1
|
Iwasaki A, Hatakeyama M, Liu Q, Orimoto A, Fukuda T, Kitaoka T. Proliferation and differentiation of human dental pulp stem cells on phosphorylated cellulose nanofiber scaffolds. Carbohydr Polym 2025; 359:123593. [PMID: 40306767 DOI: 10.1016/j.carbpol.2025.123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Human dental pulp stem cells (hDPSCs) are a promising cell source for tooth regeneration therapies. However, conventional culture scaffold materials are often animal-derived, leading to immunogenicity concerns and limited availability. In this study, we explored phosphorylated cellulose nanofibers (P-CNFs), which have a fine fiber morphology and phosphate groups, as a novel scaffold material for cell culture. Immortalized hDPSCs were cultured on P-CNF scaffolds with different phosphate contents (0-1.42 mmol g-1) prepared by varying the molar ratio of urea and diammonium hydrogen phosphate and the reaction time. Cells cultured on unmodified CNFs exhibited poor adhesion and formed spheroids, indicating low bioadaptability. In contrast, P-CNF scaffolds with moderate phosphate content (0.54-0.78 mmol g-1) significantly improved cell adhesion; further increases in phosphate content decreased cell adhesion, indicating a strong dependence on phosphate content. Intriguingly, even in the absence of differentiation inducers, hDPSCs on P-CNF scaffolds with an optimal phosphate content of 0.78 mmol g-1 showed equal or higher expression of hard tissue marker genes compared to collagen scaffolds with differentiation inducers, suggesting that P-CNFs can directly promote hard tissue differentiation. These findings highlight plant-derived, animal-free P-CNFs as a promising biomaterial for advanced dental tissue engineering.
Collapse
Affiliation(s)
- Akihiro Iwasaki
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Mayumi Hatakeyama
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Qimei Liu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Ai Orimoto
- Division of Endodontics and Restorative Dentistry, Kyushu Dental University, Kitakyushu 803-8580, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate 020-8551, Japan
| | - Takuya Kitaoka
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Rahmani A, Jafari R, Nadri S. Molecular dynamics simulation in tissue engineering. BIOIMPACTS : BI 2024; 15:30160. [PMID: 40161944 PMCID: PMC11954742 DOI: 10.34172/bi.30160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 04/02/2025]
Abstract
Introduction In tissue engineering, the interaction among three primary elements, namely cells, material scaffolds, and stimuli, plays a pivotal role in determining the fate of cells and the formation of new tissue. Understanding the characteristics of these components and their interplay through various methodologies can significantly enhance the efficiency of the designed tissue engineering system. In silico methods, such as molecular dynamics (MD) simulation, use mathematical calculations to investigate molecular properties and can overcome the limitations of laboratory methods in delivering adequate molecular-level information. Methods The studies that used molecular dynamics simulation, either alone or in combination with other techniques, have been reviewed in this paper. Results The review explores the use of molecular dynamics simulations in studying substrate formation mechanism and its optimization. It highlights MD simulations' role in predicting biomolecule binding strength, understanding substrate properties' impact on biological activity, and factors influencing cell attachment and proliferation. Despite limited studies, MD simulations are considered a reliable tool for identifying ideal substrates for cell proliferation. The review also touches on MD simulations' contribution to cell differentiation studies, emphasizing their role in designing engineered extracellular matrix for desired cell fates. Conclusion Molecular dynamics simulation as a non-laboratory tool has many capabilities in providing basic and practical information about the behavior of the molecular components of the cell as well as the interaction of the cell and its components with the surrounding environment. Using this information along with other information obtained from laboratory tools can ultimately lead to the advancement of tissue engineering through the development of more appropriate and efficient methods.
Collapse
Affiliation(s)
- Ali Rahmani
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rahim Jafari
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
3
|
Masuda R, Ohira N, Kitaguchi K, Yabe T. Novel role of homogalacturonan region of pectin in disrupting the interaction between fibronectin and integrin β1. Carbohydr Polym 2024; 336:122122. [PMID: 38670769 DOI: 10.1016/j.carbpol.2024.122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Pectin interacts with fibronectin (FN), a modular protein in the extracellular matrix. This interaction is significant as FN plays a pivotal role by binding to the receptor integrin α5β1. However, the molecular mechanism underlying the pectin-FN interaction and its impact on integrin binding remains unknown. In this study, water-soluble pectins (WSPs) were extracted from three different pectin sources and subsequently characterized. These included Citrus WSP, which primarily comprises the homogalacturonan region, and Kaki and Yuzu WSPs, both of which are rich in rhamnogalacturonan regions. We investigated the molecular interactions between these WSPs and two FN fragments, Anastellin and RetroNectin, using surface plasmon resonance analysis. Citrus WSP exhibited a notable binding affinity to FN, with a dissociation constant (KD) of approximately 10-7 M. In contrast, Kaki and Yuzu WSPs displayed comparatively weaker or negligible binding affinities. The binding reactivity of Citrus WSP with FN was notably diminished following the enzymatic removal of its methyl-ester groups. Additionally, Citrus WSP disrupted the binding of integrin β1 to RetroNectin without altering the affinity, despite its minimal direct binding to integrin itself. This study furthers our understanding of the intricate pectin-FN interaction and sheds light on their potential physiological relevance and impact on cellular responses.
Collapse
Affiliation(s)
- Ryoya Masuda
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Natsuho Ohira
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kohji Kitaguchi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tomio Yabe
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
4
|
Wang R, Zha X, Chen J, Fu R, Fu Y, Xiang J, Yang W, Zhao L. Hierarchical Composite Scaffold with Deferoxamine Delivery System to Promote Bone Regeneration via Optimizing Angiogenesis. Adv Healthc Mater 2024:e2304232. [PMID: 38375993 DOI: 10.1002/adhm.202304232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/18/2024] [Indexed: 02/21/2024]
Abstract
A bone defect refers to the loss of bone tissue caused by trauma or lesion. Bone defects result in high morbidity and deformity rates worldwide. Autologous bone grafting has been widely applied in clinics as the gold standard of treatment; however, it has limitations. Hence, bone tissue engineering has been proposed and developed as a novel therapeutic strategy for treating bone defects. Rapid and effective vascularization is essential for bone regeneration. In this study, a hierarchical composite scaffold with deferoxamine (DFO) delivery system, DFO@GMs-pDA/PCL-HNTs (DGPN), is developed, focusing on vascularized bone regeneration. The hierarchical structure of DGPN imitates the microstructure of natural bone and interacts with the local extracellular matrix, facilitating cell adhesion and proliferation. The addition of 1 wt% of halloysite nanotubes (HNTs) improves the material properties. Hydrophilic and functional groups conferred by polydopamine (pDA) modifications strengthen the scaffold bioactivity. Gelatin microspheres (GMs) protect the pharmacological activity of DFO, achieving local application and sustained release for 7 days. DFO effectively promotes angiogenesis by activating the signaling pathway of hypoxia inducible factor-1 α. In addition, DFO synergizes with HNTs to promote osteogenic differentiation and matrix mineralization. These results indicate that DGPN promotes bone regeneration and accelerates cranial defect healing.
Collapse
Affiliation(s)
- Raokaijuan Wang
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Xiangjun Zha
- Liver Transplant Center and Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jouchen Chen
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Ruijie Fu
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Yajun Fu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jie Xiang
- West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| | - Wei Yang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Lixing Zhao
- Department of Orthodontics, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases/National Clinical Research Center for Oral Diseases, Chengdu, 610041, China
| |
Collapse
|
5
|
Wei W, Wang M, Liu Z, Zheng W, Tremblay PL, Zhang T. An antibacterial nanoclay- and chitosan-based quad composite with controlled drug release for infected skin wound healing. Carbohydr Polym 2024; 324:121507. [PMID: 37985094 DOI: 10.1016/j.carbpol.2023.121507] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023]
Abstract
Microbial infections of surgical sites and other wounds represent a major impediment for patients. Multifunctional low-cost dressings promoting tissue reparation while preventing infections are of great interest to medical professionals. Here, clay-based laponite nanodiscs (LAP) were loaded with the antibacterial drug kanamycin (KANA) before being embedded into a poly(lactic-co-glycolic acid) (PLGA) membrane and coated with the biopolymer chitosan (CS). Results indicated that these biocompatible materials combined the excellent capacity of LAP for controlled drug release with the mechanical robustness of PLGA and the antibacterial properties of CS as well as its hydrophilicity to form a composite highly suitable as an infection-preventing wound dressing. In vitro, PLGA/LAP/KANA/CS released drugs in a sustainable manner over 30 d, completely inhibited the growth of infectious bacteria, prompted the adhesion fibroblasts, and accelerated their proliferation 1.3 times. In vivo, the composite enabled the fast healing of infected full-thickness skin wounds with a 96.19 % contraction after 14 d. During the healing process, PLGA/LAP/KANA/CS stimulated re-epithelization, reduced inflammation, and promoted both angiogenesis and the formation of dense collagen fibers with an excellent final collagen volume ratio of 89.27 %. Thus, multifunctional PLGA/LAP/KANA/CS made of low-cost components demonstrated its potential for the treatment of infected skin wounds.
Collapse
Affiliation(s)
- Wenlong Wei
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mayue Wang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ziru Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, PR China
| | - Wen Zheng
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China.
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China; School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572024, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China.
| |
Collapse
|
6
|
Lin W, Zhou Z, Chen Z, Xu K, Wu C, Duan X, Dong L, Chen Z, Weng W, Cheng K. Accelerated Bone Regeneration on the Metal Surface through Controllable Surface Potential. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46493-46503. [PMID: 37729066 DOI: 10.1021/acsami.3c08796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Surface potential is rarely investigated as an independent factor in influencing tissue regeneration on the metal surface. In this work, the surface potential on the titanium (Ti) surface was designed to be tailored and adjusted independently, which arises from the ferroelectricity and piezoelectricity of poled poly(vinylidene fluoride-trifluoroethylene) (PVTF). Notably, it is found that such controllable surface potential on the metal surface significantly promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro as well as bone regeneration in vivo. In addition, the intracellular calcium ion (Ca2+) concentration measurement further proves that such controllable surface potential on the metal surface could activate the transmembrane calcium channels and allow the influx of extracellular Ca2+ into the cytoplasm. That might be the reason for improved osteogenic differentiation of BMSCs and bone regeneration. These findings reveal the potential of the metal surface with improved bioactivity for stimulation of osteogenesis and show great prospects for fabricable implantable medical devices with adjustable surface potential.
Collapse
Affiliation(s)
- Weiming Lin
- School of Materials Science and Engineering, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Peoples R China
| | - Zhiyuan Zhou
- School of Materials Science and Engineering, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Peoples R China
| | - Zhuoneng Chen
- Department of Gastroenterology, Zhejiang University School of Medicine, Affiliated Hospital 1, Hangzhou 310003, Peoples R China
| | - Kaicheng Xu
- Department of Orthopedics, Zhejiang University School of Medicine, Affiliated Hospital 2, Hangzhou 310009, Peoples R China
| | - Chengwei Wu
- School of Materials Science and Engineering, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Peoples R China
| | - Xiyue Duan
- School of Materials Science and Engineering, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Peoples R China
| | - Lingqing Dong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Province Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, Peoples R China
| | - Zuobing Chen
- Department of Rehabilitation Medicine, Zhejiang University School of Medicine, Affiliated Hospital 1, Hangzhou 310003, Peoples R China
| | - Wenjian Weng
- School of Materials Science and Engineering, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Peoples R China
| | - Kui Cheng
- School of Materials Science and Engineering, Center of Rehabilitation Biomedical Materials, Cyrus Tang Center for Sensor Materials and Applications, Zhejiang University, Hangzhou 310027, Peoples R China
- Department of Rehabilitation Medicine, Zhejiang University School of Medicine, Affiliated Hospital 1, Hangzhou 310003, Peoples R China
| |
Collapse
|
7
|
Yang R, Zhan M, Ouyang Z, Guo H, Qu J, Xia J, Shen M, Shi X. Microfluidic synthesis of fibronectin-coated polydopamine nanocomplexes for self-supplementing tumor microenvironment regulation and MR imaging-guided chemo-chemodynamic-immune therapy. Mater Today Bio 2023; 20:100670. [PMID: 37251416 PMCID: PMC10220494 DOI: 10.1016/j.mtbio.2023.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Development of nanomedicines to overcome the hindrances of tumor microenvironment (TME) for tumor theranostics with alleviated side effects remains challenging. We report here a microfluidic synthesis of artesunate (ART)-loaded polydopamine (PDA)/iron (Fe) nanocomplexes (NCs) coated with fibronectin (FN). The created multifunctional Fe-PDA@ART/FN NCs (FDRF NCs) with a mean size of 161.0 nm exhibit desired colloidal stability, monodispersity, r1 relaxivity (4.96 mM-1s-1), and biocompatibility. The co-delivery of the Fe2+ and ART enables enhanced chemodynamic therapy (CDT) through improved intracellular reactive oxygen species generation via a cycling reaction between Fe3+ and Fe2+ caused by the Fe3+-mediated glutathione oxidation and Fe2+-mediated ART reduction/Fenton reaction for self-supplementing TME regulation. Likewise, the combination of ART-mediated chemotherapy and the Fe2+/ART-regulated enhanced CDT enables noticeable immunogenic cell death, which can be collaborated with antibody-mediated immune checkpoint blockade to exert immunotherapy having significant antitumor immunity. The combined therapy improves the efficacy of primary tumor therapy and tumor metastasis inhibition by virtue of FN-mediated specific targeting of FDRF NCs to tumors with highly expressed αvβ3 integrin and can be guided through the Fe(III)-rendered magnetic resonance (MR) imaging. The developed FDRF NCs may be regarded as an advanced nanomedicine formulation for chemo-chemodynamic-immune therapy of different tumor types under MR imaging guidance.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Honghua Guo
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, PR China
| | - Jiao Qu
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, PR China
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, PR China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, PR China
| |
Collapse
|
8
|
Namjoo AR, Abrbekoh FN, Saghati S, Amini H, Saadatlou MAE, Rahbarghazi R. Tissue engineering modalities in skeletal muscles: focus on angiogenesis and immunomodulation properties. Stem Cell Res Ther 2023; 14:90. [PMID: 37061717 PMCID: PMC10105969 DOI: 10.1186/s13287-023-03310-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023] Open
Abstract
Muscular diseases and injuries are challenging issues in human medicine, resulting in physical disability. The advent of tissue engineering approaches has paved the way for the restoration and regeneration of injured muscle tissues along with available conventional therapies. Despite recent advances in the fabrication, synthesis, and application of hydrogels in terms of muscle tissue, there is a long way to find appropriate hydrogel types in patients with congenital and/or acquired musculoskeletal injuries. Regarding specific muscular tissue microenvironments, the applied hydrogels should provide a suitable platform for the activation of endogenous reparative mechanisms and concurrently deliver transplanting cells and therapeutics into the injured sites. Here, we aimed to highlight recent advances in muscle tissue engineering with a focus on recent strategies related to the regulation of vascularization and immune system response at the site of injury.
Collapse
Affiliation(s)
- Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- General and Vascular Surgery Department, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Li L, Liu K, Chen J, Wen W, Li H, Li L, Ding S, Liu M, Zhou C, Luo B. Bone ECM-inspired biomineralization chitin whisker liquid crystal hydrogels for bone regeneration. Int J Biol Macromol 2023; 231:123335. [PMID: 36690237 DOI: 10.1016/j.ijbiomac.2023.123335] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/04/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
As a particular cell niche, natural bone extracellular matrix (ECM) is an organic-inorganic composite material formed by mineralization of liquid crystal (LC) collagen fiber network. However, designing bone repair materials that highly imitate the LC characteristic and composite components of natural bone ECM is a great challenge. Here, we report a novel kind of bone ECM-inspired biomineralization chitin whisker LC hydrogels. First, photocurable chitin whisker LC hydrogels with bone ECM-like chiral nematic LC state and viscoelasticity are created. Next, biomineralization, guided by LC hydrogels, is carried out to truly mimic the mineralization process of natural bone, so as to obtain the organic-inorganic composite materials with bone ECM-like microenvironment. The chitin whisker LC hydrogels exhibit superior biomineralization, protein adsorption and osteogenesis ability, more importantly, LC hydrogel with negatively charged -COOH groups is more conducive to biomineralization and shows more desirable osteogenic activity than that with positively charged -NH2 groups. Notably, compared with the pristine LC hydrogels, the biomineralization LC hydrogels display more favorable osteogenesis ability due to their bone ECM-like LC texture and bone-like hydroxyapatite. This study opens an avenue toward the design of bone ECM-inspired biomineralization chitin whisker LC hydrogels for bone regeneration.
Collapse
Affiliation(s)
- Lin Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Kun Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Jingsheng Chen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China
| | - Wei Wen
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Hong Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Lihua Li
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Shan Ding
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Mingxian Liu
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Changren Zhou
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China
| | - Binghong Luo
- Biomaterial Research Laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou 510632, PR China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632, PR China.
| |
Collapse
|
10
|
Ryltseva GA, Dudaev AE, Menzyanova NG, Volova TG, Alexandrushkina NA, Efimenko AY, Shishatskaya EI. Influence of PHA Substrate Surface Characteristics on the Functional State of Endothelial Cells. J Funct Biomater 2023; 14:jfb14020085. [PMID: 36826884 PMCID: PMC9959859 DOI: 10.3390/jfb14020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The needs of modern regenerative medicine for biodegradable polymers are wide and varied. Restoration of the viability of the vascular tree is one of the most important components of the preservation of the usefulness of organs and tissues. The creation of vascular implants compatible with blood is an important task of vascular bioengineering. The function of the endothelial layer of the vessel, being largely responsible for the development of thrombotic complications, is of great importance for hemocompatibility. The development of surfaces with specific characteristics of biomaterials that are used in vascular technologies is one of the solutions for their correct endothelialization. Linear polyhydroxyalkanoates (PHAs) are biodegradable structural polymeric materials suitable for obtaining various types of implants and tissue engineering, having a wide range of structural and physicomechanical properties. The use of PHA of various monomeric compositions in endothelial cultivation makes it possible to evaluate the influence of material properties, especially surface characteristics, on the functional state of cells. It has been established that PHA samples with the inclusion of 3-hydroxyhexanoate have optimal characteristics for the formation of a human umbilical vein endothelial cell, HUVEC, monolayer in terms of cell morphology as well as the levels of expression of vinculin and VE-cadherin. The obtained results provide a rationale for the use of PHA copolymers as materials for direct contact with the endothelium in vascular implants.
Collapse
Affiliation(s)
- Galina A. Ryltseva
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| | - Alexey E. Dudaev
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Natalia G. Menzyanova
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Natalia A. Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Anastasia Yu. Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Ekaterina I. Shishatskaya
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| |
Collapse
|
11
|
Chen S, Huang Z, Visalakshan RM, Liu H, Bachhuka A, Wu Y, Dabare PRL, Luo P, Liu R, Gong Z, Xiao Y, Vasilev K, Chen Z, Chen Z. Plasma polymerized bio-interface directs fibronectin adsorption and functionalization to enhance "epithelial barrier structure" formation via FN-ITG β1-FAK-mTOR signaling cascade. Biomater Res 2022; 26:88. [PMID: 36572920 PMCID: PMC9791785 DOI: 10.1186/s40824-022-00323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/15/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Transepithelial medical devices are increasing utilized in clinical practices. However, the damage of continuous natural epithelial barrier has become a major risk factor for the failure of epithelium-penetrating implants. How to increase the "epithelial barrier structures" (focal adhesions, hemidesmosomes, etc.) becomes one key research aim in overcoming this difficulty. Directly targeting the in situ "epithelial barrier structures" related proteins (such as fibronectin) absorption and functionalization can be a promising way to enhance interface-epithelial integration. METHODS Herein, we fabricated three plasma polymerized bio-interfaces possessing controllable surface chemistry. Their capacity to adsorb and functionalize fibronectin (FN) from serum protein was compared by Liquid Chromatography-Tandem Mass Spectrometry. The underlying mechanisms were revealed by molecular dynamics simulation. The response of gingival epithelial cells regarding the formation of epithelial barrier structures was tested. RESULTS Plasma polymerized surfaces successfully directed distinguished protein adsorption profiles from serum protein pool, in which plasma polymerized allylamine (ppAA) surface favored adsorbing adhesion related proteins and could promote FN absorption and functionalization via electrostatic interactions and hydrogen bonds, thus subsequently activating the ITG β1-FAK-mTOR signaling and promoting gingival epithelial cells adhesion. CONCLUSION This study offers an effective perspective to overcome the current dilemma of the inferior interface-epithelial integration by in situ protein absorption and functionalization, which may advance the development of functional transepithelial biointerfaces. Tuning the surface chemistry by plasma polymerization can control the adsorption of fibronectin and functionalize it by exposing functional protein domains. The functionalized fibronectin can bind to human gingival epithelial cell membrane integrins to activate epithelial barrier structure related signaling pathway, which eventually enhances the formation of epithelial barrier structure.
Collapse
Affiliation(s)
- Shoucheng Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zhuwei Huang
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | | | - Haiwen Liu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Akash Bachhuka
- grid.410367.70000 0001 2284 9230Department of Electronics, Electric and Automatic Engineering, Rovira i Virgili University (URV), Tarragona, 43003 Spain
| | - You Wu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Panthihage Ruvini L. Dabare
- grid.1026.50000 0000 8994 5086Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA 5095 Australia
| | - Pu Luo
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Runheng Liu
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zhuohong Gong
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Yin Xiao
- grid.1024.70000000089150953Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059 Australia
| | - Krasimir Vasilev
- grid.1026.50000 0000 8994 5086Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA 5095 Australia
| | - Zhuofan Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| | - Zetao Chen
- grid.12981.330000 0001 2360 039XHospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University and Guangdong Provincial Key Laboratory of Stomatology, No.56, Lingyuan West Road, Yuexiu District, Guangzhou, 510055 China
| |
Collapse
|
12
|
Chen J, Zhu Z, Chen J, Luo Y, Li L, Liu K, Ding S, Li H, Liu M, Zhou C, Luo B. Photocurable liquid crystal hydrogels with different chargeability and tunable viscoelasticity based on chitin whiskers. Carbohydr Polym 2022; 301:120299. [DOI: 10.1016/j.carbpol.2022.120299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/14/2022] [Accepted: 10/30/2022] [Indexed: 11/08/2022]
|
13
|
Huang B, Li M, Mo H, Chen C, Chen K. Effects of Substitution Ratios of Zinc-Substituted Hydroxyapatite on Adsorption and Desorption Behaviors of Bone Morphogenetic Protein-2. Int J Mol Sci 2022; 23:ijms231710144. [PMID: 36077541 PMCID: PMC9456158 DOI: 10.3390/ijms231710144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding interactions between bone morphogenetic proteins (BMPs) and biomaterials is of great significance in preserving the structure and bioactivity of BMPs when utilized in clinical applications. Currently, bone morphogenetic protein-2 (BMP-2) is one of the most important growth factors in bone tissue engineering; however, atomistic interactions between BMP-2 and zinc-substituted hydroxyapatite (Zn-HAP, commonly used in artificial bone implants) have not been well clarified until now. Thus, in this work, the interaction energies, binding/debinding states, and molecular structures of BMP-2 upon a series of Zn-HAP surfaces (Zn-HAPs, 1 at%, 2.5 at%, 5 at%, and 10 at% substitution) were investigated by hybrid molecular dynamics (MD) and steered molecular dynamics (SMD) simulations. Meanwhile, cellular studies including alkaline phosphatase (ALP) activity and reverse transcription-polymerase chain reaction (RT-PCR) assay were performed to verify the theoretical modeling findings. It was found that, compared to pure HAP, Zn-HAPs exhibited a higher binding affinity of BMP-2 at the adsorption process; meanwhile, the detachment of BMP-2 upon Zn-HAPs was more difficult at the desorption process. In addition, molecular structures of BMP-2 could be well stabilized upon Zn-HAPs, especially for Zn10-HAP (with a 10 at% substitution), which showed both the higher stability of cystine-knots and less change in the secondary structures of BMP-2 than those upon HAP. Cellular studies confirmed that higher ALP activity and osteogenic marker gene expression were achieved upon BMP-2/Zn-HAPs than those upon BMP-2/HAP. These findings verified that Zn-HAPs favor the adsorption of BMP-2 and leverage the bioactivity of BMP-2. Together, this work clarified the interaction mechanisms between BMP-2 and Zn-HAPs at the atom level, which could provide new molecular-level insights into the design of BMP-2-loaded biomaterials for bone tissue engineering.
Collapse
|
14
|
Biochip Surfaces Containing Recombinant Cell-Binding Domains of Fibronectin. COATINGS 2022. [DOI: 10.3390/coatings12070880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface immobilization and characterization of the functional activity of fibronectin (Fn) type-III domains are reported. The domains FnIII9-10 or FnIII10 containing the RGD loop and PHSRN synergy site were recombinantly produced and covalently bound to chemically activated PEG methacrylate (MA) hydrogel coatings by microcontact printing. Such fabricated biochip surfaces were 6 mm in diameter and consisted of 190 µm wide protein stripes separated by 200 µm spacing. They were analyzed by imaging null ellipsometry, atomic force microscopy and fluorescence microscopy. Also, the coatings were tested in human foreskin fibroblast and HeLa cultures for at least 96 h, thus evaluating their suitability for controlled cell adhesion and proliferation. However, while HeLa cultures were equally well responsive to the FnIII9-10, FnIII10 and Fn surfaces, the fibroblasts displayed lower cell and lower focal adhesion areas, as well as lower proliferation rates on the Fn fragment surfaces as compared to Fn. Nevertheless, full functional activity of the fibroblasts was confirmed by immunostaining of Fn produced by the cells adherent on the biochip surfaces. The observed interaction differences that were either cell type or surface composition-dependent demonstrate the potential use of specifically engineered Fn and other ECM protein-derived domains in biochip architectures.
Collapse
|
15
|
Wang F, Wang X, Xie E, Wang F, Gan Q, Ping S, Wei J, Li F, Wang Z. Simultaneous incorporation of gallium oxide and tantalum microparticles into micro-arc oxidation coating of titanium possessing antibacterial effect and stimulating cellular response. BIOMATERIALS ADVANCES 2022; 135:212736. [PMID: 35929211 DOI: 10.1016/j.bioadv.2022.212736] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/22/2022]
Abstract
Orthopedic implants with both osteogenesis and antibacterial functions are particularly promising for bone repair and substitutes. In this study, a micro-arc oxidation (MAO) coating containing titanium dioxide (TiO2), gallium oxide (Ga2O3) and tantalum oxide (Ta2O5) on the titanium surface (MGT) was fabricated by dispersing Ga2O3 and Ta microparticles in the electrolyte. The results showed that the simultaneous incorporation of Ga2O3 and Ta microparticles into the MAO coating resulted in optimized surface performance (e.g., micro-topography, roughness, wettability, surface energy, and protein absorption) of MGT compared with pure titanium (pTi). In addition, MGT exhibited outstanding corrosion resistance owing to the presence of both Ga2O3 and Ta microparticles, which exhibit excellent corrosion resistance and their microparticles were incorporated into the micropores of the coating. Moreover, MGT with good cytocompatibility and optimized surface resulted in improved cellular responses (e.g., proliferation and osteogenic differentiation) of rat bone mesenchymal stem cells, which was attributed to Ta microparticles with outstanding osteogenic bioactivity. Furthermore, the excellent antibacterial effect of MGT was attributed to the slow release of Ga3+ from the coating. Thus, the simultaneous incorporation of Ga2O3 and Ta microparticles into the MAO coating of MGT exhibited excellent cytocompatibility, osteogenic bioactivity, antibacterial functions, and corrosion resistance, suggesting that MGT possesses great potential for bone repair applications.
Collapse
Affiliation(s)
- Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Xuehong Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - En Xie
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Sun Ping
- Department of Orthopaedics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| | - Fengqian Li
- Department of Orthopaedics, Shanghai Eighth People's Hospital, Shanghai 200235, China.
| | - Zimin Wang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
16
|
Xu Y, Guo Y, Zhang C, Zhan M, Jia L, Song S, Jiang C, Shen M, Shi X. Fibronectin-Coated Metal-Phenolic Networks for Cooperative Tumor Chemo-/Chemodynamic/Immune Therapy via Enhanced Ferroptosis-Mediated Immunogenic Cell Death. ACS NANO 2022; 16:984-996. [PMID: 35023715 DOI: 10.1021/acsnano.1c08585] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of nanomedicine formulations to overcome the disadvantages of traditional chemotherapeutic drugs and integrate cooperative theranostic modes still remains challenging. Herein, we report the facile construction of a multifunctional theranostic nanoplatform based on doxorubicin (DOX)-loaded tannic acid (TA)-iron (Fe) networks (for short, TAF) coated with fibronectin (FN) for combination tumor chemo-/chemodynamic/immune therapy under the guidance of magnetic resonance (MR) imaging. We show that the DOX-TAF@FN nanocomplexes created through in situ coordination of TA and Fe(III) and physical coating with FN have a mean particle size of 45.0 nm, are stable, and can release both DOX and Fe in a pH-dependent manner. Due to the coexistence of the TAF network and DOX, significant immunogenic cell death can be caused through enhanced ferroptosis of cancer cells via cooperative Fe-based chemodynamic therapy and DOX chemotherapy. Through further treatment with programmed cell death ligand 1 antibody for an immune checkpoint blockade, the tumor treatment efficacy and the associated immune response can be further enhanced. Meanwhile, with FN-mediated targeting, the DOX-TAF@FN platform can specifically target tumor cells with high expression of αvβ3 integrin. Finally, the TAF network also enables the DOX-TAF@FN to have an r1 relaxivity of 6.1 mM-1 s-1 for T1-weighted MR imaging of tumors. The developed DOX-TAF@FN nanocomplexes may represent an updated multifunctional nanosystem with simple compositions for cooperative MR imaging-guided targeted chemo-/chemodynamic/immune therapy of tumors.
Collapse
Affiliation(s)
- Yao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Changchang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Mengsi Zhan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Liang Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Shaoli Song
- Department of Nuclear Medicine, Shanghai Cancer Center, Fudan University, Shanghai 200030, PR China
| | - Chunjuan Jiang
- Department of Nuclear Medicine, Shanghai Cancer Center, Fudan University, Shanghai 200030, PR China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
17
|
Effect of Aminosilane Coupling Agent-Modified Nano-SiO2 Particles on Thermodynamic Properties of Epoxy Resin Composites. Processes (Basel) 2021. [DOI: 10.3390/pr9050771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
From the perspective of improving the thermodynamic properties of epoxy resin, it has become the focus of research to enhance the operational stability of GIS (Gas Insulated Substation) basin insulators for UHV (Ultra-High Voltage) equipment. In this paper, three aminosilane coupling agents with different chain lengths, (3-Aminopropyl)trimethoxysilane (KH550), Aminoethyl)-γ-aminopropyltrimethoxysilane (KH792) and 3-[2-(2-Aminoethylamino)ethylamino]propyl-trimethoxysilane (TAPS), were used to modify nano-SiO2 and doped into epoxy resin, respectively, using a combination of experimental and molecular dynamics simulations. The experimental results showed that the surface-grafted KH792 model of nano-SiO2 exhibited the most significant improvement in thermal properties compared with the undoped nanoparticle model. The storage modulus increased by 276 MPa and the Tg increased by 61 K. The simulation results also showed that the mechanical properties of the nano-SiO2 surface-grafted KH792 model were about 3 times higher than that of the undoped nanoparticle model, the Tg increased by 36.5 K, and the thermal conductivity increased by 24.5%.
Collapse
|