1
|
Carigga Gutierrez NM, Pujol-Solé N, Arifi Q, Coll JL, le Clainche T, Broekgaarden M. Increasing cancer permeability by photodynamic priming: from microenvironment to mechanotransduction signaling. Cancer Metastasis Rev 2022; 41:899-934. [PMID: 36155874 DOI: 10.1007/s10555-022-10064-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
The dense cancer microenvironment is a significant barrier that limits the penetration of anticancer agents, thereby restraining the efficacy of molecular and nanoscale cancer therapeutics. Developing new strategies to enhance the permeability of cancer tissues is of major interest to overcome treatment resistance. Nonetheless, early strategies based on small molecule inhibitors or matrix-degrading enzymes have led to disappointing clinical outcomes by causing increased chemotherapy toxicity and promoting disease progression. In recent years, photodynamic therapy (PDT) has emerged as a novel approach to increase the permeability of cancer tissues. By producing excessive amounts of reactive oxygen species selectively in the cancer microenvironment, PDT increases the accumulation, penetration depth, and efficacy of chemotherapeutics. Importantly, the increased cancer permeability has not been associated to increased metastasis formation. In this review, we provide novel insights into the mechanisms by which this effect, called photodynamic priming, can increase cancer permeability without promoting cell migration and dissemination. This review demonstrates that PDT oxidizes and degrades extracellular matrix proteins, reduces the capacity of cancer cells to adhere to the altered matrix, and interferes with mechanotransduction pathways that promote cancer cell migration and differentiation. Significant knowledge gaps are identified regarding the involvement of critical signaling pathways, and to which extent these events are influenced by the complicated PDT dosimetry. Addressing these knowledge gaps will be vital to further develop PDT as an adjuvant approach to improve cancer permeability, demonstrate the safety and efficacy of this priming approach, and render more cancer patients eligible to receive life-extending treatments.
Collapse
Affiliation(s)
| | - Núria Pujol-Solé
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Qendresa Arifi
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Jean-Luc Coll
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Tristan le Clainche
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| | - Mans Broekgaarden
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, 38000, Grenoble, France.
| |
Collapse
|
2
|
Dailton Guedes de Oliveira Moraes C, Henrique Godoi B, Chaves Silva Carvalho I, Cristina Pinto J, Carvalho Rossato R, Soares da Silva N, Pacheco Soares C. Genotoxic effects of photodynamic therapy in laryngeal cancer cells - An in vitro study. Exp Biol Med (Maywood) 2019; 244:262-271. [PMID: 30674213 DOI: 10.1177/1535370219826544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPACT STATEMENT Recently, the use of photodynamic therapy grows as an alternative treatment for cancer, since it has a noninvasive characteristic and affinity to the tumor tissue. Accordingly, understanding the therapy's foci of action is important for the technique improvement. This work aims to understand the genotoxic effect triggered by the therapy action, thus evidencing the permanent changes caused to the genetic material of the tumor cell after the treatment. Therefore, to increase the knowledge in this study field, the methodology of the comet assay and count of micronucleus formed after the therapy was adopted in order to understand if the damage caused to the DNA of tumor cell makes its replication process unfeasible in future generations. The study allows a better therapeutic approach to the cancer treatment, making the process of association between therapies a more effective option during the disease treatment.
Collapse
Affiliation(s)
- Carlos Dailton Guedes de Oliveira Moraes
- 1 Institute of Research and Development - IP&D, Universidade do Vale do Paraíba - UNIVAP, Laboratory Dynamics of Cellular Compartments, Sao Paulo 12244-000, Brazil
| | - Bruno Henrique Godoi
- 1 Institute of Research and Development - IP&D, Universidade do Vale do Paraíba - UNIVAP, Laboratory Dynamics of Cellular Compartments, Sao Paulo 12244-000, Brazil
| | - Isabel Chaves Silva Carvalho
- 1 Institute of Research and Development - IP&D, Universidade do Vale do Paraíba - UNIVAP, Laboratory Dynamics of Cellular Compartments, Sao Paulo 12244-000, Brazil
| | - Jessica Cristina Pinto
- 1 Institute of Research and Development - IP&D, Universidade do Vale do Paraíba - UNIVAP, Laboratory Dynamics of Cellular Compartments, Sao Paulo 12244-000, Brazil
| | - Rafaella Carvalho Rossato
- 1 Institute of Research and Development - IP&D, Universidade do Vale do Paraíba - UNIVAP, Laboratory Dynamics of Cellular Compartments, Sao Paulo 12244-000, Brazil
| | - Newton Soares da Silva
- 2 Institute of Research and Development - IP&D, Universidade do Vale do Paraíba - UNIVAP, Laboratory of Cell Biology and Tissue, Sao Paulo, CEP 12244-000, Brazil
| | - Cristina Pacheco Soares
- 1 Institute of Research and Development - IP&D, Universidade do Vale do Paraíba - UNIVAP, Laboratory Dynamics of Cellular Compartments, Sao Paulo 12244-000, Brazil
| |
Collapse
|
3
|
Carneiro BR, Pernambuco Filho PCA, Mesquita APDS, da Silva DS, Pinhal MAS, Nader HB, Lopes CC. Acquisition of anoikis resistance up-regulates syndecan-4 expression in endothelial cells. PLoS One 2014; 9:e116001. [PMID: 25549223 PMCID: PMC4280138 DOI: 10.1371/journal.pone.0116001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023] Open
Abstract
Anoikis is a programmed cell death induced upon cell detachment from extracellular matrix, behaving as a critical mechanism in preventing adherent-independent cell growth and attachment to an inappropriate matrix, thus avoiding colonization of distant organs. Cell adhesion plays an important role in neoplastic transformation. Tumors produce several molecules that facilitate their proliferation, invasion and maintenance, especially proteoglycans. The syndecan-4, a heparan sulfate proteoglycan, can act as a co-receptor of growth factors and proteins of the extracellular matrix by increasing the affinity of adhesion molecules to their specific receptors. It participates together with integrins in cell adhesion at focal contacts connecting the extracellular matrix to the cytoskeleton. Changes in the expression of syndecan-4 have been observed in tumor cells, indicating its involvement in cancer. This study investigates the role of syndecan-4 in the process of anoikis and cell transformation. Endothelial cells were submitted to sequential cycles of forced anchorage impediment and distinct lineages were obtained. Anoikis-resistant endothelial cells display morphological alterations, high rate of proliferation, poor adhesion to fibronectin, laminin and collagen IV and deregulation of the cell cycle, becoming less serum-dependent. Furthermore, anoikis-resistant cell lines display a high invasive potential and a low rate of apoptosis. This is accompanied by an increase in the levels of heparan sulfate and chondroitin sulfate as well as by changes in the expression of syndecan-4 and heparanase. These results indicate that syndecan-4 plays a important role in acquisition of anoikis resistance and that the conferral of anoikis resistance may suffice to transform endothelial cells.
Collapse
Affiliation(s)
- Bruna Ribeiro Carneiro
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Paulo Castanho A. Pernambuco Filho
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Ana Paula de Sousa Mesquita
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Douglas Santos da Silva
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Helena B. Nader
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Carla Cristina Lopes
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, SP, Brazil
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
4
|
Machado AHA, Soares PC, Da Silva NS, Moraes KC. Cellular and molecular studies of the initial process of the photodynamic therapy in HEp-2 cells using LED light source and two different photosensitizers. Cell Biol Int 2013; 33:785-95. [DOI: 10.1016/j.cellbi.2009.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/12/2009] [Accepted: 04/14/2009] [Indexed: 01/22/2023]
|
5
|
Moreira LM, Vieira dos Santos F, Lyon JP, Maftoum-Costa M, Pacheco-Soares C, Soares da Silva N. Photodynamic Therapy: Porphyrins and Phthalocyanines as Photosensitizers. Aust J Chem 2008. [DOI: 10.1071/ch08145] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present work is focussed on the principles of photodynamic therapy (PDT), emphasizing the photochemical mechanisms of reactive oxygen species formation and the consequent biochemical processes generated by the action of reactive oxygen species on various biological macromolecules and organelles. This paper also presents some of the most used photosensitizers, including Photofrin, and the new prototypes of photosensitizers, analysing their physicochemical and spectroscopic properties. At this point, the review discusses the therapeutic window of absorption of specific wavelengths involving first- and second-generation photosensitizers, as well as the principal light sources used in PDT. Additionally, the aggregation process, which consists in a phenomenon common to several photosensitizers, is studied. J-aggregates and H-aggregates are discussed, along with their spectroscopic effects. Most photosensitizers have a significant hydrophobic character; thus, the study of the types of aggregation in aqueous solvent is very relevant. Important aspects of the coordination chemistry of metalloporphyrins and metallophthalocyanines used as photosensitizers are also discussed. The state-of-the-art in PDT is evaluated, discussing recent articles in this area. Furthermore, macrocyclic photosensitizers, such as porphyrins and phthalocyanines, are specifically described. The present review is an important contribution, because PDT is one of the most auspicious advances in the therapy against cancer and other non-malignant diseases.
Collapse
|