1
|
Wan Q, Sun X, Su C, Cai J, Zhan H, Sun Y, Qu F, Zhang Y, Mu Y, Chen X, Feng C. Fish scale gelatin/diatom biosilica composite hemostasis sponge with ultrafast dispersing and in situ gelation for hemorrhage control. Int J Biol Macromol 2025; 297:139715. [PMID: 39798732 DOI: 10.1016/j.ijbiomac.2025.139715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB). This design retains the hierarchical porous structure of DB in SG matrix, and granting the SG/DB the capability to disperse ultrafast, achieving dissolution in both water and blood within 3 s. The DB and SG released by disintegration of SG/DB can activate intrinsic coagulation pathway and strengthen fibrin clot gelation through the anchoring interface effect, even realizing coagulation of anticoagulant whole blood without calcium ion activation. Animal studies showed 10%T-SG/DB has superior hemostatic properties to various commercially available hemostatic materials (rat liver and artery, 100 s; rabbit liver, artery, and heart, 3.2, 4.6, and 2.9 min, respectively), reducing bleeding by 30 % compared to QuikClot Combat Gauze®, and is easily removable without residue.
Collapse
Affiliation(s)
- Qinglan Wan
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaojie Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Chang Su
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Jingyu Cai
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Hao Zhan
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yunji Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Furui Qu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yan Zhang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China; Laoshan Laboratory, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China.
| |
Collapse
|
2
|
Su C, Jiang C, Lin J, Liu J, Zhan H, Che S, Chen X, Feng C. Optimization of preparation conditions for β-chitosan derived from diatom biomanufacturing using response surface methodology. Int J Biol Macromol 2024; 279:135233. [PMID: 39251005 DOI: 10.1016/j.ijbiomac.2024.135233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
Chitosan is a polymeric polysaccharide with widely application. At present, commercialized chitosan obtained by deacetylating chitin with acid-alkali method. The homogeneity of the molecular weight of chitosan is difficult to adjust due to the low homogeneity of chitosan itself and the degradation effect of the extraction process. And the single source of raw material has limited the further development of chitosan. In this study, diatoms were used as the source of chitosan extraction through alkalization freeze-thaw method, and response surface methodology was also used to optimize the best preparation conditions of diatom chitosan. The extracted chitosan from diatom was β-type chitosan with low molecular weight, great homogeneity. Diatom chitosan was able to reduce blood loss and clotting time >30 % in vivo experiment compared to control. The hemolysis rate of diatom chitosan was lower than 1 %, and the survival rate was higher than 95 % when co-cultured with L929 cells. Diatom chitosan with 0.005 % could inhibit E. coli and S. aureus by >90 %. Considering the large-scale cultivation properties of diatom, the extraction of diatom chitosan based on alkalization freeze-thaw method will provide a viable solution for obtaining β-chitosan with homogeneity on a large scale.
Collapse
Affiliation(s)
- Chang Su
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Changqing Jiang
- Qingdao Municipal Hospital, 5# Donghai Middle Road, Qingdao 266000, Shandong Province, China
| | - Jiawen Lin
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Jinfeng Liu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Qingdao Women and Children's Hospital, 217# Liaoyang West Road, Qingdao 266034, Shandong Province, China
| | - Hao Zhan
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Shengting Che
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572024, Hainan Province, China; Laoshan Laboratory, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya 572024, Hainan Province, China.
| |
Collapse
|
3
|
Sun Y, Su C, Liu J, He Z, Che S, Wan Q, Cai J, Zhan H, Feng C, Cheng X, Lin F, Wei J, Chen X. One-pot reaction for the preparation of diatom hemostatic particles with effective hemostasis and economic benefits. Biomater Sci 2024; 12:1883-1897. [PMID: 38416049 DOI: 10.1039/d3bm01793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Effective hemostatic materials have been in demand for rapid pre-hospital hemostasis in emergency situations, which can significantly reduce accidental deaths. The development of emergency hemostatic materials with rapid hemostasis, biosafety, and economical preparation is a great challenge. In this study, Ca(OH)2-complexed diatom powder hemostatic particles (Ca(OH)2-Php) were prepared based on a one-pot reaction by directly mixing various raw materials and by rotary granulation. High-temperature calcination was able to carbonate and consume the organic matter in the hemostatic particles. The crosslinked hydrogen bonds in those particles were converted to silica-oxygen bonds, the particles became more stable, and the porous structure of diatom biosilica (DBs) was exposed. Ca(OH)2-Php has high porosity, can quickly adsorb the water in blood (water absorption: 75.85 ± 6.93%), and exhibits rapid hemostasis capacity (clotting time was shortened by 43% compared with that of the control group), good biocompatibility (hemolysis rate <7%, no cytotoxicity), and simplicity of handling (conveniently debride, no residues, no tissue inflammation). This study provides a new idea for the preparation of emergency hemostatic materials, and Ca(OH)2-Php prepared by one-pot reaction has various high-quality characteristics including rapid hemostasis, wide applicability, economical preparation, and potential for large-scale production.
Collapse
Affiliation(s)
- Yunji Sun
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China.
| | - Chang Su
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China.
| | - Jinfeng Liu
- Qingdao Women and Children's Hospital, 217# Liaoyang West Road, Qingdao 266034, Shandong Province, China
| | - Zheng He
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China.
| | - Shengting Che
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China.
| | - Qinglan Wan
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China.
| | - Jingyu Cai
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China.
| | - Hao Zhan
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China.
| | - Chao Feng
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China.
| | - Xiaojie Cheng
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China.
| | - Feng Lin
- Hainan Hospital of Chinese PLA General Hospital, 80# Jianglin Road, Sanya 572013, Hainan Province, China.
| | - Junqiang Wei
- Hainan Hospital of Chinese PLA General Hospital, 80# Jianglin Road, Sanya 572013, Hainan Province, China.
| | - Xiguang Chen
- College of Marine Life Science, Sanya Oceanographic Institute, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China.
- Laoshan Laboratory, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| |
Collapse
|
4
|
Sun X, Zhang M, Liu J, Hui G, Chen X, Feng C. The Art of Exploring Diatom Biosilica Biomaterials: From Biofabrication Perspective. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304695. [PMID: 38044309 PMCID: PMC10853744 DOI: 10.1002/advs.202304695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Indexed: 12/05/2023]
Abstract
Diatom is a common single-cell microalgae with large species and huge biomass. Diatom biosilica (DB), the shell of diatom, is a natural inorganic material with a micro-nanoporous structure. Its unique hierarchical porous structure gives it great application potential in drug delivery, hemostat materials, and biosensors, etc. However, the structural diversity of DB determines its different biological functions. Screening hundreds of thousands of diatom species for structural features of DB that meet application requirements is like looking for a needle in a seaway. And the chemical modification methods lack effective means to control the micro-nanoporous structure of DB. The formation of DB is a typical biomineralization process, and its structural characteristics are affected by external environmental conditions, genes, and other factors. This allows to manipulate the micro-nanostructure of DB through biological regulation method, thereby transforming the screening mode of the structure function of DB from a needle in a seaway to biofabrication mode. This review focuses on the formation, biological modification, functional activity of DB structure, and its application in biomaterials field, providing regulatory strategies and research idea of DB from the perspective of biofabrication. It will also maximize the possibility of using DB as biological materials.
Collapse
Affiliation(s)
- Xiaojie Sun
- College of Marine Life ScienceOcean University of China5# Yushan RoadQingdaoShandong Province266003China
| | - Mengxue Zhang
- College of Marine Life ScienceOcean University of China5# Yushan RoadQingdaoShandong Province266003China
| | - Jinfeng Liu
- College of Marine Life ScienceOcean University of China5# Yushan RoadQingdaoShandong Province266003China
- Department of StomatologyQingdao Women and Children’s Hospital, QingdaoQingdao266034China
| | - Guangyan Hui
- Department of StomatologyQingdao Special Servicemen Recuperation Center of PLA NavyNo.18 Yueyang RoadQingdaoShandong Province266071China
| | - Xiguang Chen
- College of Marine Life ScienceOcean University of China5# Yushan RoadQingdaoShandong Province266003China
- Sanya Oceanographic Institute, Ocean University of ChinaYazhou Bay Science & Technology CityFloor 7, Building 1, Yonyou Industrial ParkSanyaHainan Province572024P. R. China
- Laoshan Laboratory1# Wenhai RoadQingdaoShandong Province266000China
| | - Chao Feng
- College of Marine Life ScienceOcean University of China5# Yushan RoadQingdaoShandong Province266003China
- Sanya Oceanographic Institute, Ocean University of ChinaYazhou Bay Science & Technology CityFloor 7, Building 1, Yonyou Industrial ParkSanyaHainan Province572024P. R. China
| |
Collapse
|
5
|
Su C, Cao Z, Liu J, Sun X, Qiu K, Mu Y, Cong X, Wang X, Chen X, Jia N, Feng C. The hierarchical porous structures of diatom biosilica-based hemostat: From selective adsorption to rapid hemostasis. J Colloid Interface Sci 2023; 651:544-557. [PMID: 37562297 DOI: 10.1016/j.jcis.2023.07.202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/20/2023] [Accepted: 07/30/2023] [Indexed: 08/12/2023]
Abstract
Here, we developed a Ca2+ modified diatom biosilica-based hemostat (DBp-Ca2+) with a full scale hierarchical porous structure (pore sizes range from micrometers to nanometers). The unique porous size in stepped arrangement of DBp-Ca2+give it selective adsorption capacity during coagulation process, resulted in rapid hemorrhage control. Based on in vitro and in vivo studies, it was confirmed that the primary micropores of DBp-Ca2+gave it high porosity to hold water (water absorption: 78.46 ± 1.12 %) and protein (protein absorption: 83.7 ± 1.33 mg/g). Its secondary mesopores to macropores could reduce of water diffusion length to accelerate blood exchange (complete within 300 ms). The tertiary stacking pores of DBp-Ca2+ could absorb platelets and erythrocytes to reduce more than 50 % of thrombosis time, and provided enough contact between Ca active site and coagulation factors for triggering clotting cascade reaction. This work not only developed a novel DBs based hemostat with efficient hemorrhage control, but also provided new insights to study procoagulant mechanism of inorganic hemostat with hierarchical porous structure from selective adsorption to rapid hemostasis.
Collapse
Affiliation(s)
- Chang Su
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Zheng Cao
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Jiahao Liu
- Minimally invasive interventional therapy center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 5# Donghai Middle Road, Qingdao 266000, Shandong Province, China
| | - Xiaojie Sun
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Kaijin Qiu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Yuzhi Mu
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xin Cong
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiaoye Wang
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, 572024, Hainan Province, China; Laoshan Laboratory, 1# Wenhai Road, Qingdao 266000, Shandong Province, China
| | - Nan Jia
- Minimally invasive interventional therapy center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), 5# Donghai Middle Road, Qingdao 266000, Shandong Province, China.
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, 572024, Hainan Province, China.
| |
Collapse
|