1
|
Wang L, Wang J, Yang Z, Wang Y, Zhao T, Luo W, Liang T, Yang Z. Traditional herbs: mechanisms to combat cellular senescence. Aging (Albany NY) 2023; 15:14473-14505. [PMID: 38054830 PMCID: PMC10756111 DOI: 10.18632/aging.205269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/15/2023] [Indexed: 12/07/2023]
Abstract
Cellular senescence plays a very important role in the ageing of organisms and age-related diseases that increase with age, a process that involves physiological, structural, biochemical and molecular changes in cells. In recent years, it has been found that the active ingredients of herbs and their natural products can prevent and control cellular senescence by affecting telomerase activity, oxidative stress response, autophagy, mitochondrial disorders, DNA damage, inflammatory response, metabolism, intestinal flora, and other factors. In this paper, we review the research information on the prevention and control of cellular senescence in Chinese herbal medicine through computer searches of PubMed, Web of Science, Science Direct and CNKI databases.
Collapse
Affiliation(s)
- Lei Wang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Yue Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Tiejian Zhao
- Department of Physiology, College of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Weisheng Luo
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| | - Zheng Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi 530222, China
| |
Collapse
|
2
|
Wang Y, Fu M, Xiao W, Zhao Y, Yuan P, Zhang X, Wu W. 3D Elastomeric Stent Functionalized with Antioxidative and Perivascular Tissue Regenerative Activities Ameliorated PVT Deprivation-Induced Vein Graft Failure. Adv Healthc Mater 2023; 12:e2301247. [PMID: 37440681 DOI: 10.1002/adhm.202301247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023]
Abstract
Clinically, arterial injuries are always accompanied with perivascular tissue damage, which may contribute to high failure rate of vein grafts due to intimal hyperplasia and acute thrombosis. In this study, a "perivascular tissue (PVT) deprivation" animal model is constructed to mimic clinical scenarios and identify the contribution of arterial PVT to the success of vein grafts. Proteomics analysis suggests that depriving PVT may exacerbate reactive oxygen species (ROS)-induced endothelial apoptosis by up-regulating inflammation response and oxidative stress. Locally administering metformin on vein grafts through 3D-printed external stent (PGS-PCL) shows antioxidative and anti-inflammatory properties to protect cells from ROS invasion, thereafter decreasing acute thrombosis. Moreover, metformin induce rapid regeneration of perivascular adipose tissue in recipient regions, which improves patency by inhibiting intimal hyperplasia. Proteomics, western blot, and in vitro blocking tests reveal that metformin resists endothelial apoptosis through AMPK/mTOR and NFκB signaling pathways. To conclude, PVT deprivation exacerbates inflammatory response and oxidative stress in vein grafts bridging arterial circulation. Metformin-loaded stent ameliorates "PVT damage" related vein graft failure, and enhances patency of through resisting endothelial apoptosis and regenerating arterial PVAT, offering a promising avenue to improve the success of vein grafts in clinic.
Collapse
Affiliation(s)
- Yinggang Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | - Mingdi Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | - Weiwei Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | - Yajing Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | - Pingping Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | - Xinchi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| | - Wei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Oral&Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, P. R. China
| |
Collapse
|
3
|
Deng Y, Li Y, Chu Z, Dai C, Ge J. Exosomes from umbilical cord-derived mesenchymal stem cells combined with gelatin methacryloyl inhibit vein graft restenosis by enhancing endothelial functions. J Nanobiotechnology 2023; 21:380. [PMID: 37848990 PMCID: PMC10583421 DOI: 10.1186/s12951-023-02145-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND The prevalence of coronary artery disease is increasing. As a common treatment method, coronary artery bypass transplantation surgery can improve heart problems while also causing corresponding complications. Venous graft restenosis is one of the most critical and intractable complications. Stem cell-derived exosomes could have therapeutic promise and value. However, as exosomes alone are prone to inactivation and easy removal, this therapeutic method has not been widely used in clinical practice. Methacrylated gelatin (GelMA) is a polymer with a loose porous structure that maintains the biological activity of the exosome and can control its slow release in vivo. In this study, we combined human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) and GelMA to explore their effects and underlying mechanisms in inhibiting venous graft restenosis. RESULTS Human umbilical cord mesenchymal stem cells (hUCMSCs) were appraised using flow cytometry. hUCMSC-Exos were evaluated via transmission electron microscopy and western blotting. hUCMSC-Exos embedded in a photosensitive GelMA hydrogel (GelMA-Exos) were applied topically around venous grafts in a rat model of cervical arteriovenous transplantation, and their effects on graft reendothelialization and restenosis were evaluated through ultrasonic, histological, and immunofluorescence examinations. Additionally, we analyzed the material properties, cellular reactions, and biocompatibility of the hydrogels. We further demonstrated that the topical application of GelMA-Exos could accelerate reendothelialization after autologous vein transplantation and reduce restenosis in the rat model. Notably, GelMA-Exos caused neither damage to major organs in mice nor excessive immune rejection. The uptake of GelMA-Exos by endothelial cells stimulated cell proliferation and migration in vitro. A bioinformatic analysis of existing databases revealed that various cell proliferation and apoptosis pathways, including the mammalian target of rapamycin (mTOR)-phosphoinositide 3-kinase (PI3K)-AKT signaling pathways, might participate in the underlying regulatory mechanism. CONCLUSIONS Compared with the tail vein injection of hUCMSC-Exos, the local application of a mixture of hUCMSC-Exos and GelMA was more effective in promoting endothelial repair of the vein graft and inhibiting restenosis. Therefore, the proposed biomaterial-based therapeutic approach is a promising treatment for venous graft restenosis.
Collapse
Affiliation(s)
- Yuhang Deng
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yiming Li
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhuyang Chu
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Chun Dai
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Jianjun Ge
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
4
|
Ghilan A, Nicu R, Ciolacu DE, Ciolacu F. Insight into the Latest Medical Applications of Nanocellulose. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4447. [PMID: 37374630 DOI: 10.3390/ma16124447] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
Nanocelluloses (NCs) are appealing nanomaterials that have experienced rapid development in recent years, with great potential in the biomedical field. This trend aligns with the increasing demand for sustainable materials, which will contribute both to an improvement in wellbeing and an extension of human life, and with the demand to keep up with advances in medical technology. In recent years, due to the diversity of their physical and biological properties and the possibility of tuning them according to the desired goal, these nanomaterials represent a point of maximum interest in the medical field. Applications such as tissue engineering, drug delivery, wound dressing, medical implants or those in cardiovascular health are some of the applications in which NCs have been successfully used. This review presents insight into the latest medical applications of NCs, in the forms of cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs) and bacterial nanocellulose (BNC), with an emphasis on the domains that have recently experienced remarkable growth, namely wound dressing, tissue engineering and drug delivery. In order to highlight only the most recent achievements, the presented information is focused on studies from the last 3 years. Approaches to the preparation of NCs are discussed either by top-down (chemical or mechanical degradation) or by bottom-up (biosynthesis) techniques, along with their morphological characterization and unique properties, such as mechanical and biological properties. Finally, the main challenges, limitations and future research directions of NCs are identified in a sustained effort to identify their effective use in biomedical fields.
Collapse
Affiliation(s)
- Alina Ghilan
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Raluca Nicu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Diana E Ciolacu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Florin Ciolacu
- Department of Natural and Synthetic Polymers, "Gheorghe Asachi" Technical University of Iasi, 700050 Iasi, Romania
| |
Collapse
|