1
|
Wu H, Huang J, Wu H, Xu W, Zhong Q, Song J, Linghu X, Gao B, Wa Q. Enhancement of in vitro and in vivo bone repair performance of decalcified bone/gelma by desferrioxamine. Sci Rep 2025; 15:14092. [PMID: 40269226 PMCID: PMC12019368 DOI: 10.1038/s41598-025-99101-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
Autologous and allogeneic bone grafting is currently the clinical gold standard for the treatment of bone defects; however, it is limited by the scarcity of autologous sources and the risk of secondary trauma, as well as the complications of disease transmission and immune rejection associated with allogeneic grafts. The clinical management of bone defects remains a significant challenge. In this study, we prepared a demineralized bone matrix/gelatin methacrylate composite hydrogel loaded with deferoxamine (GelMA/DBM/DFO) using a freeze-drying method and investigated its properties. Assessments using CCK-8, live-dead fluorescence staining, alkaline phosphatase staining, and Alizarin Red staining indicated that the GelMA/DBM/DFO composite hydrogel demonstrated superior biocompatibility and in vitro osteogenic differentiation capacity compared with the GelMA/DBM composite hydrogel. We established a cranial defect model in Sprague-Dawley (SD) rats and examined peripheral blood indices, micro-computed tomography (Micro-CT), hematoxylin and eosin (HE) staining, Masson's trichrome staining, and immunohistochemical staining for bone morphogenetic protein-2 (BMP-2) and collagen type I (COL-1). Both hydrogels exhibited good biosafety and the GelMA/DBM/DFO hydrogel showed more effective repair of cranial defects in SD rats. This study provides a novel material for bone-defect repair.
Collapse
Affiliation(s)
- Honghan Wu
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510632, China
| | - Hengpeng Wu
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Weikang Xu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510632, China
| | - Qian Zhong
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Jiaxiang Song
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Xitao Linghu
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510632, China.
| | - Qingde Wa
- Departament of Orthopadic Surgery, The Second Affiliated Hospital of Zunyi Medical University, zunyi, 563000, China.
| |
Collapse
|
2
|
Yu J, Ji L, Liu Y, Wang X, Wang J, Liu C. Bone-brain interaction: mechanisms and potential intervention strategies of biomaterials. Bone Res 2025; 13:38. [PMID: 40097409 PMCID: PMC11914511 DOI: 10.1038/s41413-025-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/02/2024] [Accepted: 12/31/2024] [Indexed: 03/19/2025] Open
Abstract
Following the discovery of bone as an endocrine organ with systemic influence, bone-brain interaction has emerged as a research hotspot, unveiling complex bidirectional communication between bone and brain. Studies indicate that bone and brain can influence each other's homeostasis via multiple pathways, yet there is a dearth of systematic reviews in this area. This review comprehensively examines interactions across three key areas: the influence of bone-derived factors on brain function, the effects of brain-related diseases or injuries (BRDI) on bone health, and the concept of skeletal interoception. Additionally, the review discusses innovative approaches in biomaterial design inspired by bone-brain interaction mechanisms, aiming to facilitate bone-brain interactions through materiobiological effects to aid in the treatment of neurodegenerative and bone-related diseases. Notably, the integration of artificial intelligence (AI) in biomaterial design is highlighted, showcasing AI's role in expediting the formulation of effective and targeted treatment strategies. In conclusion, this review offers vital insights into the mechanisms of bone-brain interaction and suggests advanced approaches to harness these interactions in clinical practice. These insights offer promising avenues for preventing and treating complex diseases impacting the skeleton and brain, underscoring the potential of interdisciplinary approaches in enhancing human health.
Collapse
Affiliation(s)
- Jiaze Yu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Luli Ji
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yongxian Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xiaogang Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, PR China.
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
3
|
Li S, Yang Y, Yu B, Gao X, Gao X, Nie S, Qin T, Hao Y, Guo L, Wu H, Ma T, Zheng Y, Geng D, Gao J, Xue B, Zhang Y, Yang S, Wei Y, Xia B, Luo Z, Qiu Q, Huang J. A Novel Deer Antler-Inspired Bone Graft Triggers Rapid Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411571. [PMID: 39707695 PMCID: PMC11817900 DOI: 10.1002/adma.202411571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/05/2024] [Indexed: 12/23/2024]
Abstract
Adult mammals are unable to regenerate bulky bone tissues, making large bone defects clinically challenging. Deer antler represents an exception to this rule, exhibiting the fastest bony growth in mammals, offering a unique opportunity to explore novel strategies for rapid bone regeneration. Here, a bone graft exploiting the biochemical, biophysical, and structural characteristics of antlers is constructed. It is decellularized antler cancellous bone (antler-DCB) to obtain a bone scaffold. Then, an antler-based bone graft is constructed by integrating antler-DCB with antler-derived biological signals, delivered by extracellular vesicles (EVs) from antler blastema progenitor cells (ABPCs), a novel stem cells responsible for antlerogenesis is discovered. The antler-based bone graft transformed bone marrow stromal cells into cells with an ABPC-like phenotype and transcriptomic signature. In vivo, the antler-based graft triggered rapid bone formation in a rat model, with doubled volume of newly formed bones than commercial DCBs. In addition, the antler-based graft orchestrated a coordinated process of vascularization, neurogenesis, and immunomodulation during osteogenesis, partially imitating early antlerogenesis. These findings provide practical insights to develop a therapeutic intervention for treating severe bone defects.
Collapse
Affiliation(s)
- Shengyou Li
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yujie Yang
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Beibei Yu
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710072P. R. China
| | - Xueli Gao
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Xue Gao
- Department of Aerospace PhysiologyFourth Military Medical UniversityXi'an710032P. R. China
| | - Shihao Nie
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Tao Qin
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Yiming Hao
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Lingli Guo
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Haining Wu
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Teng Ma
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Yi Zheng
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Dan Geng
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Jianbo Gao
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Borui Xue
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Yongfeng Zhang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710072P. R. China
| | - Shijie Yang
- Department of NeurosurgeryThe Second Affiliated Hospital of Xi'an Jiao Tong UniversityXi'an710072P. R. China
| | - Yitao Wei
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Bing Xia
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| | - Zhuojing Luo
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
- Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Qiang Qiu
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710072P. R. China
| | - Jinghui Huang
- Department of OrthopaedicsXijing HospitalFourth Military Medical UniversityXi'an710032P. R. China
| |
Collapse
|
4
|
Wang X, Yang X, Xiao X, Li X, Chen C, Sun D. Biomimetic design of platelet-rich plasma controlled release bacterial cellulose/hydroxyapatite composite hydrogel for bone tissue engineering. Int J Biol Macromol 2024; 269:132124. [PMID: 38723802 DOI: 10.1016/j.ijbiomac.2024.132124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Bacterial cellulose (BC) hydrogel is renowned in the field of tissue engineering for its high biocompatibility, excellent mechanical strength, and eco-friendliness. Herein, we present a biomimetic mineralization method for preparing BC/hydroxyapatite (HAP) composite hydrogel scaffolds with different mineralization time and ion concentration of the mineralized solution. Spherical HAP reinforcement enhanced bone mineralization, thereby imparting increased bioactivity to BC matrix materials. Subsequently, platelet-rich plasma (PRP) was introduced into the scaffold. The PRP-loaded hydrogel enhanced the release of growth factors, which promoted cell adhesion, growth, and bone healing. After 3 weeks of MC3T3-E1 cell-induced osteogenesis, PRP positively affected cell differentiation in BC/HAP@PRP scaffolds. Overall, these scaffolds exhibited excellent biocompatibility, mineralized nodule formation, and controlled release in vitro, demonstrating great potential for application in bone tissue repair.
Collapse
Affiliation(s)
- Xiangmei Wang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xiaoli Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xin Xiao
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Xueqian Li
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China.
| |
Collapse
|
5
|
Cao Y, Yu Y, Pan L, Han W, Zeng F, Wang J, Mei Q, Liu C. Sulfated Polysaccharide-Based Nanocarrier Drives Microenvironment-Mediated Cerebral Neurovascular Remodeling for Ischemic Stroke Treatment. NANO LETTERS 2024; 24:5214-5223. [PMID: 38649327 DOI: 10.1021/acs.nanolett.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Stroke is a leading cause of global mortality and severe disability. However, current strategies used for treating ischemic stroke lack specific targeting capabilities, exhibit poor immune escape ability, and have limited drug release control. Herein, we developed an ROS-responsive nanocarrier for targeted delivery of the neuroprotective agent rapamycin (RAPA) to mitigate ischemic brain damage. The nanocarrier consisted of a sulfated chitosan (SCS) polymer core modified with a ROS-responsive boronic ester enveloped by a red blood cell membrane shell incorporating a stroke homing peptide. When encountering high levels of intracellular ROS in ischemic brain tissues, the release of SCS combined with RAPA from nanoparticle disintegration facilitates effective microglia polarization and, in turn, maintains blood-brain barrier integrity, reduces cerebral infarction, and promotes cerebral neurovascular remodeling in a mouse stroke model involving transient middle cerebral artery occlusion (tMCAO). This work offers a promising strategy to treat ischemic stroke therapy.
Collapse
Affiliation(s)
- Yinli Cao
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lina Pan
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Weili Han
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Feng Zeng
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qiyong Mei
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|