression crush rate and porosity error. Furthermore, with T = 1/3 and a porosity of 50%, additional parameters such as surface offset, cell thickness, offset thickness, and gradient distribution were adjusted to design four distinct G surface structures. Compression tests were conducted to investigate the effects of different loading directions on mechanical properties, deformation behavior, and energy absorption. It was found that under vertical loading, the surface-offset G surface exhibited the highest energy absorption and efficiency, while under parallel loading, the cell-thickness G surface demonstrated the most stable deformation. The application of these structures in interior design is thoroughly discussed, emphasizing how TPMS can serve as effective structural systems and innovative spatial elements. This study provides a solid theoretical foundation and extensive experimental evidence for the application of TPMS structures in interior design.
Collapse
Affiliation(s)
- Yu Huang
- School of Environmental Art Design, Shaanxi Vocational & Technical College, Xi'an, 710100, China.
| | - LeiLei Zhai
- Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
3
|
Coburn B, Salary RR. Computational Fluid Dynamics Modeling of Material Transport Through Triply Periodic Minimal Surface Scaffolds for Bone Tissue Engineering. J Biomech Eng 2025; 147:031007. [PMID: 39790065 DOI: 10.1115/1.4067575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025]
Abstract
Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures and diseases, caused by factors such as trauma, tumors, congenital anomalies, and aging. In such methods, the rate of scaffold biodegradation, transport of nutrients and growth factors, as well as removal of cell metabolic wastes at the site of injury are critical fluid-dynamics factors, affecting cell proliferation and ultimately tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms and factors associated with cell-seeded, scaffold-based bone tissue engineering. The overarching goal of this study is to contribute to patient-specific, clinical treatment of bone pathology. The overall objective of the work is to establish computational fluid dynamics (CFD) models: (i) to identify the consequential mechanisms behind internal and external material transport through/over porous bone scaffolds designed based on the principles of triply periodic minimal surfaces (TPMS) and (ii) to identify TPMS designs with optimal geometry and flow characteristics for the treatment of bone fractures in clinical practice. In this study, advanced CFD models were established based on ten TPMS scaffold designs for (i) single-unit internal flow analysis, (ii) single-unit external flow analysis, and (iii) cubic, full-scaffold external flow analysis, where the geometry of each design was parametrically created. The influence of several design parameters, such as surface representation iteration, wall thickness, and pore size on geometry accuracy as well as computation time, was investigated in order to obtain computationally efficient and accurate CFD models. The fluid properties (such as density and dynamic viscosity) as well as the boundary conditions (such as no-slip condition, inlet flow velocity, and pressure outlet) of the CFD models were set based on clinical/research values reported in the literature, according to the fundamentals of internal and external Newtonian flow modeling. The main fluid characteristics influential in bone regeneration, including flow velocity, flow pressure, and wall shear stress (WSS), were analyzed to observe material transport internally through and externally over the TPMS scaffold designs. Regarding the single-unit internal flow analysis, it was observed that P.W. Hybrid and Neovius designs had the highest level of not only flow pressure but also WSS. This can be attributed to their relatively flat surfaces when compared to the rest of the TPMS designs. Schwarz primitive (P) appeared to have the lowest level of flow pressure and WSS (desirable for development of bone tissues) due to its relatively open channels allowing for more effortless fluid transport. An analysis of streamline velocity exhibited an increase in velocity togther with a depiction of potential turbulent motion along the curved sections of the TPMS designs. Regarding the single-unit external flow analysis, it was observed that Neovius and Diamond yielded the highest level of flow pressure and WSS, respectively, while Schwarz primitive (P) similarly had a relatively low level of flow pressure and WSS suitable for bone regeneration. Besides, pressure buildup was observed within the inner channels of almost all the TPMS designs due to flow resistance and the intrinsic interaction between the fluid flow and the scaffold walls. Regarding the cubic (full-scaffold) external flow analysis, the Diamond and Schwarz gyroid (G) designs appeared to have a relatively high level of both flow pressure and WSS, while Schwarz primitive (P) similarly yielded a low level of flow pressure and WSS. Overall, the outcomes of this study pave the way for optimal design and fabrication of complex, bone-like tissues with desired material transport properties for cell-laden, scaffold-based treatment of bone fractures.
Collapse
Affiliation(s)
- Brandon Coburn
- Department of Mechanical and Industrial Engineering, Marshall University, Huntington, WV 25755
- Marshall University
| | - Roozbeh Ross Salary
- Department of Mechanical and Industrial Engineering, Marshall University, Huntington, WV 25755; Department of Biomedical Engineering, Marshall University, Huntington, WV 25755
| |
Collapse
|
4
|
Gómez Amador AM, Venturini Avendano RA, González AQ, Fernández LP. Mechanical characterization and testing of multi-polymer combinations in 3D printing. Heliyon 2025; 11:e42420. [PMID: 39991236 PMCID: PMC11847057 DOI: 10.1016/j.heliyon.2025.e42420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
One of the key advancements brought on by Industry 4.0 is additive manufacturing, particularly material extrusion printers that enable the creation of complex parts using composite materials. This article presents a study on the mechanical behavior of 3D printing multi-materials, which are easily accessible and cost-effective for users. Tensile, compression, and flexural tests were conducted on various material configurations to explore their mechanical properties. Results indicate that certain material combinations exhibit enhanced properties in tension and compression, while individual materials perform stronger in flexural tests due to improved interlayer adhesion. The research highlights how material combinations in 3D printing can impact the mechanical properties of parts, offering potential applications in structural design. The study found that a combination of PETG and PLA yields optimal mechanical properties in tensile tests, while configurations with PLA on the outer layer perform best in compression tests. It also identifies a limitation in flexural testing dimensions, where specimens with a 4 mm thickness restrict the possibilities of material combination tests.
Collapse
|
5
|
Sun Y, Wang Y, Dong B, Yang P, Ji C, Li Y, Ma J, Ma X. Understanding the relationship between pore structure and properties of triply periodic minimal surface bone scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:6. [PMID: 39775272 PMCID: PMC11706857 DOI: 10.1007/s10856-024-06856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
The number of patients with bone defects caused by trauma and diseases has been increasing year by year. The treatment of bone defects remains a major challenge in clinical practice. Bone scaffolds are increasingly favored for repairing bones, with triply periodic minimal surface (TPMS) scaffolds emerging as a popular option due to their superior performance. The aim of this review is to highlight the crucial influence of pore structure on the properties of TPMS bone scaffolds, offering important insights for their innovation and production. It briefly examines various elements that influence the properties of TPMS bone scaffolds, such as pore shape, porosity, pore diameter, and curvature. By analyzing these elements, this review serves as a valuable reference for upcoming research and practical implementations in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Yadi Sun
- Tianjin Hospital Tianjin University, Tianjin, China
- Tianjin Orthopedic Institute, Tianjin, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yan Wang
- Tianjin Hospital Tianjin University, Tianjin, China
- Tianjin Orthopedic Institute, Tianjin, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China
| | - Benchao Dong
- Tianjin Hospital Tianjin University, Tianjin, China
- Tianjin Orthopedic Institute, Tianjin, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China
| | - Peichuan Yang
- Tianjin Hospital Tianjin University, Tianjin, China
- Tianjin Orthopedic Institute, Tianjin, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China
| | - Chunhui Ji
- School of Mechanical Engineering, Tianjin University, Tianjin, China
| | - Yiyang Li
- Tianjin Hospital Tianjin University, Tianjin, China
- Tianjin Orthopedic Institute, Tianjin, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China
| | - Jianxiong Ma
- Tianjin Hospital Tianjin University, Tianjin, China.
- Tianjin Orthopedic Institute, Tianjin, China.
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China.
| | - Xinlong Ma
- Tianjin Hospital Tianjin University, Tianjin, China
- Tianjin Orthopedic Institute, Tianjin, China
- Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, China
| |
Collapse
|
6
|
Sharma S, Mishra A, Jain V, Gupta V. Investigating the Influence of Additive Manufacturing and Ultrasonic Coating Parameters on Biopolymeric Scaffold Performance Using Response Surface Methodology. Biopolymers 2025; 116:e23629. [PMID: 39319745 DOI: 10.1002/bip.23629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
Triply periodic minimal surface (TPMS) scaffolds have gained attention in additive manufacturing due to their unique porous structures, which are useful in biomedical applications. Unlike metallic implants that can cause stress shielding, polymeric scaffolds offer a safer alternative. This study is focused on enhancing the compressive strength of additive-manufactured polylactic acid (PLA) scaffolds with a diamond structure. The response surface methodology (RSM)-based experimental design was developed to study the influence of printing parameters. The fused deposition modeling (FDM) process parameters were optimized, achieving a compressive strength of 56.2 MPa. Subsequently, the scaffolds were fabricated at optimized parameters and underwent ultrasonic-assisted polydopamine coating. With the utilization of the RSM approach, the study examined the effects of ultrasonic vibration power, coating solution concentration, and submersion time on compressive strength. The optimal coating conditions led to a maximum compressive strength of 92.77 MPa-a 65.1% improvement over the uncoated scaffold. This enhancement is attributed to the scaffold's porous structure, which enables uniform coating deposition. Energy-dispersive x-ray spectroscopy confirmed the successful polydopamine coating, with 10.64 wt% nitrogen content. These findings demonstrate the potential of ultrasonic-assisted coating in improving the mechanical properties of PLA scaffolds, making them suitable for biomedical applications.
Collapse
Affiliation(s)
- Shrutika Sharma
- Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Abhinav Mishra
- Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Vivek Jain
- Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Vishal Gupta
- Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| |
Collapse
|
7
|
Kennedy SM, A V, K A. Exploring the frontiers of metal additive manufacturing in orthopaedic implant development. MethodsX 2024; 13:103056. [PMID: 39807428 PMCID: PMC11725976 DOI: 10.1016/j.mex.2024.103056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
This paper provides a thorough analysis of recent advancements and emerging trends in the integration of metal additive manufacturing (AM) within orthopedic implant development. With an emphasis on the use of various metals and alloys, including titanium, cobalt-chromium, and nickel-titanium, the review looks at their characteristics and how they relate to the creation of various orthopedic implants, such as spinal implants, hip and knee replacements, and cranial-facial reconstructions. The study highlights how metal additive manufacturing (AM) can revolutionize the field by enabling customized implant designs that take patient anatomical variances into account. The review discusses the drawbacks of conventional manufacturing techniques and emphasizes the benefits of metal additive manufacturing (AM), such as increased design flexibility and decreased material waste. Important material selection factors, including mechanical qualities and biocompatibility, are covered in relation to metal additive manufacturing applications. The work ends with a summary of the issues facing metal AM today, such as surface finish and material certification, and suggestions for future developments, like the creation of advanced materials and the application of AI to design optimization.
Collapse
Affiliation(s)
- Senthil Maharaj Kennedy
- Department of Mechanical Engineering, AAA College of Engineering and Technology, Sivakasi 626005, Tamil Nadu, India
| | - Vasanthanathan A
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India
| | - Amudhan K
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India
| |
Collapse
|
8
|
Liu A, Qin Y, Dai J, Song F, Tian Y, Zheng Y, Wen P. Fabrication and performance of Zinc-based biodegradable metals: From conventional processes to laser powder bed fusion. Bioact Mater 2024; 41:312-335. [PMID: 39161793 PMCID: PMC11331728 DOI: 10.1016/j.bioactmat.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/25/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Zinc (Zn)-based biodegradable metals (BMs) fabricated through conventional manufacturing methods exhibit adequate mechanical strength, moderate degradation behavior, acceptable biocompatibility, and bioactive functions. Consequently, they are recognized as a new generation of bioactive metals and show promise in several applications. However, conventional manufacturing processes face formidable limitations for the fabrication of customized implants, such as porous scaffolds for tissue engineering, which are future direction towards precise medicine. As a metal additive manufacturing technology, laser powder bed fusion (L-PBF) has the advantages of design freedom and formation precision by using fine powder particles to reliably fabricate metallic implants with customized structures according to patient-specific needs. The combination of Zn-based BMs and L-PBF has become a prominent research focus in the fields of biomaterials as well as biofabrication. Substantial progresses have been made in this interdisciplinary field recently. This work reviewed the current research status of Zn-based BMs manufactured by L-PBF, covering critical issues including powder particles, structure design, processing optimization, chemical compositions, surface modification, microstructure, mechanical properties, degradation behaviors, biocompatibility, and bioactive functions, and meanwhile clarified the influence mechanism of powder particle composition, structure design, and surface modification on the biodegradable performance of L-PBF Zn-based BM implants. Eventually, it was closed with the future perspectives of L-PBF of Zn-based BMs, putting forward based on state-of-the-art development and practical clinical needs.
Collapse
Affiliation(s)
- Aobo Liu
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yu Qin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jiabao Dai
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fei Song
- Department of Orthopedics, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Peng Wen
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Vasile A, Constantinescu DM, Coropețchi IC, Sorohan Ș, Apostol DA. Definition, Fabrication, and Compression Testing of Sandwich Structures with Novel TPMS-Based Cores. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5150. [PMID: 39517426 PMCID: PMC11546188 DOI: 10.3390/ma17215150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Triply periodic minimal surfaces (TPMSs) constitute a type of metamaterial, deriving their unique characteristics from their microstructure topology. They exhibit wide parameterization possibilities, but their behavior is hard to predict. This study focuses on using an implicit modeling method that can effectively generate novel thin-walled metamaterials, proposing eight shell-based TPMS topologies and one stochastic structure, along with the gyroid acting as a reference. After insights into the printability and design parameters of the proposed samples are presented, a cell homogeneity analysis is conducted, indicating the level of anisotropy of each cellular structure. For each of the designed metamaterials, multiple samples were printed using a stereolithography (SLA) method, using a constant 0.3 relative density and 50 µm resolution. To provide an understanding of their behavior, compression tests of sandwich-type specimens were performed and specific deformation modes were identified. Furthermore, the study estimates the general mechanical behavior of the novel TPMS cores at different relative densities using an open cell mathematical model. Alterations of the uniform topologies are then suggested and the way these modifications affect the compressive response are presented. Thus, this paper demonstrates that an implicit modeling method could easily generate novel thin-walled TPMSs and stochastic structures, which led to identifying an artificially designed structure with superior properties to already mature topologies, such as the gyroid.
Collapse
Affiliation(s)
- Alexandru Vasile
- Department of Strength of Materials, National University for Science and Technology POLITEHNICA Bucharest, Splaiul Independeţei 313, 060042 Bucharest, Romania; (A.V.); (I.C.C.); (Ș.S.); (D.A.A.)
- Faculty of Aircraft and Military Vehicles, Military Technical Academy “Ferdinand I”, G. Coşbuc Blvd. 39–49, 050141 Bucharest, Romania
| | - Dan Mihai Constantinescu
- Department of Strength of Materials, National University for Science and Technology POLITEHNICA Bucharest, Splaiul Independeţei 313, 060042 Bucharest, Romania; (A.V.); (I.C.C.); (Ș.S.); (D.A.A.)
- Technical Sciences Academy of Romania, Dacia Blvd. 26, 030167 Bucharest, Romania
| | - Iulian Constantin Coropețchi
- Department of Strength of Materials, National University for Science and Technology POLITEHNICA Bucharest, Splaiul Independeţei 313, 060042 Bucharest, Romania; (A.V.); (I.C.C.); (Ș.S.); (D.A.A.)
- Faculty of Aircraft and Military Vehicles, Military Technical Academy “Ferdinand I”, G. Coşbuc Blvd. 39–49, 050141 Bucharest, Romania
| | - Ștefan Sorohan
- Department of Strength of Materials, National University for Science and Technology POLITEHNICA Bucharest, Splaiul Independeţei 313, 060042 Bucharest, Romania; (A.V.); (I.C.C.); (Ș.S.); (D.A.A.)
| | - Dragoș Alexandru Apostol
- Department of Strength of Materials, National University for Science and Technology POLITEHNICA Bucharest, Splaiul Independeţei 313, 060042 Bucharest, Romania; (A.V.); (I.C.C.); (Ș.S.); (D.A.A.)
| |
Collapse
|
10
|
Khan PA, Raheem A, Kalirajan C, Prashanth KG, Manivasagam G. In Vivo Assessment of a Triple Periodic Minimal Surface Based Biomimmetic Gyroid as an Implant Material in a Rabbit Tibia Model. ACS MATERIALS AU 2024; 4:479-488. [PMID: 39280806 PMCID: PMC11393938 DOI: 10.1021/acsmaterialsau.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 09/18/2024]
Abstract
Biomimetic approaches to implant construction are a rising frontier in implantology. Triple Periodic Minimal Surface (TPMS)-based additively manufactured gyroid structures offer a mean curvature of zero, rendering this structure an ideal porous architecture. Previous studies have demonstrated the ability of these structures to effectively mimic the mechanical cues required for optimal implant construction. The porous nature of gyroid materials enhances bone ingrowth, thereby improving implant stability within the body. This enhancement is attributed to the increased surface area of the gyroid structure, which is approximately 185% higher than that of a dense material of the same form factor. This larger surface area allows for enhanced cellular attachment and nutrient circulation facilitated by the porous channels. This study aims to evaluate the biological performance of a gyroid-based Ti6Al-4V implant material compared to a dense alloy counterpart. Cellular viability was assessed using the lactate dehydrogenase (LDH) assay, which demonstrated that the gyroid surface allowed marginally higher viability than dense material. The in vivo integration was studied over 6 weeks using a rabbit tibia model and characterized using X-ray, micro-CT, and histopathological examination. With a metal volume of 8.1%, the gyroid exhibited a bone volume/total volume (BV/TV) ratio of 9.6%, which is 11-fold higher than that of dense metal (0.8%). Histological assessments revealed neovascularization, in-bone growth, and the presence of a Haversian system in the gyroid structure, hinting at superior osteointegration.
Collapse
Affiliation(s)
- Pearlin Amaan Khan
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
| | - Ansheed Raheem
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
| | - Cheirmadurai Kalirajan
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
| | - Konda Gokuldoss Prashanth
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
- Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Geetha Manivasagam
- Centre for Biomaterials, Cellular, and Molecular Theranostics, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
11
|
Baumer V, Isaacson N, Kanakamedala S, McGee D, Kaze I, Prawel D. Comparing ceramic Fischer-Koch-S and gyroid TPMS scaffolds for potential in bone tissue engineering. Front Bioeng Biotechnol 2024; 12:1410837. [PMID: 39193226 PMCID: PMC11347304 DOI: 10.3389/fbioe.2024.1410837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Triply Periodic Minimal Surfaces (TPMS), such as Gyroid, are widely accepted for bone tissue engineering due to their interconnected porous structures with tunable properties that enable high surface area to volume ratios, energy absorption, and relative strength. Among these topologies, the Fischer-Koch-S (FKS) has also been suggested for compact bone scaffolds, but few studies have investigated these structures beyond computer simulations. FKS scaffolds have been fabricated in metal and polymer, but to date none have been fabricated in a ceramic used in bone tissue engineering (BTE) scaffolds. This study is the first to fabricate ceramic FKS scaffolds and compare them with the more common Gyroid topology. Results showed that FKS scaffolds were 32% stronger, absorbed 49% more energy, and had only 11% lower permeability than Gyroid scaffolds when manufactured at high porosity (70%). Both FKS and Gyroid scaffolds displayed strength and permeability in the low range of trabecular long bones with high reliability (Weibull failure probability) in the normal direction. Fracture modes were further investigated to explicate the quasi-brittle failure exhibited by both scaffold topologies, exploring stress-strain relationships along with scanning electron microscopy for failure analysis. Considering the physical aspects of successful bone tissue engineering scaffolds, FKS scaffolds appear to be more promising for further study as bone regeneration scaffolds than Gyroid due to their higher compressive strength and reliability, at only a small penalty to permeability. In the context of BTE, FKS scaffolds may be better suited than Gyroids to applications where denser bone and strength is prioritized over permeability, as suggested by earlier simulation studies.
Collapse
Affiliation(s)
- Vail Baumer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Nelson Isaacson
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Shashank Kanakamedala
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
| | - Duncan McGee
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, United States
| | - Isabella Kaze
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
| | - David Prawel
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO, United States
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, United States
- School of Materials Science and Engineering, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
12
|
Guoqing Z, Junxin L, Xiaoyu Z, Anmin W. Optimization design of support structure based on 3D printing technology. Sci Rep 2024; 14:18225. [PMID: 39107387 PMCID: PMC11303519 DOI: 10.1038/s41598-024-68733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Parts are often warped and deformed when they are molded using selective laser melting (SLM) technology. Thus, it is necessary to study the addition support modes of parts molded using SLM. Consequently, we designed dendritic, E-stage and conical supports, having different structural parameters and different partitions using Magics, and then, we analyzed their performances using the finite element software Abaqus. The structural parameters of the supports were optimized and finally tested using SLM molding technology. The maximum stress concentration was found for dendritic supports, followed by E-stage supports, and then conical supports. The stress concentration and deformation level of Scheme 2 were less than those of Scheme 1. The stress intensity and deformation levels for two partitions were less than those for three partitions. For parts molded by SLM, the deformation was maximum for conical supports, followed by dendritic supports, and then E-stage supports. When gradient supports of similar volumes were added, additional partitions did not effectively improve the molding quality. When supports of similar volumes were added, adding gradient supports did not effectively improve the molding quality. The results provide a basis for the application of SLM in molding high-precision parts.
Collapse
Affiliation(s)
- Zhang Guoqing
- School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, Henan, 466000, People's Republic of China.
| | - Li Junxin
- School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, Henan, 466000, People's Republic of China
| | - Zhou Xiaoyu
- School of Mechanical and Electrical Engineering, Zhoukou Normal University, Zhoukou, Henan, 466000, People's Republic of China
| | - Wang Anmin
- School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, People's Republic of China
| |
Collapse
|
13
|
DeCarvalho S, Aljarrah O, Chen Z, Li J. Influence of build orientation and support structure on additive manufacturing of human knee replacements: a computational study. Med Biol Eng Comput 2024; 62:2005-2017. [PMID: 38433178 DOI: 10.1007/s11517-024-03038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Developing patient-specific implants has an increasing interest in the application of emerging additive manufacturing (AM) technologies. On the other hand, despite advances in total knee replacement (TKR), studies suggest that up to 20% of patients with elective TKR are dissatisfied with the outcome. By creating 3D objects from digital models, AM enables the production of patient-specific implants with complex geometries, such as those required for knee replacements. Previous studies have highlighted concerns regarding the risk of residual stresses and shape distortions in AM parts, which could lead to structural failure or other complications. This article presents a computational framework that uses CT images to create patient-specific finite element models for optimizing AM knee replacements. The workflow includes image processing in the open-source software 3DSlicer and MeshLab and AM process simulations in the commercial platform 3DEXPERIENCE. The approach is demonstrated on a distal femur replacement for a 50-year-old male patient from the open-access Natural Knee Data. The results show that build orientations have a significant impact on both shape distortions and residual stresses. Support structures have a marginal effect on residual stresses but strongly influence shape distortions, whereas conical support exhibits a maximum distortion of 18.5 mm. Future research can explore how these factors affect the functionality of AM knee replacements under in-service loading.
Collapse
Affiliation(s)
- Stephanie DeCarvalho
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA
| | - Osama Aljarrah
- Department of Industrial and Manufacturing Engineering, Kettering University, 1700 University Ave, Flint, MI, 48504, USA
| | - Zi Chen
- Division of Thoracic Surgery, Brigham & Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - Jun Li
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth, MA, 02747, USA.
| |
Collapse
|
14
|
Barakeh W, Zein O, Hemdanieh M, Sleem B, Nassereddine M. Enhancing Hip Arthroplasty Outcomes: The Multifaceted Advantages, Limitations, and Future Directions of 3D Printing Technology. Cureus 2024; 16:e60201. [PMID: 38868274 PMCID: PMC11167579 DOI: 10.7759/cureus.60201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/14/2024] Open
Abstract
In the evolving field of orthopedic surgery, the integration of three-dimensional printing (3D printing) has emerged as a transformative technology, particularly in addressing the rising incidence of degenerative joint diseases. The integration of 3D printing technology in hip arthroplasty offers substantial advantages throughout the surgical process. In preoperative planning, 3D models enable meticulous assessments, aiding in accurate implant selection and precise surgical strategies. Intraoperatively, the technology contributes to precise prosthesis design, reducing operation duration, X-ray exposures, and blood loss. Beyond surgery, 3D printing revolutionizes medical equipment production, imaging, and implant design, showcasing benefits such as enhanced osseointegration and reduced stress shielding with titanium cups. Challenges include a higher risk of postoperative infection due to the porous surfaces of 3D-printed implants, technical complexities in the printing process, and the need for skilled manpower. Despite these challenges, the evolving nature of 3D printing technologies underscores the importance of relying on existing orthopedic surgical practices while emphasizing the need for standardized guidelines to fully harness its potential in improving patient care.
Collapse
Affiliation(s)
- Wael Barakeh
- Orthopedic Surgery, American University of Beirut, Beirut, LBN
| | - Omar Zein
- Orthopedic Surgery, American University of Beirut, Beirut, LBN
| | - Maya Hemdanieh
- Orthopedic Surgery, American University of Beirut, Beirut, LBN
| | - Bshara Sleem
- Orthopedic Surgery, American University of Beirut, Beirut, LBN
| | | |
Collapse
|
15
|
Bolshakov P, Kuchumov AG, Kharin N, Akifyev K, Statsenko E, Silberschmidt VV. Method of computational design for additive manufacturing of hip endoprosthesis based on basic-cell concept. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3802. [PMID: 38246644 DOI: 10.1002/cnm.3802] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/06/2023] [Accepted: 01/07/2024] [Indexed: 01/23/2024]
Abstract
Endoprosthetic hip replacement is the conventional way to treat osteoarthritis or a fracture of a dysfunctional joint. Different manufacturing methods are employed to create reliable patient-specific devices with long-term performance and biocompatibility. Recently, additive manufacturing has become a promising technique for the fabrication of medical devices, because it allows to produce complex samples with various structures of pores. Moreover, the limitations of traditional fabrication methods can be avoided. It is known that a well-designed porous structure provides a better proliferation of cells, leading to improved bone remodeling. Additionally, porosity can be used to adjust the mechanical properties of designed structures. This makes the design and choice of the structure's basic cell a crucial task. This study focuses on a novel computational method, based on the basic-cell concept to design a hip endoprosthesis with an unregularly complex structure. A cube with spheroid pores was utilized as a basic cell, with each cell having its own porosity and mechanical properties. A novelty of the suggested method is in its combination of the topology optimization method and the structural design algorithm. Bending and compression cases were analyzed for a cylinder structure and two hip implants. The ability of basic-cell geometry to influence the structure's stress-strain state was shown. The relative change in the volume of the original structure and the designed cylinder structure was 6.8%. Computational assessments of a stress-strain state using the proposed method and direct modeling were carried out. The volumes of the two types of implants decreased by 9% and 11%, respectively. The maximum von Mises stress was 600 MPa in the initial design. After the algorithm application, it increased to 630 MPa for the first type of implant, while it is not changing in the second type of implant. At the same time, the load-bearing capacity of the hip endoprostheses was retained. The internal structure of the optimized implants was significantly different from the traditional designs, but better structural integrity is likely to be achieved with less material. Additionally, this method leads to time reduction both for the initial design and its variations. Moreover, it enables to produce medical implants with specific functional structures with an additive manufacturing method avoiding the constraints of traditional technologies.
Collapse
Affiliation(s)
- Pavel Bolshakov
- Department of Machine Science and Engineering Graphics, Tupolev Kazan National Research Technical University, Kazan, Russia
| | - Alex G Kuchumov
- Department of Computational Mathematics, Mechanics and Biomechanics, Perm National Research Polytechnic University, Perm, Russia
- Laboratory of Mechanics of Biocompatible Materials and Devices, Perm National Research Polytechnic University, Perm, Russia
| | - Nikita Kharin
- Department of Theoretical Mechanics, N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia
- Institute of Engineering, Kazan Federal University, Kazan, Russia
| | - Kirill Akifyev
- Department of Theoretical Mechanics, N.I. Lobachevsky Institute of Mathematics and Mechanics, Kazan Federal University, Kazan, Russia
| | - Evgeny Statsenko
- Laboratory of X-ray Tomography, Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan, Russia
| | - Vadim V Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, UK
| |
Collapse
|
16
|
Liu G, Wei X, Zhai Y, Zhang J, Li J, Zhao Z, Guan T, Zhao D. 3D printed osteochondral scaffolds: design strategies, present applications and future perspectives. Front Bioeng Biotechnol 2024; 12:1339916. [PMID: 38425994 PMCID: PMC10902174 DOI: 10.3389/fbioe.2024.1339916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Articular osteochondral (OC) defects are a global clinical problem characterized by loss of full-thickness articular cartilage with underlying calcified cartilage through to the subchondral bone. While current surgical treatments can relieve pain, none of them can completely repair all components of the OC unit and restore its original function. With the rapid development of three-dimensional (3D) printing technology, admirable progress has been made in bone and cartilage reconstruction, providing new strategies for restoring joint function. 3D printing has the advantages of fast speed, high precision, and personalized customization to meet the requirements of irregular geometry, differentiated composition, and multi-layered boundary layer structures of joint OC scaffolds. This review captures the original published researches on the application of 3D printing technology to the repair of entire OC units and provides a comprehensive summary of the recent advances in 3D printed OC scaffolds. We first introduce the gradient structure and biological properties of articular OC tissue. The considerations for the development of 3D printed OC scaffolds are emphatically summarized, including material types, fabrication techniques, structural design and seed cells. Especially from the perspective of material composition and structural design, the classification, characteristics and latest research progress of discrete gradient scaffolds (biphasic, triphasic and multiphasic scaffolds) and continuous gradient scaffolds (gradient material and/or structure, and gradient interface) are summarized. Finally, we also describe the important progress and application prospect of 3D printing technology in OC interface regeneration. 3D printing technology for OC reconstruction should simulate the gradient structure of subchondral bone and cartilage. Therefore, we must not only strengthen the basic research on OC structure, but also continue to explore the role of 3D printing technology in OC tissue engineering. This will enable better structural and functional bionics of OC scaffolds, ultimately improving the repair of OC defects.
Collapse
Affiliation(s)
- Ge Liu
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaowei Wei
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Yun Zhai
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Jingrun Zhang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Junlei Li
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Zhenhua Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tianmin Guan
- School of Mechanical Engineering, Dalian Jiaotong University, Dalian, China
| | - Deiwei Zhao
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
17
|
Li J, Yang Y, Sun Z, Peng K, Liu K, Xu P, Li J, Wei X, He X. Integrated evaluation of biomechanical and biological properties of the biomimetic structural bone scaffold: Biomechanics, simulation analysis, and osteogenesis. Mater Today Bio 2024; 24:100934. [PMID: 38234458 PMCID: PMC10792490 DOI: 10.1016/j.mtbio.2023.100934] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024] Open
Abstract
A porous structure is essential for bone implants because it increases the bone ingrowth space and improves mechanical and biological properties. The biomimetically designed porous Voronoi scaffold can reconstruct the structure and function of cancellous bone; however, its comprehensive properties need to be investigated further. In this study, algorithms based on scaling factors were used to design the Voronoi scaffolds. Classic approaches, such as computer-aided design and the implicit surface method, have been used to design Diamond, Gyroid, and I-WP scaffolds as controls. All scaffolds were prepared by selective laser melting of titanium alloys and three-dimensional printing. Mechanical tests, finite element analysis, and in vitro and in vivo experiments were performed to investigate the biomechanical, cytologic, and osteogenic performance of the scaffolds, while computational fluid dynamics simulations were used to explore the underlying mechanisms. Diamond scaffolds have a better loading capacity, and the mechanical behaviors and fluid flow of Voronoi scaffolds are similar to those of the human trabecular bone. Cells showed more proliferation and distribution on the Diamond and Voronoi scaffolds and exhibited evident differentiation on Gyroid and Voronoi scaffolds. Bone formation was apparent on the inner part of the Gyroid, the outer part of the I-WP, and the entire Diamond and Voronoi scaffolds. The hydrodynamic properties and stimulus response of cells influenced by the porous structure account for the varied biological performance of the scaffolds. The Voronoi scaffolds with bionic mechanical behavior and an appropriate hydrodynamic response exhibit evident cell growth and osteogenesis, making them preferable for porous structural bone implants.
Collapse
Affiliation(s)
- Jialiang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Yubing Yang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Kan Peng
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Kaixin Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Jun Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710014, China
| | - Xinyu Wei
- Department of Health Management, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
18
|
Chen Y, Gan W, Cheng Z, Zhang A, Shi P, Zhang Y. Plant molecules reinforce bone repair: Novel insights into phenol-modified bone tissue engineering scaffolds for the treatment of bone defects. Mater Today Bio 2024; 24:100920. [PMID: 38226013 PMCID: PMC10788623 DOI: 10.1016/j.mtbio.2023.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
Bone defects have become a major cause of disability and death. To overcome the limitations of natural bone implants, including donor shortages and immune rejection risks, bone tissue engineering (BTE) scaffolds have emerged as a promising therapy for bone defects. Despite possessing good biocompatibility, these metal, ceramic and polymer-based scaffolds are still challenged by the harsh conditions in bone defect sites. ROS accumulation, bacterial infection, excessive inflammation, compromised blood supply deficiency and tumor recurrence negatively impact bone tissue cells (BTCs) and hinder the osteointegration of BTE scaffolds. Phenolic compounds, derived from plants and fruits, have gained growing application in treating inflammatory, infectious and aging-related diseases due to their antioxidant ability conferred by phenolic hydroxyl groups. The prevalent interactions between phenols and functional groups also facilitate their utilization in fabricating scaffolds. Consequently, phenols are increasingly incorporated into BTE scaffolds to boost therapeutic efficacy in bone defect. This review demonstrated the effects of phenols on BTCs and bone defect microenvironment, summarized the intrinsic mechanisms, presented the advances in phenol-modified BTE scaffolds and analyzed their potential risks in practical applications. Overall, phenol-modified BTE scaffolds hold great potential for repairing bone defects, offering novel patterns for BTE scaffold construction and advancing traumatological medicine.
Collapse
Affiliation(s)
| | | | | | - Anran Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
19
|
Toosi S, Javid-Naderi MJ, Tamayol A, Ebrahimzadeh MH, Yaghoubian S, Mousavi Shaegh SA. Additively manufactured porous scaffolds by design for treatment of bone defects. Front Bioeng Biotechnol 2024; 11:1252636. [PMID: 38312510 PMCID: PMC10834686 DOI: 10.3389/fbioe.2023.1252636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024] Open
Abstract
There has been increasing attention to produce porous scaffolds that mimic human bone properties for enhancement of tissue ingrowth, regeneration, and integration. Additive manufacturing (AM) technologies, i.e., three dimensional (3D) printing, have played a substantial role in engineering porous scaffolds for clinical applications owing to their high level of design and fabrication flexibility. To this end, this review article attempts to provide a detailed overview on the main design considerations of porous scaffolds such as permeability, adhesion, vascularisation, and interfacial features and their interplay to affect bone regeneration and osseointegration. Physiology of bone regeneration was initially explained that was followed by analysing the impacts of porosity, pore size, permeability and surface chemistry of porous scaffolds on bone regeneration in defects. Importantly, major 3D printing methods employed for fabrication of porous bone substitutes were also discussed. Advancements of MA technologies have allowed for the production of bone scaffolds with complex geometries in polymers, composites and metals with well-tailored architectural, mechanical, and mass transport features. In this way, a particular attention was devoted to reviewing 3D printed scaffolds with triply periodic minimal surface (TPMS) geometries that mimic the hierarchical structure of human bones. In overall, this review enlighten a design pathway to produce patient-specific 3D-printed bone substitutions with high regeneration and osseointegration capacity for repairing large bone defects.
Collapse
Affiliation(s)
- Shirin Toosi
- Stem Cell and Regenerative Medicine Center, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohammad Javad Javid-Naderi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, United States
| | | | - Sima Yaghoubian
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ali Mousavi Shaegh
- Orthopedic Research Center, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Laboratory for Microfluidics and Medical Microsystems, BuAli Research Institute, Mashhad University of Medical Science, Mashhad, Iran
- Clinical Research Unit, Ghaem Hospital, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
20
|
Ma J, Li Y, Mi Y, Gong Q, Zhang P, Meng B, Wang J, Wang J, Fan Y. Novel 3D printed TPMS scaffolds: microstructure, characteristics and applications in bone regeneration. J Tissue Eng 2024; 15:20417314241263689. [PMID: 39071895 PMCID: PMC11283664 DOI: 10.1177/20417314241263689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024] Open
Abstract
Bone defect disease seriously endangers human health and affects beauty and function. In the past five years, the three dimension (3D) printed radially graded triply periodic minimal surface (TPMS) porous scaffold has become a new solution for repairing bone defects. This review discusses 3D printing technologies and applications for TPMS scaffolds. To this end, the microstructural effects of 3D printed TPMS scaffolds on bone regeneration were reviewed and the structural characteristics of TPMS, which can promote bone regeneration, were introduced. Finally, the challenges and prospects of using TPMS scaffolds to treat bone defects were presented. This review is expected to stimulate the interest of bone tissue engineers in radially graded TPMS scaffolds and provide a reliable solution for the clinical treatment of personalised bone defects.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yumeng Li
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujing Mi
- Department of Orthodontics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiannan Gong
- Shanxi Provincial People’s Hospital of Stomatology,Taiyuan,China
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Bing Meng
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jue Wang
- Department of Prosthodontics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yawei Fan
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
21
|
Wang Z, Liao B, Liu Y, Liao Y, Zhou Y, Li W. Influence of structural parameters of 3D-printed triply periodic minimal surface gyroid porous scaffolds on compression performance, cell response, and bone regeneration. J Biomed Mater Res B Appl Biomater 2024; 112:e35337. [PMID: 37795764 DOI: 10.1002/jbm.b.35337] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/19/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
In this study, multi-scale triply periodic minimal surface (TPMS) porous scaffolds with uniform and radial gradient distribution on pore size were printed based on the selective laser melting technology, and the influences of porosity, pore size and radial pore size distribution on compression mechanical properties, cell behavior, and bone regeneration behavior were analyzed. The results showed that the compression performance of the uniform porous scaffolds with high porosity was similar to that of cancellous bone of pig tibia, and the gradient porous scaffolds have higher elastic modulus and compressive toughness. After 4 days of cell culture, cells were distributed on the surface of scaffolds mostly, and the number of adherent cells was higher on the small pore size porous scaffolds; After 7 days, the area and density of cell proliferation on the scaffolds were improved; After 14 days, the cells on the small pore size scaffolds tended to migrate to adjacent pores. Animal implantation experiments showed that collagen fiber osteoid was intermittent on scaffolds with high porosity and large pore size, which was not conducive to bone formation. The appropriate pore size and porosity of bone regeneration were 792 um and 83%, respectively, and the regenerative ability of gradient pore size was better than that of uniform pore size. Our study explains the rules of TPMS gyroid structure parameters on compression performance, cell response and bone regeneration, and provides a reference value for the design of bone repair scaffolds for clinical orthopedics.
Collapse
Affiliation(s)
- Zhenglun Wang
- Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Bo Liao
- Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Yongsheng Liu
- State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization, Pangang Group Research Institute Co., Ltd., Panzhihua, China
- R & D Center for High-end Parts, Chengdu Advanced Metal Materials Industry Technology Research Institute Co., Ltd., Chengdu, China
| | - Yunqian Liao
- Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Yu Zhou
- Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
| | - Wei Li
- Tribology Research Institute, Key Laboratory for Advanced Technology of Materials of Ministry of Education, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
22
|
Khan HM, Çalışkan Cİ, Bulduk ME. The Novel Hybrid Lattice Structure Approach Fabricated by Laser Powder Bed Fusion and Mechanical Properties Comparison. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1371-1380. [PMID: 38116225 PMCID: PMC10726188 DOI: 10.1089/3dp.2022.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Aluminum-based cellular structures are gaining a huge traction in several applications, including lightweight aircraft, military equipment, and heat exchangers. With additive manufacturing, the fabrication of complex periodic cellular structures with any unit cell form, size, and volume fraction has become a lot easier, allowing for more investment, research, and attention from both academia and industry. The aim of the research was to assess the manufacturability and performance of AlSi10Mg periodic cellular structures generated using the laser powder bed fusion process. Re-entrant and triply periodic and minimum surface (TPMS) gyroid cells were hybridized into a single cellular structure having identical volume fraction. Because of distinct mechanical properties of TPMS and re-entrant types, these cells were selected and assembled in various patterns to study their manufacturability, deformation behavior, energy absorption, and compressive strength. This work demonstrates good geometric agreement between the manufactured hybrid lattice structures and computer-aided design models. Hybridized structures with several repeated layers of TPMS gyroid and re-entrant cells can result in superior compressive strength and energy absorption than those with only few large layers.
Collapse
Affiliation(s)
- Hamaid Mahmood Khan
- Aluminium Test, Training and Research Center, Fatih Sultan Mehmet Vakif University, Beyoglu, Turkey
| | - Cemal İrfan Çalışkan
- Aluminium Test, Training and Research Center, Fatih Sultan Mehmet Vakif University, Beyoglu, Turkey
| | - Mustafa Enes Bulduk
- Aluminium Test, Training and Research Center, Fatih Sultan Mehmet Vakif University, Beyoglu, Turkey
| |
Collapse
|
23
|
Li L, Wang P, Liang H, Jin J, Zhang Y, Shi J, Zhang Y, He S, Mao H, Xue B, Lai J, Zhu L, Jiang Q. Design of a Haversian system-like gradient porous scaffold based on triply periodic minimal surfaces for promoting bone regeneration. J Adv Res 2023; 54:89-104. [PMID: 36632888 DOI: 10.1016/j.jare.2023.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/14/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023] Open
Abstract
INTRODUCTION The bone ingrowth depth in the porous scaffolds is greatly affected by the structural design, notably the pore size, pore geometry, and the pore distribution. To enhance the bone regeneration capability of scaffolds, the bionic design can be regarded as a potential solution. OBJECTIVES We proposed a Haversian system-like gradient structure based on the triply periodic minimal surface architectures with pore size varying from the edge to the center. And its effects in promoting bone regeneration were evaluated in the study. METHODS The gradient scaffold was designed using the triply periodic minimal surface architectures. The mechanical properties were analyzed by the finite element simulation and confirmed using the universal machine. The fluid characteristics were calculated by the computational fluid dynamics analysis. The bone regeneration process was simulated using a in silico computational model containing the main biological, physical, and chemical variation during the bone growth process. Finally, the in vitro and in vivo studies were carried out to verify the actual osteogenic effect. RESULTS Compared to the uniform scaffold, the biomimetic gradient scaffold demonstrated better performance in stress conduction and reduced stress shielding effects. The fluid features were appropriate for cell migration and flow diffusion, and the permeability was in the same order of magnitude with the natural bone. The bone ingrowth simulation exhibited improved angiogenesis and bone regeneration. Higher expression of the osteogenesis-related genes, higher alkaline phosphatase activity, and increased mineralization could be observed on the gradient scaffold in the in vitro study. The 12-week in vivo study proved that the gradient scaffold had deeper bone inserting depth and a more stable bone-scaffold interface. CONCLUSION The Haversian system-like gradient structure can effectively promote the bone regeneration. This structural design can be used as a new solution for the clinical application of prosthesis design.
Collapse
Affiliation(s)
- Lan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China; Jiangsu Engineering Research Center for 3D Bioprinting, No. 321 Zhongshan Road, Nanjing 210000, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China; Jiangsu Engineering Research Center for 3D Bioprinting, No. 321 Zhongshan Road, Nanjing 210000, China
| | - Huixin Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China; Jiangsu Engineering Research Center for 3D Bioprinting, No. 321 Zhongshan Road, Nanjing 210000, China
| | - Jing Jin
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China
| | - Yibo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China
| | - Jianping Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China
| | - Yun Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
| | - Siyuan He
- State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, No. 2 Sipailou, Nanjing 210096, China
| | - Hongli Mao
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, China
| | - Bin Xue
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, No. 2 Hankou Road, Nanjing 210093, China
| | - Jiancheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305-6104, USA
| | - Liya Zhu
- School of Electrical and Automation Engineering, Nanjing Normal University, No.2 Xuelin Road, Nanjing 210023, China.
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Drum Tower Hospital Affiliated to Medical School of Nanjing University, No. 321 Zhongshan Road, Nanjing 210000, China; Jiangsu Engineering Research Center for 3D Bioprinting, No. 321 Zhongshan Road, Nanjing 210000, China.
| |
Collapse
|
24
|
Elenskaya N, Tashkinov M, Vindokurov I, Pirogova Y, Silberschmidt VV. Understanding of trabecular-cortical transition zone: Numerical and experimental assessment of multi-morphology scaffolds. J Mech Behav Biomed Mater 2023; 147:106146. [PMID: 37774442 DOI: 10.1016/j.jmbbm.2023.106146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Applications of additive manufacturing (AM) in tissue engineering develop rapidly. AM offers layer-by-layer creation of complex objects, developed to restore functionality of, or replace, damaged tissues. Porous 3D-printed functional gradient structures are of particular interest: their special architecture makes it possible to simulate the heterogeneity of the replaced tissue and, by continuously changing the mechanical properties, to avoid the concentration of stresses that can be caused by abrupt geometric changes. Such structures also allow combinations of different types of unit cells and a smooth transition between them, making design of personalised scaffolds with optimal parameters for the replacement of damaged host tissue at the interface between tissues possible. This paper presents the results of development of scaffold structures with gradients of porosity and multi-morphology using unit cells based on triply periodic minimal surfaces (TPMS). The mechanical behaviour of additively manufactured scaffold prototypes made of polylactide acid (PLA) was studied under compressive loading. Strain fields on their surface were captured using the Vic-3d Micro-DIC digital image correlation system and compared with those obtained with detailed numerical simulations, employing elastic-plastic properties of PLA, obtained in experiments. The effect of gradient parameters and unit-cell morphology on the stress distribution in scaffolds was analysed. A smooth gradient transition between cells with different morphologies was found to reduce the probability of structural failure under intense compressive loading. A good agreement between numerical results and experimental data was achieved, which justifies application of the developed approach to design of personalised bone scaffolds.
Collapse
Affiliation(s)
- Nataliya Elenskaya
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia
| | - Mikhail Tashkinov
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia.
| | - Ilia Vindokurov
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia
| | - Yulia Pirogova
- Perm National Research Polytechnic University, Komsomolsky Ave., 29, Perm, Russia
| | | |
Collapse
|
25
|
孙 亚, 马 剑, 王 岩, 董 本, 杨 培, 李 岩, 李 奕, 周 丽, 申 佳, 马 信. [Research progress in influence of microstructure on performance of triply-periodic minimal surface bone scaffolds]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2023; 37:1314-1318. [PMID: 37848329 PMCID: PMC10581883 DOI: 10.7507/1002-1892.202305004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/19/2023]
Abstract
Objective To summarize the influence of microstructure on performance of triply-periodic minimal surface (TPMS) bone scaffolds. Methods The relevant literature on the microstructure of TPMS bone scaffolds both domestically and internationally in recent years was widely reviewed, and the research progress in the imfluence of microstructure on the performance of bone scaffolds was summarized. Results The microstructure characteristics of TPMS bone scaffolds, such as pore shape, porosity, pore size, curvature, specific surface area, and tortuosity, exert a profound influence on bone scaffold performance. By finely adjusting the above parameters, it becomes feasible to substantially optimize the structural mechanical characteristics of the scaffold, thereby effectively preempting the occurrence of stress shielding phenomena. Concurrently, the manipulation of these parameters can also optimize the scaffold's biological performance, facilitating cell adhesion, proliferation, and growth, while facilitating the ingrowth and permeation of bone tissue. Ultimately, the ideal bone fusion results will obtain. Conclusion The microstructure significantly and substantially influences the performance of TPMS bone scaffolds. By deeply exploring the characteristics of these microstructure effects on the performance of bone scaffolds, the design of bone scaffolds can be further optimized to better match specific implantation regions.
Collapse
Affiliation(s)
- 亚迪 孙
- 天津大学天津医院(天津市天津医院)骨科研究所(天津 300211)Institute of Orthopaedics, Tianjin Hospital, Tianjin University (Tianjin Hospital), Tianjin, 300211, P. R. China
- 天津市骨科研究所(天津 300050)Tianjin Orthopaedic Institute, Tianjin, 300050, P. R. China
- 天津市骨科生物力学与医学工程重点实验室(天津 300050)Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, P. R. China
| | - 剑雄 马
- 天津大学天津医院(天津市天津医院)骨科研究所(天津 300211)Institute of Orthopaedics, Tianjin Hospital, Tianjin University (Tianjin Hospital), Tianjin, 300211, P. R. China
- 天津市骨科研究所(天津 300050)Tianjin Orthopaedic Institute, Tianjin, 300050, P. R. China
- 天津市骨科生物力学与医学工程重点实验室(天津 300050)Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, P. R. China
| | - 岩 王
- 天津大学天津医院(天津市天津医院)骨科研究所(天津 300211)Institute of Orthopaedics, Tianjin Hospital, Tianjin University (Tianjin Hospital), Tianjin, 300211, P. R. China
- 天津市骨科研究所(天津 300050)Tianjin Orthopaedic Institute, Tianjin, 300050, P. R. China
- 天津市骨科生物力学与医学工程重点实验室(天津 300050)Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, P. R. China
| | - 本超 董
- 天津大学天津医院(天津市天津医院)骨科研究所(天津 300211)Institute of Orthopaedics, Tianjin Hospital, Tianjin University (Tianjin Hospital), Tianjin, 300211, P. R. China
- 天津市骨科研究所(天津 300050)Tianjin Orthopaedic Institute, Tianjin, 300050, P. R. China
- 天津市骨科生物力学与医学工程重点实验室(天津 300050)Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, P. R. China
| | - 培川 杨
- 天津大学天津医院(天津市天津医院)骨科研究所(天津 300211)Institute of Orthopaedics, Tianjin Hospital, Tianjin University (Tianjin Hospital), Tianjin, 300211, P. R. China
- 天津市骨科研究所(天津 300050)Tianjin Orthopaedic Institute, Tianjin, 300050, P. R. China
- 天津市骨科生物力学与医学工程重点实验室(天津 300050)Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, P. R. China
| | - 岩 李
- 天津大学天津医院(天津市天津医院)骨科研究所(天津 300211)Institute of Orthopaedics, Tianjin Hospital, Tianjin University (Tianjin Hospital), Tianjin, 300211, P. R. China
- 天津市骨科研究所(天津 300050)Tianjin Orthopaedic Institute, Tianjin, 300050, P. R. China
- 天津市骨科生物力学与医学工程重点实验室(天津 300050)Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, P. R. China
| | - 奕扬 李
- 天津大学天津医院(天津市天津医院)骨科研究所(天津 300211)Institute of Orthopaedics, Tianjin Hospital, Tianjin University (Tianjin Hospital), Tianjin, 300211, P. R. China
- 天津市骨科研究所(天津 300050)Tianjin Orthopaedic Institute, Tianjin, 300050, P. R. China
- 天津市骨科生物力学与医学工程重点实验室(天津 300050)Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, P. R. China
| | - 丽芸 周
- 天津大学天津医院(天津市天津医院)骨科研究所(天津 300211)Institute of Orthopaedics, Tianjin Hospital, Tianjin University (Tianjin Hospital), Tianjin, 300211, P. R. China
- 天津市骨科研究所(天津 300050)Tianjin Orthopaedic Institute, Tianjin, 300050, P. R. China
- 天津市骨科生物力学与医学工程重点实验室(天津 300050)Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, P. R. China
| | - 佳慧 申
- 天津大学天津医院(天津市天津医院)骨科研究所(天津 300211)Institute of Orthopaedics, Tianjin Hospital, Tianjin University (Tianjin Hospital), Tianjin, 300211, P. R. China
- 天津市骨科研究所(天津 300050)Tianjin Orthopaedic Institute, Tianjin, 300050, P. R. China
- 天津市骨科生物力学与医学工程重点实验室(天津 300050)Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, P. R. China
| | - 信龙 马
- 天津大学天津医院(天津市天津医院)骨科研究所(天津 300211)Institute of Orthopaedics, Tianjin Hospital, Tianjin University (Tianjin Hospital), Tianjin, 300211, P. R. China
- 天津市骨科研究所(天津 300050)Tianjin Orthopaedic Institute, Tianjin, 300050, P. R. China
- 天津市骨科生物力学与医学工程重点实验室(天津 300050)Tianjin Key Laboratory of Orthopedic Biomechanics and Medical Engineering, Tianjin, 300050, P. R. China
| |
Collapse
|
26
|
Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Translat 2023; 42:94-112. [PMID: 37675040 PMCID: PMC10480061 DOI: 10.1016/j.jot.2023.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Background Currently, metal implants are widely used in orthopedic surgeries, including fracture fixation, spinal fusion, joint replacement, and bone tumor defect repair. However, conventional implants are difficult to be customized according to the recipient's skeletal anatomy and defect characteristics, leading to difficulties in meeting the individual needs of patients. Additive manufacturing (AM) or three-dimensional (3D) printing technology, an advanced digital fabrication technique capable of producing components with complex and precise structures, offers opportunities for personalization. Methods We systematically reviewed the literature on 3D printing orthopedic metal implants over the past 10 years. Relevant animal, cellular, and clinical studies were searched in PubMed and Web of Science. In this paper, we introduce the 3D printing method and the characteristics of biometals and summarize the properties of 3D printing metal implants and their clinical applications in orthopedic surgery. On this basis, we discuss potential possibilities for further generalization and improvement. Results 3D printing technology has facilitated the use of metal implants in different orthopedic procedures. By combining medical images from techniques such as CT and MRI, 3D printing technology allows the precise fabrication of complex metal implants based on the anatomy of the injured tissue. Such patient-specific implants not only reduce excessive mechanical strength and eliminate stress-shielding effects, but also improve biocompatibility and functionality, increase cell and nutrient permeability, and promote angiogenesis and bone growth. In addition, 3D printing technology has the advantages of low cost, fast manufacturing cycles, and high reproducibility, which can shorten patients' surgery and hospitalization time. Many clinical trials have been conducted using customized implants. However, the use of modeling software, the operation of printing equipment, the high demand for metal implant materials, and the lack of guidance from relevant laws and regulations have limited its further application. Conclusions There are advantages of 3D printing metal implants in orthopedic applications such as personalization, promotion of osseointegration, short production cycle, and high material utilization. With the continuous learning of modeling software by surgeons, the improvement of 3D printing technology, the development of metal materials that better meet clinical needs, and the improvement of laws and regulations, 3D printing metal implants can be applied to more orthopedic surgeries. The translational potential of this paper Precision, intelligence, and personalization are the future direction of orthopedics. It is reasonable to believe that 3D printing technology will be more deeply integrated with artificial intelligence, 4D printing, and big data to play a greater role in orthopedic metal implants and eventually become an important part of the digital economy. We aim to summarize the latest developments in 3D printing metal implants for engineers and surgeons to design implants that more closely mimic the morphology and function of native bone.
Collapse
Affiliation(s)
- Meng Meng
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jinzuo Wang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Huagui Huang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Xin Liu
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Jing Zhang
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| | - Zhonghai Li
- Department of Orthopedics, First Affiliated Hospital of Dalian Medical University, Dalian, PR China
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic Diseases, Liaoning Province, PR China
| |
Collapse
|
27
|
Xu J, Lu Y, Pan X, Zhan D, Wang Q, Zhang N. Antibacterial performance of a porous Cu-bearing titanium alloy by laser additive manufacturing. Front Bioeng Biotechnol 2023; 11:1226745. [PMID: 37600307 PMCID: PMC10435858 DOI: 10.3389/fbioe.2023.1226745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is the most common species that causes peri-implantitis. It forms an irreversible dense biofilm and causes inflammation. A novel 3D-printed porous TC4-6Cu alloy was fabricated using selective laser melting (SLM) technology for the dental implant, which is anticipated to inhibit biofilm formation. We attempted to investigate the antibacterial ability and antibacterial mechanism of the 3D-printed porous TC4-6Cu alloy against P. gingivalis. This work used scanning electron microscopy (SEM) and laser confocal microscopy (CLSM) to detect the antimicrobial ability of the alloy against sessile P. gingivalis. The results indicated that the 3D-printed porous TC4-6Cu alloy could cause bacterial fragmentation and deformation. Plate antimicrobial counting experiments showed that the antibacterial rates of the alloy against adherent bacteria and planktonic bacteria after 24 h were 98.05% and 73.92%, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Cu2+ were tested to appraise the antibacterial property of the alloy against planktonic P. gingivalis. The relationship between the antibacterial mechanism of the alloy with oxidative stress was evaluated through ROS fluorescence intensity and protein leakage concentration. The results revealed that the alloy significantly eliminated adherent bacteria and inhibited biofilm formation. Moreover, 3D-printed porous TC4-6Cu alloy demonstrated significant bactericidal ability by inducing the production of reactive oxygen species (ROS), which could result in protein leakage from the bacterial cell membrane. This research may open a new perspective on the development and biomedical applications for dental implantation.
Collapse
Affiliation(s)
- Jiawei Xu
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yanjin Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Xiyun Pan
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Desong Zhan
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ning Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
28
|
Arsentev MY, Sysoev EI, Makogon AI, Balabanov SV, Sychev MM, Hammouri MH, Moshnikov VA. High-Throughput Screening of 3D-Printed Architected Materials Inspired by Crystal Lattices: Procedure, Challenges, and Mechanical Properties. ACS OMEGA 2023; 8:24865-24874. [PMID: 37483245 PMCID: PMC10357429 DOI: 10.1021/acsomega.3c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
The search for load-bearing, impact-resistant, and energy-absorbing cellular materials is of central interest in many fields including aerospace, automotive, civil, sports, packaging, and biomedical. In order to achieve the desired characteristic geometry and/or topology, a perspective approach may be used, such as utilization of atomic models as input data for 3D printing of macroscopic objects. In this paper, we suggest a new approach for the development of advanced cellular materials-crystallomorphic design based on selection of perspective crystal structures and modeling of their electron density distribution and utilization of isoelectronic surfaces as a generatrix for 3D-printed cellular materials. The ATLAS database, containing more than 10 million existing and predicted zeolites, was used as a source of data. Herein, we introduced a high-throughput screening of a data array of crystalline compounds. Several perspective designs were identified, implemented by 3D printing, and showed high characteristics. A linear correlation was found between the strength of the samples and the minimum angle and minimum bond length in the simplified crystal structures. A new cellular geometry with reinforcement struts and increased strength was discovered. This property was found by us independent of the other works, in which the cellular structures were developed by an explicit method. Thus, the developed approach holds perspective for the design of new cellular structures with increased characteristics and for the prediction of their properties.
Collapse
Affiliation(s)
- Maxim Yu. Arsentev
- Institute
of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Evgeny I. Sysoev
- Department
of Micro- and Nanoelectronics, Saint Petersburg
Electrotechnical University “LETI”, Professor Popov Str. 5, St. Petersburg 197376, Russia
| | - Alexey I. Makogon
- Institute
of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Sergey V. Balabanov
- Institute
of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Maxim M. Sychev
- Institute
of Silicate Chemistry, Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Mahmoud H. Hammouri
- Department
of Physics, Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, Wisconsin 54311, United States
| | - Vyacheslav A. Moshnikov
- Department
of Micro- and Nanoelectronics, Saint Petersburg
Electrotechnical University “LETI”, Professor Popov Str. 5, St. Petersburg 197376, Russia
| |
Collapse
|
29
|
Garmendia Urdalleta A, Van Poll M, Fahy N, Witte-Bouma J, Van Wamel W, Apachitei I, Zadpoor AA, Fratila-Apachitei LE, Farrell E. The response of human macrophages to 3D printed titanium antibacterial implants does not affect the osteogenic differentiation of hMSCs. Front Bioeng Biotechnol 2023; 11:1176534. [PMID: 37415788 PMCID: PMC10319998 DOI: 10.3389/fbioe.2023.1176534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Macrophage responses following the implantation of orthopaedic implants are essential for successful implant integration in the body, partly through intimate crosstalk with human marrow stromal cells (hMSCs) in the process of new bone formation. Additive manufacturing (AM) and plasma electrolytic oxidation (PEO) in the presence of silver nanoparticles (AgNPs) are promising techniques to achieve multifunctional titanium implants. Their osteoimmunomodulatory properties are, however, not yet fully investigated. Here, we studied the effects of implants with AgNPs on human macrophages and the crosstalk between hMSCs and human macrophages when co-cultured in vitro with biofunctionalised AM Ti6Al4V implants. A concentration of 0.3 g/L AgNPs in the PEO electrolyte was found to be optimal for both macrophage viability and inhibition of bacteria growth. These specimens also caused a decrease of the macrophage tissue repair related factor C-C Motif Chemokine Ligand 18 (CCL18). Nevertheless, co-cultured hMSCs could osteogenically differentiate without any adverse effects caused by the presence of macrophages that were previously exposed to the PEO (±AgNPs) surfaces. Further evaluation of these promising implants in a bony in vivo environment with and without infection is highly recommended to prove their potential for clinical use.
Collapse
Affiliation(s)
- Amaia Garmendia Urdalleta
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, TU Delft, Delft, Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Mathijs Van Poll
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, TU Delft, Delft, Netherlands
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Niamh Fahy
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Applied Science, Technological University of the Shannon: Midlands Midwest, Limerick, Ireland
| | - Janneke Witte-Bouma
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Willem Van Wamel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Iulian Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, TU Delft, Delft, Netherlands
| | - Amir A. Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, TU Delft, Delft, Netherlands
| | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, TU Delft, Delft, Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
30
|
Baumer V, Gunn E, Riegle V, Bailey C, Shonkwiler C, Prawel D. Robocasting of Ceramic Fischer-Koch S Scaffolds for Bone Tissue Engineering. J Funct Biomater 2023; 14:jfb14050251. [PMID: 37233361 DOI: 10.3390/jfb14050251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Triply Periodic Minimal Surfaces (TPMS) are promising structures for bone tissue engineering scaffolds due to their relatively high mechanical energy absorption, smoothly interconnected porous structure, scalable unit cell topology, and relatively high surface area per volume. Calcium phosphate-based materials, such as hydroxyapatite and tricalcium phosphate, are very popular scaffold biomaterials due to their biocompatibility, bioactivity, compositional similarities to bone mineral, non-immunogenicity, and tunable biodegradation. Their brittle nature can be partially mitigated by 3D printing them in TPMS topologies such as gyroids, which are widely studied for bone regeneration, as evidenced by their presence in popular 3D-printing slicers, modeling systems, and topology optimization tools. Although structural and flow simulations have predicted promising properties of other TPMS scaffolds, such as Fischer-Koch S (FKS), to the best of our knowledge, no one has explored these possibilities for bone regeneration in the laboratory. One reason for this is that fabrication of the FKS scaffolds, such as by 3D printing, is challenged by a lack of algorithms to model and slice this topology for use by low-cost biomaterial printers. This paper presents an open-source software algorithm that we developed to create 3D-printable FKS and gyroid scaffold cubes, with a framework that can accept any continuous differentiable implicit function. We also report on our successful 3D printing of hydroxyapatite FKS scaffolds using a low-cost method that combines robocasting with layer-wise photopolymerization. Dimensional accuracy, internal microstructure, and porosity characteristics are also presented, demonstrating promising potential for the 3D printing of TPMS ceramic scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Vail Baumer
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Erin Gunn
- Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Valerie Riegle
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Claire Bailey
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Clayton Shonkwiler
- Department of Mathematics, Colorado State University, Fort Collins, CO 80523, USA
| | - David Prawel
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
31
|
Laskowska D, Szatkiewicz T, Bałasz B, Mitura K. Mechanical Properties and Energy Absorption Abilities of Diamond TPMS Cylindrical Structures Fabricated by Selective Laser Melting with 316L Stainless Steel. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3196. [PMID: 37110031 PMCID: PMC10143552 DOI: 10.3390/ma16083196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Triply periodic minimal surfaces (TPMS) are structures inspired by nature with unique properties. Numerous studies confirm the possibility of using TPMS structures for heat dissipation, mass transport, and biomedical and energy absorption applications. In this study, the compressive behavior, overall deformation mode, mechanical properties, and energy absorption ability of Diamond TPMS cylindrical structures produced by selective laser melting of 316L stainless steel powder were investigated. Based on the experimental studies, it was found that tested structures exhibited different cell strut deformation mechanisms (bending-dominated and stretch-dominated) and overall deformation modes (uniform and "layer-by-layer") depending on structural parameters. Consequently, the structural parameters had an impact on the mechanical properties and the energy absorption ability. The evaluation of basic absorption parameters shows the advantage of bending-dominated Diamond TPMS cylindrical structures in comparison with stretch-dominated Diamond TPMS cylindrical structures. However, their elastic modulus and yield strength were lower. Comparative analysis with the author's previous work showed a slight advantage for bending-dominated Diamond TPMS cylindrical structures in comparison with Gyroid TPMS cylindrical structures. The results of this research can be used to design and manufacture more efficient, lightweight components for energy absorption applications in the fields of healthcare, transportation, and aerospace.
Collapse
|
32
|
Ignatchenko AV, Willower JP. Schwarz P-surface via isolated sp 2 carbon heptagons: Design and properties. J Comput Chem 2023; 44:954-961. [PMID: 36510469 DOI: 10.1002/jcc.27055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/22/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022]
Abstract
Described are the first two molecular designs of the triply periodic Schwarz P surface using merely the Schläfli t{3,7} pattern of sp2 -hybridized carbon atoms. Each atom is exactly part of one heptagon and two hexagon rings so that two heptagons do not share the same edge or vertex. Such pattern, called hyperbolic soccer ball obeys the isolated-heptagon rule with the minimum possible number of hexagons between heptagons similar to the isolation of pentagons from hexagons in the C60 fullerene. Both of the designed P surfaces are unbalanced, that is, they have two unequal sides, and belong to space groups P432 of the cubic system, and P4/ncc of the tetragonal system, respectively. Unit cells have a multiple of 24 heptagons similar to the only one previously known in literature Schwarzite with the hyperbolic soccer ball pattern-the D surface of Vanderbilt and Tersoff. The geometry of the periodic structures and unit cell parameters were fully optimized by DFT calculations using CASTEP software with PBE and PBESOL functionals under generalized gradient approximation. The effect of P and D surface dilution by hexagons on the calculated density, elastic and electronic properties is discussed.
Collapse
Affiliation(s)
| | - Jacob P Willower
- Chemistry Department, St. John Fisher University, Rochester, New York, USA
| |
Collapse
|
33
|
Emanuelli L, Jam A, du Plessis A, Lora C, Biasi RD, Benedetti M, Pellizzari M. Manufacturability of functionally graded porous β-Ti21S auxetic architected biomaterials produced by laser powder bed fusion: Comparison between 2D and 3D metrological characterization. Int J Bioprint 2023; 9:728. [PMID: 37323506 PMCID: PMC10261167 DOI: 10.18063/ijb.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023] Open
Abstract
Functionally graded porous structures (FGPSs) are attracting increasing interest in the manufacture of prostheses that benefit from lower stiffness and optimized pore size for osseointegration. In this work, we explore the possibility of employing FGPSs with auxetic unit cells. Their negative Poisson's ratio was exploited to reduce the loss of connection between prosthesis and bone usually occurring in standard implant loaded under tension and therefore undergoing lateral shrinking. In addition, to further improve osseointegration and mitigate stress shielding effects, auxetic FGPSs were fabricated in this work using a novel β-Ti21S alloy characterized by a lower Young's modulus compared to traditional α + β Ti alloys. Specifically, two different auxetic FGPSs with aspect ratio equal to 1.5 and angle θ of 15° and 25° with a relative density (ρr) gradient of 0.34, 0.49, 0.66 and of 0.40, 0.58, 0.75 were designed and printed by laser powder bed fusion. The 2D and 3D metrological characterization of the as-manufactured structures was compared with the design. 2D metrological characterization was carried out using scanning electron microscopy analysis, while for the 3D characterization, X-ray micro-CT imaging was used. An undersizing of the pore size and strut thickness in the as-manufactured sample was observed in both auxetic FGPSs. A maximum difference in the strut thickness of -14 and -22% was obtained in the auxetic structure with θ = 15° and 25°, respectively. On the contrary, a pore undersizing of -19% and -15% was evaluated in auxetic FGPS with θ = 15° and 25°, respectively. Compression mechanical tests allowed to determine stabilized elastic modulus of around 4 GPa for both FGPSs. Homogenization method and analytical equation were used and the comparison with experimental data highlights a good agreement of around 4% and 24% for θ = 15° and 25°, respectively.
Collapse
Affiliation(s)
- Lorena Emanuelli
- INSTM (Operative center: University of Trento), Via Sommarive 9, Trento, Italy
| | - Alireza Jam
- University of Trento, Department of Industrial Engineering, Trento, Italy
| | - Anton du Plessis
- Research Group 3D Innovation, Stellenbosch University, Stellenbosch, South Africa
- Object Research Systems, Montreal, Canada
| | - Carlo Lora
- SISMA SpA, Piovene Rocchette, Vicenza, Italy
| | - Raffaele De Biasi
- University of Trento, Department of Industrial Engineering, Trento, Italy
| | - Matteo Benedetti
- University of Trento, Department of Industrial Engineering, Trento, Italy
| | - Massimo Pellizzari
- University of Trento, Department of Industrial Engineering, Trento, Italy
| |
Collapse
|
34
|
Koushik TM, Miller CM, Antunes E. Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds. Adv Healthc Mater 2023; 12:e2202766. [PMID: 36512599 PMCID: PMC11468595 DOI: 10.1002/adhm.202202766] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering (BTE) is a topic of interest for the last decade, and advances in materials, processing techniques, and the understanding of bone healing pathways have opened new avenues of research. The dual responsibility of BTE scaffolds in providing load-bearing capability and interaction with the local extracellular matrix to promote bone healing is a challenge in synthetic scaffolds. This article describes the usage and processing of multi-materials and hierarchical structures to mimic the structure of natural bone tissues to function as bioactive and load-bearing synthetic scaffolds. The first part of this literature review describes the physiology of bone healing responses and the interactions at different stages of bone repair. The following section reviews the available literature on biomaterials used for BTE scaffolds followed by some multi-material approaches. The next section discusses the impact of the scaffold's structural features on bone healing and the necessity of a hierarchical distribution in the scaffold structure. Finally, the last section of this review highlights the emerging trends in BTE scaffold developments that can inspire new tissue engineering strategies and truly develop the next generation of synthetic scaffolds.
Collapse
Affiliation(s)
- Tejas M. Koushik
- College of Science and EngineeringJames Cook UniversityTownsvilleQueensland4811Australia
| | - Catherine M. Miller
- College of Medicine and DentistryJames Cook UniversitySmithfieldQueensland4878Australia
| | - Elsa Antunes
- College of Science and EngineeringJames Cook UniversityTownsvilleQueensland4811Australia
| |
Collapse
|
35
|
Wang B, Lan J, Qiao H, Xie L, Yang H, Lin H, Li X, Huang Y. Porous surface with fusion peptides embedded in strontium titanate nanotubes elevates osteogenic and antibacterial activity of additively manufactured titanium alloy. Colloids Surf B Biointerfaces 2023; 224:113188. [PMID: 36773409 DOI: 10.1016/j.colsurfb.2023.113188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
It is still a big challenge in orthopedics to treat infected bone defects properly using medical metals. The use of three-dimensional (3D) scaffold materials that simultaneously mimic the skeletal hierarchy and induce sustainable osteogenic and antibacterial functions are a promising solution with an increasing appeal. In this study, we first designed a bifunctional fusion peptide (HHC36-RGD, HR) by linking antimicrobial peptide (HHC36) and arginine-glycine-aspartate (RGD) peptide via 6-aminohexanoic acid. Then the 3D scaffold was fabricated by additive manufacturing, and the strontium titanate nanotube structure (3D-STN) was constructed on its surface. Finally, the HR was anchored to the 3D-STN with the aid of polydopamine (PDA, P), forming the 3D-STN-P-HR scaffold. The results showed that the scaffold exhibited an ordered 3D porous structure, and that the surface was covered by a dense HHC36-RGD layer. Expectedly, the adsorption of PDA effectively slowed down the release of HR. Moreover, the functionalized scaffold had a significant inhibitory effect on Staphylococcus aureus and Escherichia coli, and its antibacterial rate could reach more than 95%. The results of in vitro cell culture experiments demonstrated that the 3D-STN-P-HR scaffold possessed excellent cytocompatibility and could promote the transcription of osteogenic differentiation-related genes and the expression of related proteins. In conclusion, the functionally modified 3D porous titanium alloy scaffold (3D-STN-P-HR) has a balanced antibacterial and osteogenic function, which bodes well for future potential in the customized functional reconstruction of complex-shaped infected bone defects.
Collapse
Affiliation(s)
- Bingbing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jingpin Lan
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Haixia Qiao
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hao Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China.
| |
Collapse
|
36
|
Functionalization of 3D-Printed Titanium Scaffolds with Elastin-like Recombinamers to Improve Cell Colonization and Osteoinduction. Pharmaceutics 2023; 15:pharmaceutics15030872. [PMID: 36986732 PMCID: PMC10055514 DOI: 10.3390/pharmaceutics15030872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
The 3D printing of titanium (Ti) offers countless possibilities for the development of personalized implants with suitable mechanical properties for different medical applications. However, the poor bioactivity of Ti is still a challenge that needs to be addressed to promote scaffold osseointegration. The aim of the present study was to functionalize Ti scaffolds with genetically modified elastin-like recombinamers (ELRs), synthetic polymeric proteins containing the elastin epitopes responsible for their mechanical properties and for promoting mesenchymal stem cell (MSC) recruitment, proliferation, and differentiation to ultimately increase scaffold osseointegration. To this end, ELRs containing specific cell-adhesive (RGD) and/or osteoinductive (SNA15) moieties were covalently attached to Ti scaffolds. Cell adhesion, proliferation, and colonization were enhanced on those scaffolds functionalized with RGD-ELR, while differentiation was promoted on those with SNA15-ELR. The combination of both RGD and SNA15 into the same ELR stimulated cell adhesion, proliferation, and differentiation, although at lower levels than those for every single moiety. These results suggest that biofunctionalization with SNA15-ELRs could modulate the cellular response to improve the osseointegration of Ti implants. Further investigation on the amount and distribution of RGD and SNA15 moieties in ELRs could improve cell adhesion, proliferation, and differentiation compared to the present study.
Collapse
|
37
|
A novel method combining VAT photopolymerization and casting for the fabrication of biodegradable Zn-1Mg scaffolds with triply periodic minimal surface. J Mech Behav Biomed Mater 2023; 141:105763. [PMID: 36905706 DOI: 10.1016/j.jmbbm.2023.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Zinc alloy porous scaffolds are expected to be the next generation of degradable orthopedic implants attributed to their suitable degradation rate. However, a few studies have thoroughly investigated its applicable preparation method and functionality as an orthopedic implant. This study fabricated Zn-1Mg porous scaffolds with triply periodic minimal surface (TPMS) structure by a novel method combining VAT photopolymerization and casting. As-built porous scaffolds displayed fully connected pore structures with controllable topology. The manufacturability, mechanical properties, corrosion behaviors, biocompatibility, and antimicrobial performance of the bioscaffolds with pore sizes of 650 μm, 800 μm, and 1040 μm were investigated, and then compared and discussed with each other. In simulations, the mechanical behaviors of porous scaffolds exhibited the same tendency as the experiments. In addition, the mechanical properties of porous scaffolds as a function of degradation time were studied through a 90-day immersion experiment, which can provide a new option for analyzing the mechanical properties of porous scaffolds implanted in vivo. The G06 scaffold with lower pore size presented better mechanical properties before and after degradation compared with G10. The G06 scaffold with the pore size of 650 μm revealed good biocompatibility and antibacterial properties, which makes it possible to be one of the candidates for orthopedic implants.
Collapse
|
38
|
Agarwal R, Malhotra S, Gupta V, Jain V. Three‐dimensional printing of triply periodic minimal surface structured scaffolds for load‐bearing bone defects. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Raj Agarwal
- Mechanical Engineering Department Thapar Institute of Engineering and Technology Patiala Punjab India
| | - Shriya Malhotra
- Mechanical Engineering Department Thapar Institute of Engineering and Technology Patiala Punjab India
| | - Vishal Gupta
- Mechanical Engineering Department Thapar Institute of Engineering and Technology Patiala Punjab India
| | - Vivek Jain
- Mechanical Engineering Department Thapar Institute of Engineering and Technology Patiala Punjab India
| |
Collapse
|
39
|
Chao L, He Y, Gu J, Xie D, Yang Y, Shen L, Wu G, Wang L, Tian Z. Evaluation of Compressive and Permeability Behaviors of Trabecular-Like Porous Structure with Mixed Porosity Based on Mechanical Topology. J Funct Biomater 2023; 14:jfb14010028. [PMID: 36662075 PMCID: PMC9861825 DOI: 10.3390/jfb14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The mechanical properties and permeability properties of artificial bone implants have high-level requirements. A method for the design of trabecular-like porous structure (TLPS) with mixed porosity is proposed based on the study of the mechanical and permeability characteristics of natural bone. With this technique, the morphology and density of internal porous structures can be adjusted, depending on the implantation requirements, to meet the mechanical and permeability requirements of natural bone. The design parameters mainly include the seed points, topology optimization coefficient, load value, irregularity, and scaling factor. Characteristic parameters primarily include porosity and pore size distribution. Statistical methods are used to analyze the relationship between design parameters and characteristic parameters for precise TLPS design and thereby provide a theoretical basis and guidance. TLPS scaffolds were prepared by selective laser melting technology. First, TLPS under different design parameters were analyzed using the finite element method and permeability simulation. The results were then verified by quasistatic compression and cell experiments. The scaling factor and topology optimization coefficient were found to largely affect the mechanical and permeability properties of the TLPS. The corresponding compressive strength reached 270-580 MPa; the elastic modulus ranged between 6.43 and 9.716 GPa, and permeability was 0.6 × 10-9-21 × 10-9; these results were better than the mechanical properties and permeability of natural bone. Thus, TLPS can effectively improve the success rate of bone implantation, which provides an effective theory and application basis for bone implantation.
Collapse
Affiliation(s)
- Long Chao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yangdong He
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jiasen Gu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Deqiao Xie
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Youwen Yang
- College of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
- Correspondence: (Y.Y.); (L.S.)
| | - Lida Shen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Correspondence: (Y.Y.); (L.S.)
| | - Guofeng Wu
- Stomatological Digital Engineering Center, Nanjing Stomatological Hospital, Nanjing 210008, China
| | - Lin Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zongjun Tian
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Nanjing Hangpu Machinery Technology Co., Ltd., Nanjing 211806, China
| |
Collapse
|
40
|
Additively manufactured pure zinc porous scaffolds for critical-sized bone defects of rabbit femur. Bioact Mater 2023; 19:12-23. [PMID: 35415313 PMCID: PMC8980439 DOI: 10.1016/j.bioactmat.2022.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Additive manufacturing has received attention for the fabrication of medical implants that have customized and complicated structures. Biodegradable Zn metals are revolutionary materials for orthopedic implants. In this study, pure Zn porous scaffolds with diamond structures were fabricated using customized laser powder bed fusion (L-PBF) technology. First, the mechanical properties, corrosion behavior, and biocompatibility of the pure Zn porous scaffolds were characterized in vitro. The scaffolds were then implanted into the rabbit femur critical-size bone defect model for 24 weeks. The results showed that the pure Zn porous scaffolds had compressive strength and rigidity comparable to those of cancellous bone, as well as relatively suitable degradation rates for bone regeneration. A benign host response was observed using hematoxylin and eosin (HE) staining of the heart, liver, spleen, lungs, and kidneys. Moreover, the pure Zn porous scaffold showed good biocompatibility and osteogenic promotion ability in vivo. This study showed that pure Zn porous scaffolds with customized structures fabricated using L-PBF represent a promising biodegradable solution for treating large bone defects. L-PBF used to fabricate pure Zn porous scaffolds for bone implants. Degradation rates and mechanical strength suitable for bone implants. Pure Zn porous scaffolds showed good in vitro cytocompatibility with MC3T3-E1 cells. Pure Zn porous scaffolds have potential for large bone defect applications with osteogenic ability.
Collapse
|
41
|
Simorgh S, Alasvand N, Khodadadi M, Ghobadi F, Malekzadeh Kebria M, Brouki Milan P, Kargozar S, Baino F, Mobasheri A, Mozafari M. Additive manufacturing of bioactive glass biomaterials. Methods 2022; 208:75-91. [PMID: 36334889 DOI: 10.1016/j.ymeth.2022.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 11/05/2022] Open
Abstract
Tissue engineering (TE) and regenerative medicine have held great promises for the repair and regeneration of damaged tissues and organs. Additive manufacturing has recently appeared as a versatile technology in TE strategies that enables the production of objects through layered printing. By applying 3D printing and bioprinting, it is now possible to make tissue-engineered constructs according to desired thickness, shape, and size that resemble the native structure of lost tissues. Up to now, several organic and inorganic materials were used as raw materials for 3D printing; bioactive glasses (BGs) are among the most hopeful substances regarding their excellent properties (e.g., bioactivity and biocompatibility). In addition, the reported studies have confirmed that BG-reinforced constructs can improve osteogenic, angiogenic, and antibacterial activities. This review aims to provide an up-to-date report on the development of BG-containing raw biomaterials that are currently being employed for the fabrication of 3D printed scaffolds used in tissue regeneration applications with a focus on their advantages and remaining challenges.
Collapse
Affiliation(s)
- Sara Simorgh
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Alasvand
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Mahboobe Khodadadi
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Faezeh Ghobadi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maziar Malekzadeh Kebria
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Ali Mobasheri
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland; Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania; Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; World Health Organization Collaborating Centre for Public Health Aspects of Musculoskeletal Health and Aging, Liege, Belgium
| | - Masoud Mozafari
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
42
|
Zhang Q, Guan Y. Review: Application of metal additive manufacturing in oral dentistry. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Alipour S, Nour S, Attari SM, Mohajeri M, Kianersi S, Taromian F, Khalkhali M, Aninwene GE, Tayebi L. A review on in vitro/ in vivo response of additively manufactured Ti-6Al-4V alloy. J Mater Chem B 2022; 10:9479-9534. [PMID: 36305245 DOI: 10.1039/d2tb01616h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone replacement using porous and solid metallic implants, such as Ti-alloy implants, is regarded as one of the most practical therapeutic approaches in biomedical engineering. The bone is a complex tissue with various mechanical properties based on the site of action. Patient-specific Ti-6Al-4V constructs may address the key needs in bone treatment for having customized implants that mimic the complex structure of the natural tissue and diminish the risk of implant failure. This review focuses on the most promising methods of fabricating such patient-specific Ti-6Al-4V implants using additive manufacturing (AM) with a specific emphasis on the popular subcategory, which is powder bed fusion (PBF). Characteristics of the ideal implant to promote optimized tissue-implant interactions, as well as physical, mechanical/chemical treatments and modifications will be discussed. Accordingly, such investigations will be classified into 3B-based approaches (Biofunctionality, Bioactivity, and Biostability), which mainly govern native body response and ultimately the success in implantation.
Collapse
Affiliation(s)
- Saeid Alipour
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Shirin Nour
- Tissue Engineering Group, Department of Biomedical Engineering, University of Melbourne, VIC 3010, Australia.,Polymer Science Group, Department of Chemical Engineering, University of Melbourne, VIC 3010, Australia
| | - Seyyed Morteza Attari
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, TX, USA
| | - Sogol Kianersi
- CÚRAM, SFI Centre for Research in Medical Devices, Biomedical Sciences, University of Galway, Galway, Ireland
| | - Farzaneh Taromian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammadparsa Khalkhali
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - George E Aninwene
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, California, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
44
|
CerAMfacturing of silicon nitride by using lithography-based ceramic vat photopolymerization (CerAM VPP). Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Ge Q, Liu X, Qiao A, Mu Y. Compressive Properties and Degradable Behavior of Biodegradable Porous Zinc Fabricated with the Protein Foaming Method. J Funct Biomater 2022; 13:151. [PMID: 36135585 PMCID: PMC9501272 DOI: 10.3390/jfb13030151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
A new protein foaming-consolidation method for preparing porous zinc was developed using three proteins (egg white protein (EWP), bovine bone collagen protein (BBCP), and fish bone collagen protein (FBCP)) as both consolidating and foaming agents. The preparation route utilized powder mixing and sintering processing, which could be divided into three steps: slurry preparation, low-temperature foaming, and high-temperature sintering. The morphological characteristics of the pore structures revealed that the porous zinc had an interconnected open-cell structure. Compared to the porous zinc prepared with EWP or BBCP, the porous zinc prepared with FBCP possessed the largest average pore size and the highest compressive properties. The porosity of the porous zinc increased with the stirring time, the content of protein and sucrose, and higher sintering temperatures. Moreover, a compression test and immersion test were performed to investigate the stress-strain behavior and corrosion properties of the resulting porous zinc. A fluctuated stress plateau could be found due to the brittle fracture of the porous cells. The porous zinc prepared with FBCP showed the highest compressive strength and elastic modulus. The corrosion rate of the porous zinc obtained through an immersion test in vitro using simulated bodily fluids on the thirty-second day was close to 0.02 mm/year. The corresponding corrosion mechanism of porous zinc was also discussed.
Collapse
Affiliation(s)
- Qiqi Ge
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Xiaoqian Liu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Aike Qiao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
46
|
Wang J, Chi Y, Yang B, Zhang Q, Wang D, He X, Li H. The application of biomaterials in osteogenesis: A bibliometric and visualized analysis. Front Bioeng Biotechnol 2022; 10:998257. [PMID: 36159675 PMCID: PMC9504281 DOI: 10.3389/fbioe.2022.998257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Osteogenesis serves an important role in bone tissue repairing. Novel biomaterials are widely prevalent as materials for orthopedic implants due to their biocompatibility and osteogenetic ability. The purpose of this study was to comprehensively analyze hotspots and future trend of biomaterials research in osteogenesis based on bibliometric and visualized analysis. A total of 1,523 papers about biomaterials research in osteogenesis between 2000 and 2021 were included in this study. During the above 20 years, China's leading position in the global biomaterials research in osteogenesis was obvious, and it was also the country that most frequently participates in international cooperation. Chinese Academy of Sciences was the most productive institution and the leader of research cooperation. Acta Biomaterialia and Biomaterials have published the largest number of articles in the field of biomaterials research in osteogenesis. Meanwhile, Acta Biomaterialia and Biomaterials were also the two journals with the highest total citation frequency. Wu CT, Chang J, Kaplan DL, and Xiao Y all made important contributions in the field of biomaterials research in osteogenesis. At present, there are five research hotspots in the field of biomaterials research in osteogenesis: 1) the immunomodulatory role of biomaterial-related inflammatory; 2) mechanisms of osteogenesis in biomaterials; 3) 3D printing and clinical application of biomaterials; 4) bone tissue engineering for biomaterial osteogenesis; and 5) regenerative medicine for biomaterial osteogenesis. The results of this study showed that mechanisms of osteogenesis in biomaterials, bone tissue engineering for biomaterial osteogenesis, and regenerative medicine for biomaterial osteogenesis will remain research hotspots in the future. International cooperation was also expected to expand and deepen the field of biomaterials research in osteogenesis.
Collapse
Affiliation(s)
- Jie Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuan Chi
- School of Medicine, Nankai University, Tianjin, China
- Department of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Baohui Yang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Qiongchi Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Dong Wang
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xijing He
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haopeng Li
- Department of Orthopedic Surgery, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
47
|
Development of an architecture-property model for triply periodic minimal surface structures and validation using material extrusion additive manufacturing with polyetheretherketone (PEEK). J Mech Behav Biomed Mater 2022; 133:105345. [PMID: 35809464 DOI: 10.1016/j.jmbbm.2022.105345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/16/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022]
Abstract
Additively manufactured structures designed from triply periodic minimal surfaces (TPMSs) have been receiving attention for their potential uses in the medical, aerospace, and automobile industries. Understanding how these complex geometries can be designed to achieve particular architectural and mechanical properties is essential for tuning their function to certain applications. In this study, we created design tools for visualizing the interplay between TPMS design parameters and resulting architecture and aimed to validate a model of the relationship between structure architecture and Young's modulus. A custom MATLAB script was written to analyze structural properties for families of Schoen gyroid and Schwarz diamond structures, and a numerical homogenization scheme was performed to predict the effective Young's moduli of the structures based on their architecture. Our modeling methods were validated experimentally with polyetheretherketone (PEEK) structures created using material extrusion additive manufacturing. The architectural characteristics of the structures were determined using micro-computed tomography, and compression testing was performed to determine yield strength and Young's modulus. Two different initial build orientations were tested to determine the behavior both perpendicular and parallel to the layer deposition direction (referred to as z-direction and xy-direction, respectively). The z-direction Young's modulus ranged from 289.7 to 557.5 MPa and yield strength ranged from 10.12 to 20.3 MPa. For the xy-direction, Young's modulus ranged from 133.8 to 416.4 MPa and yield strength ranged from 3.8 to 12.2 MPa. For each initial build orientation, the mechanical properties were found to decrease with increasing porosity, and failure occurred due to both strut bending and interlayer debonding. The mechanical properties predicted by the modeling agreed with the values found for z-direction samples (difference 2-11%) but less so for xy-direction samples (difference 27-62%) due to weak interlayer bonding and print path irregularities. Ultimately, the findings presented here provide better understanding of the range of properties achievable for additive manufacturing of PEEK and encouraging results for a TPMS architecture-property model.
Collapse
|
48
|
Ma S, Xiao L, Guo D, Shi Q, Shen R, Li X. Application of 3D-printed osteotomy guides in periacetabular osteotomy: A short-term clinical study. Int J Artif Organs 2022; 45:945-951. [PMID: 36036079 DOI: 10.1177/03913988221120026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To compare the clinical efficacy between personalised 3-dimensional (3D) printed osteotomy and traditional osteotomy in periacetabular osteotomy (PAO). METHODS Twenty-two patients with acetabular dysplasia were randomly divided into a personalised 3D-printed osteotomy group and a traditional osteotomy group without 3D printing assistance. The operation time, intraoperative blood loss, X-ray frequency, quantity of postoperative drainage, postoperative transfusion rate, hip angle and Harris hip score of 6 months postoperative were studied and compared to evaluate the surgical efficacy between personalised 3D-printed osteotomy and traditional osteotomy in periacetabular osteotomy. RESULTS The operation time, intraoperative blood loss, X-ray frequency, postoperative 24 h drainage volume in the personalised 3D-printed osteotomy group (114.70 ± 2.21 min, 639.70 ± 5.00 mL, 11.82 ± 0.42 times, 231.20 ± 3.86 mL) was superior to the traditional group (150.40 ± 2.45 min, 850.50 ± 5.34 mL, 17.09 ± 0.39 times, 324.30 ± 4.06 mL). There was a statistically significant difference between the 3D-printed osteotomy group and the traditional osteotomy group in terms of the operation time, intraoperative blood loss, X-ray frequency and postoperative 24 h drainage volume (p < 0.05). And there were no substantial differences in the hip angle and the 6-month postoperative Harris hip score between the two groups (p > 0.05). CONCLUSION The 3D-printed osteotomy template for PAO is a valid method and its short-term clinical effect is superior to that of traditional osteotomy.
Collapse
Affiliation(s)
- Shiqiang Ma
- Department of Orthopedic Surgery, Cangzhou Hospital of Integrated TCM-WM, Cangzhou, Hebei, China
| | - Li Xiao
- Department of Orthopedic Surgery, Cangzhou Hospital of Integrated TCM-WM, Cangzhou, Hebei, China
| | - Donghui Guo
- Department of Orthopedic Surgery, Cangzhou Hospital of Integrated TCM-WM, Cangzhou, Hebei, China
| | - Qiuling Shi
- Department of Orthopedic Surgery, Cangzhou Hospital of Integrated TCM-WM, Cangzhou, Hebei, China
| | - Runbin Shen
- Department of Orthopedic Surgery, Cangzhou Hospital of Integrated TCM-WM, Cangzhou, Hebei, China
| | - Xiaoming Li
- Department of Orthopedic Surgery, Cangzhou Hospital of Integrated TCM-WM, Cangzhou, Hebei, China
| |
Collapse
|
49
|
Mirzaali MJ, Moosabeiki V, Rajaai SM, Zhou J, Zadpoor AA. Additive Manufacturing of Biomaterials-Design Principles and Their Implementation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5457. [PMID: 35955393 PMCID: PMC9369548 DOI: 10.3390/ma15155457] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 05/04/2023]
Abstract
Additive manufacturing (AM, also known as 3D printing) is an advanced manufacturing technique that has enabled progress in the design and fabrication of customised or patient-specific (meta-)biomaterials and biomedical devices (e.g., implants, prosthetics, and orthotics) with complex internal microstructures and tuneable properties. In the past few decades, several design guidelines have been proposed for creating porous lattice structures, particularly for biomedical applications. Meanwhile, the capabilities of AM to fabricate a wide range of biomaterials, including metals and their alloys, polymers, and ceramics, have been exploited, offering unprecedented benefits to medical professionals and patients alike. In this review article, we provide an overview of the design principles that have been developed and used for the AM of biomaterials as well as those dealing with three major categories of biomaterials, i.e., metals (and their alloys), polymers, and ceramics. The design strategies can be categorised as: library-based design, topology optimisation, bio-inspired design, and meta-biomaterials. Recent developments related to the biomedical applications and fabrication methods of AM aimed at enhancing the quality of final 3D-printed biomaterials and improving their physical, mechanical, and biological characteristics are also highlighted. Finally, examples of 3D-printed biomaterials with tuned properties and functionalities are presented.
Collapse
Affiliation(s)
- Mohammad J. Mirzaali
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Hou C, Liu Y, Xu W, Lu X, Guo L, Liu Y, Tian S, Liu B, Zhang J, Wen C. Additive manufacturing of functionally graded porous titanium scaffolds for dental applications. BIOMATERIALS ADVANCES 2022; 139:213018. [PMID: 35882159 DOI: 10.1016/j.bioadv.2022.213018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/31/2022] [Accepted: 07/03/2022] [Indexed: 12/29/2022]
Abstract
Graded porous titanium scaffolds are gaining increasing attention as dental implants due to their ability to mimic the mechanical and biological properties of human bone. In this study, we have developed titanium scaffolds with graded primitive structures with porosities of 50.7 %, 61.0 %, 70.5 %, and 80.3 % (denoted as P50, P60, P70, and P80, respectively) for dental applications. The simulation results in the oral environment showed that the maximum von Mises strains and stress of cortical bone tissue around P50, P60, and P70 were lower than 3000 με and 60 MPa, respectively, which was beneficial for bone regeneration. The elastic modulus and yield strength of P50, P60, and P70 ranged within 5.2-13.8 GPa and 88.6-217.8 MPa, respectively. Among these, P60 exhibited the most favorable mechanical properties with a compression yield strength of 163.2 MPa and an elastic modulus of 9.7 GPa, which are desirable mechanical properties for dental material applications. The tested permeabilities of the fabricated specimens were in the range 0.66-6.88 × 10-9 m2, which is within the range of human bone (0.01-12.10 × 10-9 m2). In vitro biocompatibility assay results showed that P60 and P70 had better potential for cell viability and osteogenesis than P50. It can be concluded that P60, which has a compatible elastic modulus, high yield strength, high permeability, good cytocompatibility, and osteogenesis properties, is a promising candidate for bone-tissue engineering applications in dentistry.
Collapse
Affiliation(s)
- Chenjin Hou
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Wei Xu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China.
| | - Xin Lu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China; Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, China; Beijing Advanced Innovation Center for Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China.
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100069, China.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100069, China
| | - Shiwei Tian
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Bowen Liu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jiazhen Zhang
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne 3001, Australia
| |
Collapse
|