1
|
Imre L, Niaki EF, Bosire R, Nanasi P, Nagy P, Bacso Z, Hamidova N, Pommier Y, Jordan A, Szabo G. Nucleosome destabilization by polyamines. Arch Biochem Biophys 2022; 722:109184. [PMID: 35395253 PMCID: PMC10572104 DOI: 10.1016/j.abb.2022.109184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/19/2022]
Abstract
The roles and molecular interactions of polyamines (PAs) in the nucleus are not fully understood. Here their effect on nucleosome stability, a key regulatory factor in eukaryotic gene control, is reported, as measured in agarose embedded nuclei of H2B-GFP expressor HeLa cells. Nucleosome stability was assessed by quantitative microscopy [1,2] in situ, in close to native state of chromatin, preserving the nucleosome constrained topology of the genomic DNA. A robust destabilizing effect was observed in the millimolar concentration range in the case of spermine, spermidine as well as putrescine, which was strongly pH and salt concentration-dependent, and remained significant also at neutral pH. The integrity of genomic DNA was not affected by PA treatment, excluding DNA break-elicited topological relaxation as a factor in destabilization. The binding of PAs to DNA was demonstrated by the displacement of ethidium bromide, both from deproteinized nuclear halos and from plasmid DNA. The possibility that DNA methylation patterns may be influenced by PA levels is contemplated in the context of gene expression and DNA methylation correlations identified in the NCI-60 panel-based CellMiner database: methylated loci in subsets of high-ODC1 cell lines and the dependence of PER3 DNA methylation on PA metabolism.
Collapse
Affiliation(s)
- Laszlo Imre
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Erfaneh Firouzi Niaki
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Rosevalentine Bosire
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Peter Nanasi
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Peter Nagy
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Zsolt Bacso
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Nubar Hamidova
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary
| | - Yves Pommier
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-4255, USA
| | - Albert Jordan
- Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, 08028, Spain
| | - Gabor Szabo
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine Debrecen, H-4032, Hungary.
| |
Collapse
|
2
|
Kazakova OB, Giniyatullina GV, Mustafin AG, Babkov DA, Sokolova EV, Spasov AA. Evaluation of Cytotoxicity and α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids. Molecules 2020; 25:E4833. [PMID: 33092246 PMCID: PMC7587962 DOI: 10.3390/molecules25204833] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
A series of two new and twenty earlier synthesized branched extra-amino-triterpenoids obtained by the direct coupling of betulinic/betulonic acids with polymethylenpolyamines, or by the cyanoethylation of lupane type alcohols, oximes, amines, and amides with the following reduction were evaluated for cytotoxicity toward the NCI-60 cancer cell line panel, α-glucosidase inhibitory, and antimicrobial activities. Lupane carboxamides, conjugates with diaminopropane, triethylenetetramine, and branched C3-cyanoethylated polyamine methyl betulonate showed high cytotoxic activity against most of the tested cancer cell lines with GI50 that ranged from 1.09 to 54.40 µM. Betulonic acid C28-conjugate with triethylenetetramine and C3,C28-bis-aminopropoxy-betulin were found to be potent micromolar inhibitors of yeast α-glucosidase and to simultaneously inhibit the endosomal reticulum α-glucosidase, rendering them as potentially capable to suppress tumor invasiveness and neovascularization, in addition to the direct cytotoxicity. Plausible mechanisms of cytotoxic action and underlying disrupted molecular pathways were elucidated with CellMinner pattern analysis and Gene Ontology enrichment analysis, according to which the lead compounds exert multi-target antiproliferative activity associated with oxidative stress induction and chromatin structure alteration. The betulonic acid diethylentriamine conjugate showed partial activity against methicillin-resistant S. aureus and the fungi C. neoformans. These results show that triterpenic polyamines, being analogs of steroidal squalamine and trodusquemine, are important substances for the search of new drugs with anticancer, antidiabetic, and antimicrobial activities.
Collapse
Affiliation(s)
- Oxana B. Kazakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 pr. Oktyabrya, 450054 Ufa, Russia; (G.V.G.); (A.G.M.)
| | - Gul’nara V. Giniyatullina
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 pr. Oktyabrya, 450054 Ufa, Russia; (G.V.G.); (A.G.M.)
| | - Akhat G. Mustafin
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 pr. Oktyabrya, 450054 Ufa, Russia; (G.V.G.); (A.G.M.)
| | - Denis A. Babkov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, 400087 Volgograd, Russia; (D.A.B.); (E.V.S.)
| | - Elena V. Sokolova
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, 400087 Volgograd, Russia; (D.A.B.); (E.V.S.)
| | - Alexander A. Spasov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, 400087 Volgograd, Russia; (D.A.B.); (E.V.S.)
| |
Collapse
|
3
|
Cellular and Animal Model Studies on the Growth Inhibitory Effects of Polyamine Analogues on Breast Cancer. Med Sci (Basel) 2018. [PMID: 29533973 PMCID: PMC5872181 DOI: 10.3390/medsci6010024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyamine levels are elevated in breast tumors compared to those of adjacent normal tissues. The female sex hormone, estrogen is implicated in the origin and progression of breast cancer. Estrogens stimulate and antiestrogens suppress the expression of polyamine biosynthetic enzyme, ornithine decarboxylate (ODC). Using several bis(ethyl)spermine analogues, we found that these analogues inhibited the proliferation of estrogen receptor-positive and estrogen receptor negative breast cancer cells in culture. There was structure-activity relationship in the efficacy of these compounds in suppressing cell growth. The activity of ODC was inhibited by these compounds, whereas the activity of the catabolizing enzyme, spermidine/spermine N¹-acetyl transferase (SSAT) was increased by 6-fold by bis(ethyl)norspermine in MCF-7 cells. In a transgenic mouse model of breast cancer, bis(ethyl)norspermine reduced the formation and growth of spontaneous mammary tumor. Recent studies indicate that induction of polyamine catabolic enzymes SSAT and spermine oxidase (SMO) play key roles in the anti-proliferative and apoptotic effects of polyamine analogues and their combinations with chemotherapeutic agents such as 5-fluorouracil (5-FU) and paclitaxel. Thus, polyamine catabolic enzymes might be important therapeutic targets and markers of sensitivity in utilizing polyamine analogues in combination with other therapeutic agents.
Collapse
|
4
|
Acosta-Andrade C, Artetxe I, Lete MG, Monasterio BG, Ruiz-Mirazo K, Goñi FM, Sánchez-Jiménez F. Polyamine-RNA-membrane interactions: From the past to the future in biology. Colloids Surf B Biointerfaces 2017; 155:173-181. [PMID: 28456048 DOI: 10.1016/j.colsurfb.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/12/2017] [Accepted: 04/04/2017] [Indexed: 01/06/2023]
Abstract
Biogenic polyamines (PAs), spermine, spermidine and putrescine are widely spread amino acid derivatives, present in living cells throughout the whole evolutionary scale. Their amino groups confer them a marked basic character at the cellular pH. We have tested the interaction of PAs with negatively-charged phospholipids in the absence and presence of nucleic acids (tRNA was mainly used for practical reasons). PAs induced aggregation of lipid vesicles containing acidic phospholipids. Aggregation was detected using both spectroscopic and fluorescence microscopy methods (the latter with giant unilamellar vesicles). PA-liposome complexes were partially disaggregated when nucleic acids were added to the mixture, indicating a competition between lipids and nucleic acids for PAs in a multiple equilibrium phenomenon. Equivalent observations could be made when vesicles composed of oleic acid and 1-decanol (1:1mol ratio) were used instead of phospholipid liposomes. The data could evoke putative primitive processes of proto-biotic evolution. At the other end of the time scale, this system may be at the basis of an interesting tool in the development of nanoscale drug delivery.
Collapse
Affiliation(s)
- Carlos Acosta-Andrade
- Department of Molecular Biology and Biochemistry, University of Malaga, and Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Ibai Artetxe
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Marta G Lete
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Bingen G Monasterio
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain; Department of Logic and Philosophy of Science, University of the Basque Country, Donostia, Spain
| | - Félix M Goñi
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Francisca Sánchez-Jiménez
- Department of Molecular Biology and Biochemistry, University of Malaga, and Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain.
| |
Collapse
|
5
|
Wu ST, Sun GH, Cha TL, Kao CC, Chang SY, Kuo SC, Way TD. CSC-3436 switched tamoxifen-induced autophagy to apoptosis through the inhibition of AMPK/mTOR pathway. J Biomed Sci 2016; 23:60. [PMID: 27526942 PMCID: PMC4986227 DOI: 10.1186/s12929-016-0275-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) lacks specific therapeutic target and limits to chemotherapy and is essential to develop novel therapeutic regimens. Increasing studies indicated that tamoxifen, a selective estrogen receptor modulators (SERMs), has anti-tumor therapeutic effect in estrogen receptor α (ERα)-negative tumor. Here, we determined whether autophagy was activated by tamoxifen in TNBC cells. Moreover, CSC-3436 displayed strong and selective growth inhibition on cancer cells. Next, we investigated the anti-proliferation effect of combination of CSC-3436 plus tamoxifen on cell death in TNBC cells. Results Our study found that tamoxifen induces autophagy in TNBC cells. Endoplasmic reticulum stress and AMPK/mTOR contributed tamoxifen-induced autophagy. Interestingly, in combination treatment with CSC-3436 enhanced the anti-proliferative effect of tamoxifen. We found that CSC-3436 switched tamoxifen-induced autophagy to apoptosis via cleavage of ATG-5. Moreover, AMPK/mTOR pathway may involve in CSC-3436 switched tamoxifen-induced autophagy to apoptosis. The combination of tamoxifen and CSC-3436 produced stronger tumor growth inhibition compared with CSC-3436 or tamoxifen alone treatments in vivo. Conclusion These data indicated that CSC-3436 combined with tamoxifen may be a potential approach for treatment TNBC.
Collapse
Affiliation(s)
- Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taichung, Taiwan
| | - Guang-Huan Sun
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taichung, Taiwan
| | - Tai-Lung Cha
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taichung, Taiwan
| | - Chien-Chang Kao
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taichung, Taiwan
| | - Sun-Yran Chang
- Division of Urology, Department of Surgery, Tri-Service General Hospital and National Defense Medical Center, Taichung, Taiwan
| | - Sheng-Chu Kuo
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan. .,Graduate institute of Pharmaceutical Chemistry, China Medical University, Taichung, 40402, Taiwan R.O.C.
| | - Tzong-Der Way
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, No. 91 Hsueh-Shih Road, Taichung, 40402, Taiwan R.O.C. .,Department of Health and Nutrition Biotechnology, College of Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
6
|
Tamoxifen metabolite endoxifen interferes with the polyamine pathway in breast cancer. Amino Acids 2016; 48:2293-302. [PMID: 27438264 DOI: 10.1007/s00726-016-2300-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022]
Abstract
Tamoxifen is the most widely used drug to treat women with estrogen receptor α (ERα)-positive breast cancer. Endoxifen is recognized as the active metabolite of tamoxifen in humans. We studied endoxifen effects on ERα-positive MCF-7 breast cancer cells. Estradiol increased the proliferation of MCF-7 cells by two- to threefold and endoxifen suppressed its effects. Endoxifen suppressed c-myc, c-fos and Tff1 oncogene expression, as revealed by RT-PCR. Estradiol increased the activity of ornithine decarboxylase (ODC) and adenosyl methioninedecarboxylase (AdoMetDC), whereas endoxifen suppressed these enzyme activities. Endoxifen increased activities of spermine oxidase (SMO) and acetyl polyamine oxidase (APAO) significantly, and reduced the levels of putrescine and spermidine. These data suggest a possible mechanism for the antiestrogenic effects of tamoxifen/endoxifen, involving the stimulation of polyamine oxidase enzymes. Therefore, SMO and APAO stimulation might be useful biomarkers for the efficacy of endoxifen treatment of breast cancer.
Collapse
|
7
|
Le Grand A, André-Leroux G, Marteil G, Duval H, Sire O, Le Tilly V. Investigating the in Vitro Thermal Stability and Conformational Flexibility of Estrogen Receptors as Potential Key Factors of Their in Vivo Activity. Biochemistry 2015; 54:3890-900. [DOI: 10.1021/acs.biochem.5b00026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adélaïde Le Grand
- Laboratoire
d’Ingénierie des Matériaux de Bretagne, Université de Bretagne-Sud, CER Yves Coppens, BP573, 56017 Vannes Cedex, France
| | - Gwenaëlle André-Leroux
- Institut National de la Recherche
Agronomique, UR1404, Unité de Mathématiques et Informatiques
Appliquées du Génome à l’Environnement, Domaine de Vilvert, 78352 Jouy-en-Josas, France
- Institut
Pasteur,
Unité de Microbiologie Structurale, CNRS UMR 3528, 25 rue du Docteur Roux, 75724 Paris, France
| | - Gaëlle Marteil
- Instituto Gulbenkian de Ciëncia, Cell Cycle
Regulation Lab, Rua da
Quinta Grande, P-2780-156 Oreias, Portugal
| | - Hélène Duval
- Laboratoire
d’Ingénierie des Matériaux de Bretagne, Université de Bretagne-Sud, CER Yves Coppens, BP573, 56017 Vannes Cedex, France
| | - Olivier Sire
- Laboratoire
d’Ingénierie des Matériaux de Bretagne, Université de Bretagne-Sud, CER Yves Coppens, BP573, 56017 Vannes Cedex, France
| | - Véronique Le Tilly
- Laboratoire
d’Ingénierie des Matériaux de Bretagne, Université de Bretagne-Sud, CER Yves Coppens, BP573, 56017 Vannes Cedex, France
| |
Collapse
|
8
|
Ma R, Jiang D, Kang B, Bai L, He H, Chen Z, Yi Z. Molecular cloning and mRNA expression analysis of antizyme inhibitor 1 in the ovarian follicles of the Sichuan white goose. Gene 2015; 568:55-60. [PMID: 25959024 DOI: 10.1016/j.gene.2015.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/03/2015] [Accepted: 05/06/2015] [Indexed: 11/18/2022]
Abstract
Antizyme inhibitor 1 (Azin1) plays critical roles in various cellular pathways, including ornithine decarboxylase regulation, polyamine anabolism and uptake and cell proliferation. However, the molecular characteristics of the AZIN1 gene and its expression profile in goose tissues and ovarian follicles have not been reported. In this study, the AZIN1 cDNA of the Sichuan white goose (Anser cygnoides) was cloned, and analyzed for its phylogenetic and physiochemical properties. The expression profile of AZIN1 mRNA in geese tissues and ovarian follicles were examined using quantitative real-time PCR. The results showed that the open reading frame of the AZIN1 cDNA is 1,353 bp in length, encoding a 450 amino acid protein with a molecular weight of 50 kDa. Out of all tissues examined, AZIN1 expression was highest in the adrenal gland and lowest in breast muscle. There was also a high expression of AZIN1 in the cerebellum and isthmus of oviduct. With follicular development, AZIN1 gene expression gradually increased, and its expression in F1 was significantly higher than in F5 (P<0.05). AZIN1 expression was also significantly higher in the POF1 than in the other follicles (P<0.05), and there was a low mRNA expression of AZIN1 in atretic follicles. The results of AZIN1 expression profiling in ovarian follicles suggest that AZIN1 may play an important role in the progression of follicular development, potentially through regulating polyamine levels.
Collapse
Affiliation(s)
- Rong Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Dongmei Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Lin Bai
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hui He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Ziyu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhixin Yi
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| |
Collapse
|
9
|
Hwang JJ, Kim HN, Kim J, Cho DH, Kim MJ, Kim YS, Kim Y, Park SJ, Koh JY. Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. Biometals 2010; 23:997-1013. [DOI: 10.1007/s10534-010-9346-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/12/2010] [Indexed: 12/25/2022]
|
10
|
John S, Nayvelt I, Hsu HC, Yang P, Liu W, Das GM, Thomas T, Thomas TJ. Regulation of estrogenic effects by beclin 1 in breast cancer cells. Cancer Res 2008; 68:7855-63. [PMID: 18829541 DOI: 10.1158/0008-5472.can-07-5875] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Beclin 1 is an essential mediator of autophagy and a regulator of cell growth and cell death. We examined the effect of Beclin 1 overexpression on the action of estradiol (E(2)) and two antiestrogens, raloxifene and 4-hydroxytamoxifen, in estrogen receptor alpha (ERalpha)-positive MCF-7 breast cancer cells. [(3)H]-thymidine incorporation studies showed that Beclin 1-overexpressing cells (MCF-7 x beclin) had a lower proliferative response to E(2) compared with cells transfected with vector control (MCF-7 x control). There was only a 35% increase in [(3)H]-thymidine incorporation, after 24 hours of E(2) treatment of MCF-7 x beclin cells compared with untreated cells, whereas this increase was 2-fold for MCF-7 x control cells. E(2)-induced changes in the expression of early-response genes were examined by real-time quantitiative PCR. There were significant differences in the pattern of expression of E(2)-induced genes c-myc, c-fos, Erg-1, and Nur77 between MCF-7 x beclin and MCF-7 x control cells two hours after treatment. Although E(2)-induced growth of MCF-7 x control cells was completely inhibited by 500 nmol/L raloxifene or 500 nmol/L 4-hydroxytamoxifen, these concentrations of antiestrogens had no significant effect on the growth of MCF-7 x beclin cells. Confocal microscopic and coimmunoprecipitation studies showed evidence for colocalization and association of Beclin 1 and ERalpha. In addition, E(2) caused a decrease in Akt phosphorylation in MCF-7 x beclin cells, compared with a 3-fold increase in MCF-7 cells, five minutes after treatment. These results indicate that Beclin 1 can down-regulate estrogenic signaling and growth response, and contribute to the development of antiestrogen resistance. This observation might be useful to define and overcome antiestrogen resistance of breast cancer.
Collapse
Affiliation(s)
- Shali John
- Departments of Medicine, Environmental and Occupational Medicine, University of Medicine and Dentistry, New Jersey-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | | | | | | | | | | | | | | |
Collapse
|