1
|
Wang T, Liao S, Lu P, He Z, Cheng S, Wang T, Cheng Z, An Y, Wang M, Shu C. Improved porosity promotes reendothelialization and smooth muscle remodeling in decellularized tissue-engineered vascular grafts. Mater Today Bio 2025; 30:101402. [PMID: 39790489 PMCID: PMC11714392 DOI: 10.1016/j.mtbio.2024.101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Decellularized tissue-engineered vascular grafts (dTEVGs) exhibit superior biocompatibility, anti-infection properties and repair potential, contributing to better patency and making them a more ideal choice for arteriovenous grafts (AVGs) in hemodialysis compared to chemically synthesized grafts. However, the unsatisfactory reendothelialization and smooth muscle remodeling of current dTEVGs limit their advantages. In this study, we investigated the use of elastase to improve the porosity of elastic fiber layers in dTEVGs, aiming to promote cell infiltration and achieve superior reendothelialization and smooth muscle remodeling. Our findings revealed that elastase treatment induced scattered cracks and holes in the elastic fiber layers of dTEVGs. Porous dTEVGs demonstrated increased cell infiltration in rat subcutaneous tissue. In the rat AVG models, mildly elastase-treated dTEVGs significantly improved cell infiltration and graft remodeling, including adequate smooth muscle cell (SMC) repopulation, impressive reendothelization and regeneration of the extracellular matrix, without stenosis, dilation or disintegration of the grafts. This study demonstrates that porous dTEVGs promote reendothelization, smooth muscle remodeling and extracellular matrix regeneration while retaining a stable graft structure, enhancing durability and puncture resistance in hemodialysis.
Collapse
Affiliation(s)
- Tun Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Sheng Liao
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Peng Lu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Zhenyu He
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Siyuan Cheng
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Tianjian Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Zibo Cheng
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Yangyang An
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Mo Wang
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
| | - Chang Shu
- Department of Vascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Vascular Diseases, Central South University, Changsha, 410011, China
- Center of Vascular Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
2
|
Zhang C, Wang C, Cha R, Meng Q, Hu Z, Sun Y, Li Z, Xiao M, Zhang Y, Jiang X. Rapid Preparation of Collagen/Red Blood Cell Membrane Tubes for Stenosis-Free Vascular Regeneration. ACS NANO 2025; 19:3293-3311. [PMID: 39806273 DOI: 10.1021/acsnano.4c11919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects. Here, we rapidly prepared an electrospinning film-collagen/red blood cell membrane-genipin hydrogel tube (ES-C/Rm-G-ht, ID = 2 mm) by the combination of the cross-linking of genipin, plastic compression, electrospinning, and rolling without a biological adhesive, which had a shorter preparation time of less than 17 h compared to the existing ECM-based SDVGs (preparation time of 4-18 weeks). ES-C/Rm-G-ht exhibited a layered honeycomb-like structure and demonstrated the ECM-like functions to promote the proliferation and migration of endothelial cells, and prevent thrombus and inflammation. Furthermore, ES-C/Rm-G-ht, possessing sufficient mechanical strength, showed high patency, rapid endothelialization (95%), good regeneration of smooth muscle cell layers and ECM, and effective antistenosis capability after implantation in the rabbit's carotid artery for 31 days. This work provides a straightforward, cost-effective, and promising strategy to prepare SDVGs with ECM-like structure and function, which is an ideal alternative for vascular grafts and autologous vessels in the current clinic.
Collapse
Affiliation(s)
- Chunliang Zhang
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China
- The Ninth Medical Center of PLA General Hospital, No. 9 Anxiang Beili, Chaoyang District, Beijing 100101, PR China
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, PR China
| | - Chunyuan Wang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing 100037, PR China
| | - Ruitao Cha
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China
| | - Qinghua Meng
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Haidian District, Beijing 100190, PR China
| | - Zhan Hu
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing 100037, PR China
| | - Yang Sun
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing 100037, PR China
| | - Zulan Li
- The Ninth Medical Center of PLA General Hospital, No. 9 Anxiang Beili, Chaoyang District, Beijing 100101, PR China
| | - Min Xiao
- The Ninth Medical Center of PLA General Hospital, No. 9 Anxiang Beili, Chaoyang District, Beijing 100101, PR China
| | - Yan Zhang
- Fuwai Hospital, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing 100037, PR China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China
| |
Collapse
|
3
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
4
|
Wang Z, Zhou M, Li M, Li J, Zhang S, Wang J. Tailored endothelialization enabled by engineered endothelial cell vesicles accelerates remodeling of small-diameter vascular grafts. Bioact Mater 2024; 41:127-136. [PMID: 39131628 PMCID: PMC11314893 DOI: 10.1016/j.bioactmat.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Current gold standard for the replacement of small-diameter blood vessel (ID < 4 mm) is still to utilize the autologous vessels of patients due to the limitations of small-diameter vascular grafts (SDVG) on weak endothelialization, intimal hyperplasia and low patency. Herein, we create the SDVG with the tailored endothelialization by applying the engineered endothelial cell vesicles to camouflaging vascular grafts for the enhancement of vascular remodeling. The engineered endothelial cell vesicles were modified with azide groups (ECVs-N3) through metabolic glycoengineering to precisely link the vascular graft made of PCL-DBCO via click chemistry, and thus fabricating ECVG (ECVs-N3 modified SDVG), which assists inhibition of platelet adhesion and activation, promotion of ECs adhesion and enhancement of anti-inflammation. Furthermore, In vivo single-cell transcriptome analysis revealed that the proportion of ECs in the cell composition of ECVG surpassed that of PCL, and the tailored endothelialization enabled to convert endothelial cells (ECs) into some specific ECs clusters. One of the specific cluster, Endo_C5 cluster, was only detected in ECVG. Consequently, our study integrates the engineered membrane vesicles of ECVs-N3 from native ECs for tailored endothelialization on SDVG by circumventing the limitations of living cells, and paves a new way to construct the alternative endothelialization in vessel remodeling following injury.
Collapse
Affiliation(s)
- Zihao Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengxue Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyu Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengmin Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianglin Wang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- NMPA Research Base of Regulatory Science for Medical Devices, Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
5
|
Fan Y, Pei J, Qin Y, Du H, Qu X, Li W, Huang B, Tan J, Liu Y, Li G, Ke M, Xu Y, Zhu C. Construction of tissue-engineered vascular grafts with enhanced patency by integrating heparin, cell-adhesive peptide, and carbon monoxide nanogenerators into acellular blood vessels. Bioact Mater 2024; 34:221-236. [PMID: 38235307 PMCID: PMC10792202 DOI: 10.1016/j.bioactmat.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024] Open
Abstract
Small-diameter tissue-engineered vascular grafts (sdTEVGs) have garnered significant attention as a potential treatment modality for vascular bypass grafting and replacement therapy. However, the intimal hyperplasia and thrombosis are two major complications that impair graft patency during transplantation. To address this issue, we fabricated the covalent-organic framework (COF)-based carbon monoxide (CO) nanogenerator-and co-immobilized with LXW-7 peptide and heparin to establish a multifunctional surface on TEVGs constructed from acellular blood vessels for preventing thrombosis and stenosis. The cell-adhesive peptide LXW-7 could capture endothelial-forming cells (EFCs) to promote endothelialization, while the antithrombotic molecule heparin prevented thrombus formation. The reactive oxygen species (ROS)-triggered CO release suppressed the adhesion and activation of macrophages, leading to the reduction of ROS and inflammatory factors. As a result, the endothelial-to-mesenchymal transition (EndMT) triggered by inflammation was restricted, facilitating the maintenance of the homeostasis of the neo-endothelium and preventing pathological remodeling in TEVGs. When transplanted in vivo, these vascular grafts exhibited negligible intimal hyperplasia and remained patent for 3 months. This achievement provided a novel approach for constructing antithrombotic and anti-hyperplastic TEVGs.
Collapse
Affiliation(s)
- Yonghong Fan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu, 610083, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Juan Pei
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yinhua Qin
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Huifang Du
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Xiaohang Qu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Wenya Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Boyue Huang
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ju Tan
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Yong Liu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Gang Li
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
| | - Ming Ke
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Youqian Xu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
| | - Chuhong Zhu
- Department of Anatomy, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Key Lab for Biomechanics and Tissue Engineering of Chongqing, Third Military Medical University, Chongqing, 400038, China
- Engineering Research Center of Tissue and Organ Regeneration and Manufacturing, Ministry of Education, Chongqing, 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China
- Department of Plastic and Aesthetic Surgery, Southwest Hospital, Third Military Medical University, Chongqing, 400038, China
| |
Collapse
|
6
|
Laowpanitchakorn P, Zeng J, Piantino M, Uchida K, Katsuyama M, Matsusaki M. Biofabrication of engineered blood vessels for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2330339. [PMID: 38633881 PMCID: PMC11022926 DOI: 10.1080/14686996.2024.2330339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/10/2024] [Indexed: 04/19/2024]
Abstract
To successfully engineer large-sized tissues, establishing vascular structures is essential for providing oxygen, nutrients, growth factors and cells to prevent necrosis at the core of the tissue. The diameter scale of the biofabricated vasculatures should range from 100 to 1,000 µm to support the mm-size tissue while being controllably aligned and spaced within the diffusion limit of oxygen. In this review, insights regarding biofabrication considerations and techniques for engineered blood vessels will be presented. Initially, polymers of natural and synthetic origins can be selected, modified, and combined with each other to support maturation of vascular tissue while also being biocompatible. After they are shaped into scaffold structures by different fabrication techniques, surface properties such as physical topography, stiffness, and surface chemistry play a major role in the endothelialization process after transplantation. Furthermore, biological cues such as growth factors (GFs) and endothelial cells (ECs) can be incorporated into the fabricated structures. As variously reported, fabrication techniques, especially 3D printing by extrusion and 3D printing by photopolymerization, allow the construction of vessels at a high resolution with diameters in the desired range. Strategies to fabricate of stable tubular structures with defined channels will also be discussed. This paper provides an overview of the many advances in blood vessel engineering and combinations of different fabrication techniques up to the present time.
Collapse
Affiliation(s)
| | - Jinfeng Zeng
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Marie Piantino
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Kentaro Uchida
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Misa Katsuyama
- Materials Solution Department, Product Analysis Center, Panasonic Holdings Corporation, Kadoma, Osaka, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- The Consortium for Future Innovation by Cultured Meat, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Ranjbar J, Yang Y, Harper AGS. Developing human tissue engineered arterial constructs to simulate human in vivo thrombus formation. Platelets 2023; 34:2153823. [PMID: 36550074 DOI: 10.1080/09537104.2022.2153823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thrombus formation is highly dependent upon the physico-chemical environment in which it is triggered. Our ability to understand how thrombus formation is initiated, regulated, and resolved in the human body is dependent upon our ability to replicate the mechanical and biological properties of the arterial wall. Current in vitro thrombosis models principally use reductionist approaches to model the complex biochemical and cellular milieu present in the arterial wall, and so researcher have favored the use of in vivo models. The field of vascular tissue engineering has developed a range of techniques for culturing artificial human arteries for use as vascular grafts. These techniques therefore provide a basis for developing more sophisticated 3D replicas of the arterial wall that can be used in in vitro thrombosis models. In this review, we consider how tissue engineering approaches can be used to generate 3D models of the arterial wall that improve upon current in vivo and in vitro approaches. We consider the current benefits and limitations of reported 3D tissue engineered models and consider what additional evidence is required to validate them as alternatives to current in vivo models.
Collapse
Affiliation(s)
| | - Ying Yang
- School of Pharmacy & Bioengineering, Keele University, Keele, UK
| | | |
Collapse
|
8
|
Liang J, Zhao J, Chen Y, Li B, Li Y, Lu F, Dong Z. New Insights and Advanced Strategies for In Vitro Construction of Vascularized Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:692-709. [PMID: 37409413 DOI: 10.1089/ten.teb.2023.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Inadequate vascularization is a significant barrier to clinical application of large-volume tissue engineered grafts. In contrast to in vivo vascularization, in vitro prevascularization shortens the time required for host vessels to grow into the graft core and minimizes necrosis in the core region of the graft. However, the challenge of prevascularization is to construct hierarchical perfusable vascular networks, increase graft volume, and form a vascular tip that can anastomose with host vessels. Understanding advances in in vitro prevascularization techniques and new insights into angiogenesis could overcome these obstacles. In the present review, we discuss new perspectives on angiogenesis, the differences between in vivo and in vitro tissue vascularization, the four elements of prevascularized constructs, recent advances in perfusion-based in vitro prevascularized tissue fabrication, and prospects for large-volume prevascularized tissue engineering.
Collapse
Affiliation(s)
- Jiancong Liang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jing Zhao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yunzi Chen
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Bin Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ye Li
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziqing Dong
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Jeong JO, Ju YM, Kang HW, Atala A, Yoo JJ, Lee SJ. Biofunctionalized Electrospun Vascular Scaffolds for Enhanced Antithrombotic Properties and In Situ Endothelialization. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37923557 DOI: 10.1021/acsami.3c13738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The development of innovative vascular substitutes has become increasingly significant due to the prevalence of vascular diseases. In this study, we designed a biofunctionalized electrospun vascular scaffold by chemically conjugating heparin molecules as an antithrombotic agent with an endothelial cell (EC)-specific antibody to promote in situ endothelialization. To optimize this biofunctionalized electrospun vascular scaffolding system, we examined various parameters, including material compositions, cross-linker concentrations, and cross-linking and conjugation processes. The findings revealed that a higher degree of heparin conjugation onto the vascular scaffold resulted in improved antithrombotic properties, as confirmed by the platelet adhesion test. Additionally, the flow chamber study demonstrated that the EC-specific antibody immobilization enhanced the scaffold's EC-capturing capability compared to a nonconjugated vascular scaffold. The optimized biofunctionalized vascular scaffolds also displayed exceptional mechanical properties, such as suture retention strength and tensile properties. Our research demonstrated that the biofunctionalized vascular scaffolds and the directed immobilization of bioactive molecules could provide the necessary elements for successful acellular vascular tissue engineering applications.
Collapse
Affiliation(s)
- Jin-Oh Jeong
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
- Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Young Min Ju
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Hyun-Wook Kang
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
- Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
10
|
Rojas-González DM, Babendreyer A, Ludwig A, Mela P. Analysis of flow-induced transcriptional response and cell alignment of different sources of endothelial cells used in vascular tissue engineering. Sci Rep 2023; 13:14384. [PMID: 37658092 PMCID: PMC10474151 DOI: 10.1038/s41598-023-41247-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Endothelialization of tissue-engineered vascular grafts has proven crucial for implant functionality and thus clinical outcome, however, the choice of endothelial cells (ECs) is often driven by availability rather than by the type of vessel to be replaced. In this work we studied the response to flow of different human ECs with the aim of examining whether their response in vitro is dictated by their original in vivo conditions. Arterial, venous, and microvascular ECs were cultured under shear stress (SS) of 0, 0.3, 3, 1, 10, and 30 dyne/cm2 for 24 h. Regulation of flow-induced marker KLF2 was similar across the different ECs. Upregulation of anti-thrombotic markers, TM and TPA, was mainly seen at higher SS. Cell elongation and alignment was observed for the different ECs at 10 and 30 dyne/cm2 while at lower SS cells maintained a random orientation. Downregulation of pro-inflammatory factors SELE, IL8, and VCAM1 and up-regulation of anti-oxidant markers NQO1 and HO1 was present even at SS for which cell alignment was not observed. Our results evidenced similarities in the response to flow among the different ECs, suggesting that the maintenance of the resting state in vitro is not dictated by the SS typical of the tissue of origin and that absence of flow-induced cell orientation does not necessarily correlate with a pro-inflammatory state of the ECs. These results support the use of ECs from easily accessible sources for in vitro vascular tissue engineering independently from the target vessel.
Collapse
Affiliation(s)
- Diana M Rojas-González
- Department of Biohybrid & Medical Textiles (BioTex) at Center of Biohybrid Medical Systems (CBMS), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, School of Engineering and Design and Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstr 15, 85748, Garching, Germany
| | - Aaron Babendreyer
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Andreas Ludwig
- Institute of Molecular Pharmacology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Petra Mela
- Department of Biohybrid & Medical Textiles (BioTex) at Center of Biohybrid Medical Systems (CBMS), AME-Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Forckenbeckstr. 55, 52074, Aachen, Germany.
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, School of Engineering and Design and Munich Institute of Biomedical Engineering, Technical University of Munich, Boltzmannstr 15, 85748, Garching, Germany.
| |
Collapse
|
11
|
Moura D, Pereira AT, Ferreira HP, Barrias CC, Magalhães FD, Bergmeister H, Gonçalves IC. Poly(2-hydroxyethyl methacrylate) hydrogels containing graphene-based materials for blood-contact applications: from soft inert to strong degradable material. Acta Biomater 2023; 164:253-268. [PMID: 37121371 DOI: 10.1016/j.actbio.2023.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
Degradable biomaterials for blood-contacting devices (BCDs) are associated with weak mechanical properties, high molecular weight of the degradation products and poor hemocompatibility. Herein, the inert and biocompatible FDA approved poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel was turned into a degradable material by incorporation of different amounts of a hydrolytically labile crosslinking agent, pentaerythritol tetrakis(3-mercaptopropionate). In situ addition of 1wt.% of oxidized graphene-based materials (GBMs) with different lateral sizes/thicknesses (single-layer graphene oxide, and oxidized forms of few-layer graphene materials) was performed to enhance the mechanical properties of hydrogels. An ultimate tensile strength increases up to 0.2 MPa (293% higher than degradable pHEMA) was obtained using oxidized few-layer graphene with 5 μm lateral size. Moreover, the incorporation of GBMs has demonstrated to simultaneously tune the degradation time, which ranged from 2 to 4 months. Notably, these features were achieved keeping not only the intrinsic properties of inert pHEMA regarding water uptake, wettability and cytocompatibility (short and long term), but also the non-fouling behavior towards human cells, platelets and bacteria. This new pHEMA hydrogel with degradation and biomechanical performance tuned by GBMs, can therefore be envisioned for different applications in tissue engineering, particularly for BCDs where non-fouling character is essential. STATEMENT OF SIGNIFICANCE: Suitable mechanical properties, low molecular weight of the degradation products and hemocompatibility are key features in degradable blood contacting devices (BCDs), and pave the way for significant improvement in the field. In here, a hydrogel with outstanding anti-adhesiveness (pHEMA) provides hemocompatibility, the presence of a degradable crosslinker provides degradability, and incorporation of graphene oxide reestablishes its strength, allowing tuning of both degradation and mechanical properties. Notably, these hydrogels simultaneously provide suitable water uptake, wettability, cytocompatibility (short and long term), no acute inflammatory response, and non-fouling behavior towards endothelial cells, platelets and bacteria. Such results highlight the potential of these hydrogels to be envisioned for applications in tissue engineered BCDs, namely as small diameter vascular grafts.
Collapse
Affiliation(s)
- Duarte Moura
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Andreia T Pereira
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal
| | - Helena P Ferreira
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Cristina C Barrias
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, 4050-313, Portugal
| | - Fernão D Magalhães
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Helga Bergmeister
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Cardiovascular Research, Austria
| | - Inês C Gonçalves
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-180 Porto, Portugal.
| |
Collapse
|
12
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
13
|
Biomimetic and Bioactive Small Diameter Tubular Scaffolds for Vascular Tissue Engineering. Biomimetics (Basel) 2022; 7:biomimetics7040199. [PMID: 36412727 PMCID: PMC9680506 DOI: 10.3390/biomimetics7040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
The present work aimed at the production and characterization of small caliber biomimetic and bioactive tubular scaffolds, which are able to favor the endothelialization process, and therefore potentially be suitable for vascular tissue engineering. The tubular scaffolds were produced using a specially designed mold, starting from a gelatin/gellan/elastin (GGE) blend, selected to mimic the composition of the extracellular matrix of native blood vessels. GGE scaffolds were obtained through freeze-drying and subsequent cross-linking. To obtain systems capable of promoting endothelization, the scaffolds were functionalized using two different bioactive peptides, Gly-Arg-Gly-Asp-Ser-Pro (GRGSDP) and Arg-Glu-Asp-Val (REDV). A complete physicochemical, mechanical, functional, and biological characterization of the developed scaffolds was performed. GGE scaffolds showed a good porosity, which could promote cell infiltration and proliferation and a dense external surface, which could avoid bleeding. Moreover, developed scaffolds showed good hydrophilicity, an elastic behavior similar to natural vessels, suitability for sterilization by an ISO accepted treatment, and an adequate suture retention strength. In vitro cell culture tests showed no cytotoxic activity against 3T3 fibroblasts. The functionalization with the REDV peptide favored the adhesion and growth of endothelial cells, while GRGDSP-modified scaffolds represented a better substrate for fibroblasts.
Collapse
|
14
|
Tu C, Zhang Y, Xiao Y, Xing Y, Jiao Y, Geng X, Zhang A, Ye L, Gu Y, Feng Z. Hydrogel-complexed small-diameter vascular graft loaded with tissue-specific vascular extracellular matrix components used for tissue engineering. BIOMATERIALS ADVANCES 2022; 142:213138. [PMID: 36219919 DOI: 10.1016/j.bioadv.2022.213138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Tissue engineering is thought to the most promising strategy to develop successful small diameter vascular grafts (SDVG) to meet clinical demand. The introduction of natural substances into the SDVG made from synthetic biomaterials can improve the biocompatibility to promote the regeneration of SDVG in vivo. Due to that natural materials from different sources may have property deviation, it is vital to determine the source of natural materials to optimize SDVG fabrication for tissue engineering applications. In this study, bioactive SDVGs were prepared via coating of heparin-modified poly-(ε-caprolactone) scaffolds with a precursor solution containing vascular extracellular matrix (VECM) components and subsequent in situ gelation. The mechanical properties, degradation behaviors, and morphologies of the SDVGs were thoroughly characterized and evaluated. Cell experiments demonstrated the in vitro tissue specificity of the VECM that could promote the proliferation of endothelial cells better than skin-derived collagen. Furthermore, three types of SDVGs, SDVGs with blank hydrogel, SDVGs with skin-derived collagen, and SDVGs with vascular extracellular matrix (VECM-SDVGs), were implanted into the abdominal aorta of rats for one month. The explanted SDVGs were then comprehensively evaluated using hematoxylin and eosin, Masson, von Kossa staining, and immunohistochemical staining for CD31, α-SMA, and MHC. The results showed that the VECM-SDVGs showed the best endothelium regeneration, appropriate intima regeneration, and no calcification, indicating the in vivo specificity of the fabricated VECM-SDVGs. Thus, long-term implantation of VECM-SDVGs was performed. The results showed that a complete endothelial layer formed after 6 months of implantation, and the amount of contractile SMCs in the regenerative smooth muscle layer approached the amount of native aorta at the 12th month. Consequently, relying on vascular tissue specificity, VECM-SDVGs can modulate the regenerative behavior of the implanted SDVGs in vivo to achieve satisfactory vascular regeneration both in short- and long-term implantation.
Collapse
Affiliation(s)
- Chengzhao Tu
- School of Materials Science and Engineering, Beijing Institution of Technology, Beijing 100081, China
| | - Yuanguo Zhang
- Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yonghao Xiao
- School of Materials Science and Engineering, Beijing Institution of Technology, Beijing 100081, China
| | - Yuehao Xing
- Department of Cardiovascular Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yuhao Jiao
- Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institution of Technology, Beijing 100081, China
| | - Aiying Zhang
- School of Materials Science and Engineering, Beijing Institution of Technology, Beijing 100081, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institution of Technology, Beijing 100081, China.
| | - Yongquan Gu
- Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institution of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Wang Y, Li G, Yang L, Luo R, Guo G. Development of Innovative Biomaterials and Devices for the Treatment of Cardiovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201971. [PMID: 35654586 DOI: 10.1002/adma.202201971] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Cardiovascular diseases have become the leading cause of death worldwide. The increasing burden of cardiovascular diseases has become a major public health problem and how to carry out efficient and reliable treatment of cardiovascular diseases has become an urgent global problem to be solved. Recently, implantable biomaterials and devices, especially minimally invasive interventional ones, such as vascular stents, artificial heart valves, bioprosthetic cardiac occluders, artificial graft cardiac patches, atrial shunts, and injectable hydrogels against heart failure, have become the most effective means in the treatment of cardiovascular diseases. Herein, an overview of the challenges and research frontier of innovative biomaterials and devices for the treatment of cardiovascular diseases is provided, and their future development directions are discussed.
Collapse
Affiliation(s)
- Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaocan Li
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Li Yang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| | - Gaoyang Guo
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China
| |
Collapse
|
16
|
Jia W, Liu L, Li M, Zhou Y, Zhou H, Weng H, Gu G, Xiao M, Chen Z. Construction of enzyme-laden vascular scaffolds based on hyaluronic acid oligosaccharides-modified collagen nanofibers for antithrombosis and in-situ endothelialization of tissue-engineered blood vessels. Acta Biomater 2022; 153:287-298. [PMID: 36155095 DOI: 10.1016/j.actbio.2022.09.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022]
Abstract
The current use of synthetic grafts often yields low patency in the reconstruction of small-diameter blood vessels owing to the deposition of thrombi and imperfect coverage of the endothelium on the graft lumen. Therefore, the design of vascular scaffolds with antithrombotic performance and endothelialization is greatly required. Herein, we developed an enzyme-laden scaffold based on hyaluronic acid oligosaccharides-modified collagen nanofibers (labeled HA-COL) to improve the anti-platelet capacity and endothelialization of vascular grafts. In this study, HA-COL nanofibers not only encouraged the endothelialization of vascular scaffolds, but acted as an antiplatelet enzyme-laden platform. Apyrase (Apy) and 5'-nucleotidase (5'-NT) were covalently grafted onto the nanofibers, which in turn converted the platelet-sensitive substance: adenosine diphosphate (ADP) into adenosine monophosphate (AMP) and adenosine, thereby, improving the antithrombotic performance of the scaffolds. Notably, the catalytic end-product: adenosine would work in coordination with HA-COL to synergistically enhance the endothelialization of the vascular scaffolds. The results demonstrated that the enzyme-laden scaffolds maintained catalytic performance, reduced platelet adhesion and aggregation, and guaranteed higher patency after 1-month in situ transplantation. Moreover, these scaffolds showed optimal cytocompatibility, tissue compatibility, scaffold biodegradability and tissue regenerative capability during in vivo implantation. Overall, these engineered vascular scaffolds demonstrated their capacity for endothelialization and antithrombotic performance, suggesting their potential for small-diameter vascular tissue engineering applications. STATEMENT OF SIGNIFICANCE: Considering the critical problems in small-diameter vascular reconstruction, the enzyme-laden vascular scaffolds were prepared for improving in-situ endothelialization and antithrombotic performances of artificial blood vessels. The electrospun HA-COL nanofibers were used as the main matrix materials, which provided favorable structural templates for the regeneration of vasculature and functioned as a platform for the loading of enzymes. The enzyme-laden scaffolds with the biomimetic cascading reaction would convert ADP into adenosine, thereby, decreasing the sensitivity of platelets and improving the antithrombotic performance of tissue-engineered blood vessels (TEBVs). The nanofibrous scaffolds exhibited optimal cytocompatibility, tissue compatibility and regenerative capability, working together with catalytic products of dual-enzyme reaction that would synergistically contribute to TEBVs endothelialization. This study provides a new method for the improvement of in-situ endothelialization of small-diameter TEBVs while qualified with antithrombotic performance.
Collapse
Affiliation(s)
- Weibin Jia
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China; Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong 999077, China
| | - Liling Liu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Min Li
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Yuanmeng Zhou
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Hang Zhou
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Hongjuan Weng
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Min Xiao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China
| | - Zonggang Chen
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
17
|
Gui Y, Qin K, Zhang Y, Bian X, Wang Z, Han D, Peng Y, Yan H, Gao Z. Quercetin improves rapid endothelialization and inflammatory microenvironment in electrospun vascular grafts. Biomed Mater 2022; 17. [DOI: 10.1088/1748-605x/ac9266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022]
Abstract
Abstract
There is a great need for small diameter vascular grafts among patients with cardiovascular diseases annually. However, continuous foreign body reactions and fibrosis capsules brought by biomaterials are both prone to poor vascular tissue regeneration. To address this problem, we fabricated a polycaprolactone (PCL) vascular graft incorporated with quercetin (PCL/QCT graft) in this study. In vitro cell assay showed that quercetin reduced the expressions of pro-inflammatory genes of macrophages while increased the expressions of anti-inflammatory genes. Furthermore, in vivo implantation was performed in a rat abdominal aorta replacement model. Upon implantation, the grafts exhibited sustained quercetin release and effectively enhanced the regeneration of vascular tissue. The results revealed that quercetin improved endothelial layer formation along the lumen of the vascular grafts at 4 weeks. Furthermore, the thickness of vascular smooth muscle layers significantly increased in PCL/QCT group compared with PCL group. More importantly, the presence of quercetin stimulated the infiltration of a large amount of M2 phenotype macrophages into the grafts. Collectively, the above data reinforced our hypothesis that the incorporation of quercetin may be in favor of modulating the inflammatory microenvironment and improving vascular tissue regeneration and remodeling in vascular grafts.
Collapse
|
18
|
Liu X, Wang N, Liu X, Deng R, Kang R, Xie L. Vascular Repair by Grafting Based on Magnetic Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14071433. [PMID: 35890328 PMCID: PMC9320478 DOI: 10.3390/pharmaceutics14071433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Magnetic nanoparticles (MNPs) have attracted much attention in the past few decades because of their unique magnetic responsiveness. Especially in the diagnosis and treatment of diseases, they are mostly involved in non-invasive ways and have achieved good results. The magnetic responsiveness of MNPs is strictly controlled by the size, crystallinity, uniformity, and surface properties of the synthesized particles. In this review, we summarized the classification of MNPs and their application in vascular repair. MNPs mainly use their unique magnetic properties to participate in vascular repair, including magnetic stimulation, magnetic drive, magnetic resonance imaging, magnetic hyperthermia, magnetic assembly scaffolds, and magnetic targeted drug delivery, which can significantly affect scaffold performance, cell behavior, factor secretion, drug release, etc. Although there are still challenges in the large-scale clinical application of MNPs, its good non-invasive way to participate in vascular repair and the establishment of a continuous detection process is still the future development direction.
Collapse
Affiliation(s)
| | | | | | | | | | - Lin Xie
- Correspondence: (R.K.); (L.X.)
| |
Collapse
|
19
|
Kraus X, van de Flierdt E, Renzelmann J, Thoms S, Witt M, Scheper T, Blume C. Peripheral blood derived endothelial colony forming cells as suitable cell source for pre-endothelialization of arterial vascular grafts under dynamic flow conditions. Microvasc Res 2022; 143:104402. [PMID: 35753506 DOI: 10.1016/j.mvr.2022.104402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
In regenerative medicine, autologous peripheral blood derived endothelial colony forming cells (PB-derived ECFC) represent a promising source of endothelial cells (EC) for pre-endothelialization of arterial tissue engineered vascular grafts (TEVG) since they are readily attainable, can easily be isolated and possess a high proliferation potential. The aim of this study was to compare the phenotype of PB-derived ECFC with arterial and venous model cells such as human aortic endothelial cells (HAEC) and human umbilical vein endothelial cells (HUVEC) under dynamic cell culture conditions to find a suitable cell source of EC for pre-endothelialization. In this study PB-derived ECFC were cultivated over 24 h under a high pulsatile shear stress (20 dyn/cm2, 1 Hz) and subsequently analyzed. ECFC oriented and elongated in the direction of flow and expressed similar anti-thrombotic and endothelial differentiation markers compared to HAEC. There were significant differences observable in gene expression levels of CD31, CD34 and NOTCH4 between ECFC and HUVEC. These results therefore suggest an arterial phenotype for PB-derived ECFC both under static and flow conditions, and this was supported by NOTCH4 protein expression profiles. ECFC also significantly up-regulated gene expression levels of anti-thrombotic genes such as krueppel-like factor 2, endothelial nitric oxide synthase 3 and thrombomodulin under shear stress cultivation as compared to static conditions. Dynamically cultured PB-derived ECFC therefore may be a promising cell source for pre-endothelialization of arterial TEVGs.
Collapse
Affiliation(s)
- Xenia Kraus
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany.
| | - Edda van de Flierdt
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Jannis Renzelmann
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Stefanie Thoms
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Martin Witt
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Thomas Scheper
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Cornelia Blume
- Leibniz University Hannover, Institute of Technical Chemistry, Callinstr. 5, D-30167 Hannover, Germany; Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
20
|
Hu K, Li Y, Ke Z, Yang H, Lu C, Li Y, Guo Y, Wang W. History, progress and future challenges of artificial blood vessels: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:81-98. [PMID: 35837341 PMCID: PMC9255792 DOI: 10.12336/biomatertransl.2022.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
Cardiovascular disease serves as the leading cause of death worldwide, with stenosis, occlusion, or severe dysfunction of blood vessels being its pathophysiological mechanism. Vascular replacement is the preferred surgical option for treating obstructed vascular structures. Due to the limited availability of healthy autologous vessels as well as the incidence of postoperative complications, there is an increasing demand for artificial blood vessels. From synthetic to natural, or a mixture of these components, numerous materials have been used to prepare artificial vascular grafts. Although synthetic grafts are more appropriate for use in medium to large-diameter vessels, they fail when replacing small-diameter vessels. Tissue-engineered vascular grafts are very likely to be an ideal alternative to autologous grafts in small-diameter vessels and are worthy of further investigation. However, a multitude of problems remain that must be resolved before they can be used in biomedical applications. Accordingly, this review attempts to describe these problems and provide a discussion of the generation of artificial blood vessels. In addition, we deliberate on current state-of-the-art technologies for creating artificial blood vessels, including advances in materials, fabrication techniques, various methods of surface modification, as well as preclinical and clinical applications. Furthermore, the evaluation of grafts both in vivo and in vitro, mechanical properties, challenges, and directions for further research are also discussed.
Collapse
Affiliation(s)
- Ke Hu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yuxuan Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zunxiang Ke
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan, Hubei Province, China
| | - Chanjun Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yi Guo
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Clinical Centre of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Yi Guo, ; Weici Wang,
| | - Weici Wang
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Yi Guo, ; Weici Wang,
| |
Collapse
|
21
|
Heparin Immobilization of Tissue Engineered Xenogeneic Small Diameter Arterial Scaffold Improve Endothelialization. Tissue Eng Regen Med 2022; 19:505-523. [PMID: 35092597 PMCID: PMC9130405 DOI: 10.1007/s13770-021-00411-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Autologous vessels graft (Inner diameter < 6 mm) harvesting always challenged during bypass grafting surgery and its complication shows poor outcome. Tissue engineered vascular graft allow to generate biological graft without any immunogenic complication. The approach presented in this study is to induce graft remodeling through heparin coating in luminal surface of small diameter (Inner diameter < 1 mm) decellularized arterial graft. METHODS Decellularization of graft was done using SDS, combination of 0.5% sodium dodecyl sulfate and 0.5% sodium deoxycholate and only sodium deoxycholate. Decellularization was confirmed on basis of histology, and DAPI. Characterization of extracellular matrix was analyzed using histology and scanning electron microscopy. Surface modification of decellularized vascular graft was done with heparin coating. Heparin immobilization was evaluated by toluidine blue stain. Heparin-coated graft was transplanted end to end anastomosis in femoral artery in rat. RESULTS Combination of 0.5% sodium dodecyl sulfate and 0.5% Sodium deoxycholate showed complete removal of xenogeneic cells. The heparin coating on luminal surface showed anti-thrombogenicity and endothelialization. Mechanical testing revealed no significant differences in strain characteristics and modulus between native tissues, decellularized scaffolds and transplanted scaffold. Collectively, this study proposed a heparin-immobilized ECM coating to surface modification offering functionalize biomaterials for developing small-diameter vascular grafts. CONCLUSION We conclude that xenogeneic decellularized arterial scaffold with heparin surface modification can be fabricated and successfully transplanted small diameter (inner diameter < 1 mm) decellularized arterial graft.
Collapse
|
22
|
Iwaki R, Shoji T, Matsuzaki Y, Ulziibayar A, Shinoka T. Current status of developing tissue engineering vascular technologies. Expert Opin Biol Ther 2021; 22:433-440. [PMID: 34427482 DOI: 10.1080/14712598.2021.1960976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is the leading cause of death in western countries. Although surgical outcomes for CVD are dramatically improving with the development of surgical techniques, medications, and perioperative management strategies, adverse postoperative events related to the use of artificial prosthetic materials are still problematic. Moreover, in pediatric patients, using these artificial materials make future re-intervention inevitable due to their lack of growth potential. AREAS COVERED This review focuses on the most current tissue-engineering (TE) technologies to treat cardiovascular diseases and discusses their limitations through reports ranging from animal studies to clinical trials. EXPERT OPINION Tissue-engineered structures, derived from a patient's own autologous cells/tissues and biodegradable polymer scaffolds, can provide mechanical function similar to non-diseased tissue. However, unlike prosthetic materials, tissue-engineered structures are hypothetically more biocompatible and provide growth potential, saving patients from additional or repetitive interventions. While there are many methods being investigated to develop TE technologies in the hopes of finding better options to tackle CVD, most of these approaches are not ready for clinical use or trials. However, tissue engineering has great promise to potentially provide better treatment options to vastly improve cardiovascular surgical outcomes.
Collapse
Affiliation(s)
- Ryuma Iwaki
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshihiro Shoji
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yuichi Matsuzaki
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
23
|
Antonova LV, Krivkina EO, Sevostianova VV, Mironov AV, Rezvova MA, Shabaev AR, Tkachenko VO, Krutitskiy SS, Khanova MY, Sergeeva TY, Matveeva VG, Glushkova TV, Kutikhin AG, Mukhamadiyarov RA, Deeva NS, Akentieva TN, Sinitsky MY, Velikanova EA, Barbarash LS. Tissue-Engineered Carotid Artery Interposition Grafts Demonstrate High Primary Patency and Promote Vascular Tissue Regeneration in the Ovine Model. Polymers (Basel) 2021; 13:polym13162637. [PMID: 34451177 PMCID: PMC8400235 DOI: 10.3390/polym13162637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Tissue-engineered vascular graft for the reconstruction of small arteries is still an unmet clinical need, despite the fact that a number of promising prototypes have entered preclinical development. Here we test Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)Poly(ε-caprolactone) 4-mm-diameter vascular grafts equipped with vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and stromal cell-derived factor 1α (SDF-1α) and surface coated with heparin and iloprost (PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo, n = 8) in a sheep carotid artery interposition model, using biostable vascular prostheses of expanded poly(tetrafluoroethylene) (ePTFE, n = 5) as a control. Primary patency of PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts was 62.5% (5/8) at 24 h postimplantation and 50% (4/8) at 18 months postimplantation, while all (5/5) ePTFE conduits were occluded within the 24 h after the surgery. At 18 months postimplantation, PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts were completely resorbed and replaced by the vascular tissue. Regenerated arteries displayed a hierarchical three-layer structure similar to the native blood vessels, being fully endothelialised, highly vascularised and populated by vascular smooth muscle cells and macrophages. The most (4/5, 80%) of the regenerated arteries were free of calcifications but suffered from the aneurysmatic dilation. Therefore, biodegradable PHBV/PCL[VEGF-bFGF-SDF]Hep/Ilo grafts showed better short- and long-term results than bio-stable ePTFE analogues, although these scaffolds must be reinforced for the efficient prevention of aneurysms.
Collapse
Affiliation(s)
- Larisa V. Antonova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Evgenia O. Krivkina
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Viktoriia V. Sevostianova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
- Correspondence: ; Tel.: +7-9069356076
| | - Andrey V. Mironov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Maria A. Rezvova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Amin R. Shabaev
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Vadim O. Tkachenko
- Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Sergey S. Krutitskiy
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Mariam Yu. Khanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Tatiana Yu. Sergeeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Vera G. Matveeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Tatiana V. Glushkova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Anton G. Kutikhin
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Rinat A. Mukhamadiyarov
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Nadezhda S. Deeva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Tatiana N. Akentieva
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Maxim Yu. Sinitsky
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Elena A. Velikanova
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| | - Leonid S. Barbarash
- Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia; (L.V.A.); (E.O.K.); (A.V.M.); (M.A.R.); (A.R.S.); (S.S.K.); (M.Y.K.); (T.Y.S.); (V.G.M.); (T.V.G.); (A.G.K.); (R.A.M.); (N.S.D.); (T.N.A.); (M.Y.S.); (E.A.V.); (L.S.B.)
| |
Collapse
|
24
|
Kuźmińska A, Kwarta D, Ciach T, Butruk-Raszeja BA. Cylindrical Polyurethane Scaffold Fabricated Using the Phase Inversion Method: Influence of Process Parameters on Scaffolds' Morphology and Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2977. [PMID: 34072853 PMCID: PMC8198356 DOI: 10.3390/ma14112977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
This work presents a method of obtaining cylindrical polymer structures with a given diameter (approx. 5 mm) using the phase inversion technique. As part of the work, the influence of process parameters (polymer hardness, polymer solution concentration, the composition of the non-solvent solution, process time) on the scaffolds' morphology was investigated. Additionally, the influence of the addition of porogen on the scaffold's mechanical properties was analyzed. It has been shown that the use of a 20% polymer solution of medium hardness (ChronoFlex C45D) and carrying out the process for 24 h in 0:100 water/ethanol leads to the achievement of repeatable structures with adequate flexibility. Among the three types of porogens tested (NaCl, hexane, polyvinyl alcohol), the most favorable results were obtained for 10% polyvinyl alcohol (PVA). The addition of PVA increases the range of pore diameters and the value of the mean pore diameter (9.6 ± 3.2 vs. 15.2 ± 6.4) while reducing the elasticity of the structure (Young modulus = 3.6 ± 1.5 MPa vs. 9.7 ± 4.3 MPa).
Collapse
Affiliation(s)
- Aleksandra Kuźmińska
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
| | - Dominika Kwarta
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
| | - Tomasz Ciach
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Beata A. Butruk-Raszeja
- Biomedical Engineering Laboratory, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, 00-645 Warsaw, Poland; (D.K.); (T.C.); (B.A.B.-R.)
| |
Collapse
|