1
|
Darawshi O, Yassin O, Shmuel M, Wek RC, Mahdizadeh SJ, Eriksson LA, Hatzoglou M, Tirosh B. Phosphorylation of GCN2 by mTOR confers adaptation to conditions of hyper-mTOR activation under stress. J Biol Chem 2024; 300:107575. [PMID: 39013537 PMCID: PMC11362803 DOI: 10.1016/j.jbc.2024.107575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Adaptation to the shortage in free amino acids (AA) is mediated by 2 pathways, the integrated stress response (ISR) and the mechanistic target of rapamycin (mTOR). In response to reduced levels, primarily of leucine or arginine, mTOR in its complex 1 configuration (mTORC1) is suppressed leading to a decrease in translation initiation and elongation. The eIF2α kinase general control nonderepressible 2 (GCN2) is activated by uncharged tRNAs, leading to induction of the ISR in response to a broader range of AA shortage. ISR confers a reduced translation initiation, while promoting the selective synthesis of stress proteins, such as ATF4. To efficiently adapt to AA starvation, the 2 pathways are cross-regulated at multiple levels. Here we identified a new mechanism of ISR/mTORC1 crosstalk that optimizes survival under AA starvation, when mTORC1 is forced to remain active. mTORC1 activation during acute AA shortage, augmented ATF4 expression in a GCN2-dependent manner. Under these conditions, enhanced GCN2 activity was not dependent on tRNA sensing, inferring a different activation mechanism. We identified a labile physical interaction between GCN2 and mTOR that results in a phosphorylation of GCN2 on serine 230 by mTOR, which promotes GCN2 activity. When examined under prolonged AA starvation, GCN2 phosphorylation by mTOR promoted survival. Our data unveils an adaptive mechanism to AA starvation, when mTORC1 evades inhibition.
Collapse
Affiliation(s)
- Odai Darawshi
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Olaya Yassin
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Miri Shmuel
- The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - S Jalil Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Boaz Tirosh
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
2
|
Motsinger LA, Okamoto LL, Ineck NE, Udy BA, Erickson CL, Harraq Y, Reichhardt CC, Murdoch GK, Thornton KJ. Understanding the Effects of Trenbolone Acetate, Polyamine Precursors, and Polyamines on Proliferation, Protein Synthesis Rates, and the Abundance of Genes Involved in Myoblast Growth, Polyamine Biosynthesis, and Protein Synthesis in Murine Myoblasts. BIOLOGY 2023; 12:biology12030446. [PMID: 36979138 PMCID: PMC10045634 DOI: 10.3390/biology12030446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Research suggests that androgens increase skeletal muscle growth by modulating polyamine biosynthesis. As such, the objective of this study was to investigate effects of anabolic hormones, polyamine precursors, and polyamines relative to proliferation, protein synthesis, and the abundance of mRNA involved in polyamine biosynthesis, proliferation, and protein synthesis in C2C12 and Sol8 cells. Cultures were treated with anabolic hormones (trenbolone acetate and/or estradiol), polyamine precursors (methionine or ornithine), or polyamines (putrescine, spermidine, or spermine). Messenger RNA was isolated 0.5 or 1, 12, or 24 h post-treatment. The cell type had no effect (p > 0.10) on proliferation, protein synthesis, or mRNA abundance at any time point. Each treatment increased (p < 0.01) proliferation, and anabolic hormones increased (p = 0.04) protein synthesis. Polyamines increased (p < 0.05) the abundance of mRNA involved in polyamine biosynthesis, proliferation, and protein synthesis. Treatment with polyamine precursors decreased (p < 0.05) the abundance of mRNA involved in proliferation and protein synthesis. Overall, C2C12 and Sol8 myoblasts do not differ (p > 0.10) in proliferation, protein synthesis, or mRNA abundance at the time points assessed. Furthermore, anabolic hormones, polyamines, and polyamine precursors increase proliferation and protein synthesis, and polyamines and their precursors alter the abundance of mRNA involved in growth.
Collapse
Affiliation(s)
- Laura A. Motsinger
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Lillian L. Okamoto
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Nikole E. Ineck
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Brynne A. Udy
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Christopher L. Erickson
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Youssef Harraq
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Caleb C. Reichhardt
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Gordon K. Murdoch
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA
| | - Kara Jean Thornton
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
- Correspondence: ; Tel.: +435-797-7696; Fax: +435-797-2118
| |
Collapse
|
3
|
Lunin SM, Novoselova EG, Glushkova OV, Parfenyuk SB, Novoselova TV, Khrenov MO. Cell Senescence and Central Regulators of Immune Response. Int J Mol Sci 2022; 23:ijms23084109. [PMID: 35456927 PMCID: PMC9028919 DOI: 10.3390/ijms23084109] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pathways regulating cell senescence and cell cycle underlie many processes associated with ageing and age-related pathologies, and they also mediate cellular responses to exposure to stressors. Meanwhile, there are central mechanisms of the regulation of stress responses that induce/enhance or weaken the response of the whole organism, such as hormones of the hypothalamic-pituitary-adrenal (HPA) axis, sympathetic and parasympathetic systems, thymic hormones, and the pineal hormone melatonin. Although there are many analyses considering relationships between the HPA axis and organism ageing, we found no systematic analyses of relationships between the neuroendocrine regulators of stress and inflammation and intracellular mechanisms controlling cell cycle, senescence, and apoptosis. Here, we provide a review of the effects of neuroendocrine regulators on these mechanisms. Our analysis allowed us to postulate a multilevel system of central regulators involving neurotransmitters, glucocorticoids, melatonin, and the thymic hormones. This system finely regulates the cell cycle and metabolic/catabolic processes depending on the level of systemic stress, stage of stress response, and energy capabilities of the body, shifting the balance between cell cycle progression, cell cycle stopping, senescence, and apoptosis. These processes and levels of regulation should be considered when studying the mechanisms of ageing and the proliferation on the level of the whole organism.
Collapse
|
4
|
Welles JE, Dennis MD, Jefferson LS, Kimball SR. Glucagon-Dependent Suppression of mTORC1 is Associated with Upregulation of Hepatic FGF21 mRNA Translation. Am J Physiol Endocrinol Metab 2020; 319:E26-E33. [PMID: 32421369 PMCID: PMC7468783 DOI: 10.1152/ajpendo.00555.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/13/2020] [Accepted: 05/11/2020] [Indexed: 01/09/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a peptide hormone that acts to enhance insulin sensitivity and reverse many of the metabolic defects associated with consumption of a high-fat diet. Recent studies show that the liver is the primary source of FGF21 in the blood, and that hepatic FGF21 expression is upregulated by glucagon. Interestingly, glucagon acts to upregulate FGF21 production by primary cultures of rat hepatocytes and H4IIE and HepG2 hepatocarcinoma cells independent of changes in FGF21 mRNA abundance, suggesting that FGF21 protein expression is regulated post-transcriptionally. Based on these observations, the goal of the present study was to assess whether or not FGF21 mRNA is translationally regulated. The results show that FGF21 mRNA translation and secretion of the hormone are significantly upregulated in H4IIE cells exposed to 25 nM glucagon, independent of changes in FGF21 mRNA abundance. Furthermore, the glucagon-induced upregulation of FGF21 mRNA translation is associated with suppressed activity of the mechanistic target of rapamycin in complex 1 (mTORC1). Similarly, the results show that rapamycin-induced suppression of mTORC1 leads to upregulation of FGF21 mRNA translation with no change in FGF21 mRNA abundance. In contrast, activation of mTORC1 by refreshing the culture medium leads to downregulation of FGF21 mRNA translation. Notably, re-feeding fasted rats also leads to downregulation of FGF21 mRNA translation concomitantly with activation of mTORC1 in the liver. Overall, the findings support a model in which glucagon acts to upregulate FGF21 production by hepatocytes through suppression of mTORC1 and subsequent upregulation of FGF21 mRNA translation.
Collapse
Affiliation(s)
- Jaclyn E Welles
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey PA 17033, United States
| | - Michael D Dennis
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey PA 17033, United States
| | - Leonard S Jefferson
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey PA 17033, United States
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey PA 17033, United States
| |
Collapse
|
5
|
Jhanwar-Uniyal M, Wainwright JV, Mohan AL, Tobias ME, Murali R, Gandhi CD, Schmidt MH. Diverse signaling mechanisms of mTOR complexes: mTORC1 and mTORC2 in forming a formidable relationship. Adv Biol Regul 2019; 72:51-62. [PMID: 31010692 DOI: 10.1016/j.jbior.2019.03.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
Activation of Mechanistic target of rapamycin (mTOR) signaling plays a crucial role in tumorigenesis of numerous malignancies including glioblastoma (GB). The Canonical PI3K/Akt/mTOR signaling cascade is commonly upregulated due to loss of the tumor suppressorm PTEN, a phosphatase that acts antagonistically to the kinase (PI3K) in conversion of PIP2 to PIP3. mTOR forms two multiprotein complexes, mTORC1 and mTORC2 which are composed of discrete protein binding partners to regulate cell growth, motility, and metabolism. These complexes are sensitive to distinct stimuli, as mTORC1 is sensitive to nutrients while mTORC2 is regulated via PI3K and growth factor signaling. The main function of mTORC1 is to regulate protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. On the other hand, mTORC2 is responsive to growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases like Akt and SGK and it also plays a crucial role in maintenance of normal and cancer cells through its association with ribosomes, and is involved in cellular metabolic regulation. mTORC1 and mTORC2 regulate each other, as shown by the fact that Akt regulates PRAS40 phosphorylation, which disinhibits mTORC1 activity, while S6K regulates Sin1 to modulate mTORC2 activity. Allosteric inhibitors of mTOR, rapamycin and rapalogs, remained ineffective in clinical trials of Glioblastoma (GB) patients, in part due to their incomplete inhibition of mTORC1 as well as unexpected activation of mTOR via the loss of negative feedback loops. In recent years, novel ATP binding inhibitors of mTORC1 and mTORC2 suppress mTORC1 activity completely by total dephosphorylation of its downstream substrate pS6KSer235/236, while effectively suppressing mTORC2 activity, as demonstrated by complete dephosphorylation of pAKTSer473. Furthermore by these novel combined mTORC1/mTORC2 inhibitors reduced the proliferation and self-renewal of GB cancer stem cells. However, a search of more effective way to target mTOR has generated a third generation inhibitor of mTOR, "Rapalink", that bivalently combines rapamycin with an ATP-binding inhibitor, which effectively abolishes the mTORC1 activity. All in all, the effectiveness of inhibitors of mTOR complexes can be judged by their ability to suppress both mTORC1/mTORC2 and their ability to impede both cell proliferation and migration along with aberrant metabolic pathways.
Collapse
Affiliation(s)
- Meena Jhanwar-Uniyal
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA.
| | - John V Wainwright
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Avinash L Mohan
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Michael E Tobias
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Raj Murali
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Chirag D Gandhi
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| | - Meic H Schmidt
- Department of Neurosurgery, Westchester Medical Center / New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
6
|
Cant JP, Kim JJ, Cieslar SR, Doelman J. Symposium review: Amino acid uptake by the mammary glands: Where does the control lie? J Dairy Sci 2018; 101:5655-5666. [DOI: 10.3168/jds.2017-13844] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/28/2018] [Indexed: 12/15/2022]
|
7
|
Discrete signaling mechanisms of mTORC1 and mTORC2: Connected yet apart in cellular and molecular aspects. Adv Biol Regul 2017; 64:39-48. [PMID: 28189457 DOI: 10.1016/j.jbior.2016.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
Activation of PI3K/Akt/mTOR (mechanistic target of rapamycin) signaling cascade has been shown in tumorigenesis of numerous malignancies including glioblastoma (GB). This signaling cascade is frequently upregulated due to loss of the tumor suppressor PTEN, a phosphatase that functions antagonistically to PI3K. mTOR regulates cell growth, motility, and metabolism by forming two multiprotein complexes, mTORC1 and mTORC2, which are composed of special binding partners. These complexes are sensitive to distinct stimuli. mTORC1 is sensitive to nutrients and mTORC2 is regulated via PI3K and growth factor signaling. mTORC1 regulates protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. Also, mTORC2 is responsive to growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases like Akt and SGK. mTORC2 plays a crucial role in maintenance of normal and cancer cells through its association with ribosomes, and is involved in cellular metabolic regulation. Both complexes control each other as Akt regulates PRAS40 phosphorylation, which disinhibits mTORC1 activity, while S6K regulates Sin1 to modulate mTORC2 activity. Another significant component of mTORC2 is Sin1, which is crucial for mTORC2 complex formation and function. Allosteric inhibitors of mTOR, rapamycin and rapalogs, have essentially been ineffective in clinical trials of patients with GB due to their incomplete inhibition of mTORC1 or unexpected activation of mTOR via the loss of negative feedback loops. Novel ATP binding inhibitors of mTORC1 and mTORC2 suppress mTORC1 activity completely by total dephosphorylation of its downstream substrate pS6KSer235/236, while effectively suppressing mTORC2 activity, as demonstrated by complete dephosphorylation of pAKTSer473. Furthermore, proliferation and self-renewal of GB cancer stem cells are effectively targetable by these novel mTORC1 and mTORC2 inhibitors. Therefore, the effectiveness of inhibitors of mTOR complexes can be estimated by their ability to suppress both mTORC1 and 2 and their ability to impede both cell proliferation and migration.
Collapse
|
8
|
Doelman J, Kim JJM, Carson M, Metcalf JA, Cant JP. Branched-chain amino acid and lysine deficiencies exert different effects on mammary translational regulation. J Dairy Sci 2015; 98:7846-55. [PMID: 26342977 DOI: 10.3168/jds.2015-9819] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/17/2015] [Indexed: 11/19/2022]
Abstract
Deficiencies and imbalances of specific group II essential amino acids (EAA) were created in lactating cows by an infusion subtraction protocol to explore effects on milk production and abundance and phosphorylation state of regulators of mRNA translation in the mammary glands. Five lactating cows on a diet of 11.2% crude protein were infused abomasally for 5d with saline, 563 g/d of a complete EAA mix, or EAA mixes without the branched-chain amino acids (BCAA), Leu, or Lys in a 5 × 5 Latin square design. Milk protein yield was stimulated by EAA infusion and returned to saline levels upon subtraction of BCAA, Leu, or Lys. Mammary abundance of phosphorylated S6K1 was measured as an indicator of mammalian target of rapamycin complex 1 (mTORC1) activity and was found not to be affected by the complete EAA mix but was increased by the mixture lacking Lys. Total S6K1 abundances in mammary tissue were elevated by complete and BCAA-lacking infusions. All of the EAA treatments except the one lacking BCAA upregulated mammary eIF2Bε and eIF2α abundances, which is stimulatory to global mRNA translation. Phosphorylation state of eIF2Bε tended to decrease when complete or Lys-lacking EAA mixtures were infused. Phosphorylation state of eIF2α was not affected by treatment. We detected a correlation of 0.62 between phosphorylation state of S6K1 and total eIF2Bε abundance, and a correlation of 0.58 between phosphorylation state of S6K1 and total eIF2α abundance, suggesting that mTORC1 activation may have upregulated eIF2Bε and eIF2α expression. Despite maintenance of mammary eIF2Bε and eIF2α abundances during Leu and Lys deficiencies, milk protein yield declined, suggesting that other factors are responsible for mediating effects of Lys and Leu. A deficiency of all 3 BCAA may impair milk protein yield through deactivation of mTORC1-mediated upregulation of eIF2Bε and eIF2α abundances.
Collapse
Affiliation(s)
- John Doelman
- Nutreco Canada Agresearch, Guelph, Ontario, N1G 4T2 Canada.
| | - Julie J M Kim
- Department of Animal BioSciences, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | | | - John A Metcalf
- Nutreco Canada Agresearch, Guelph, Ontario, N1G 4T2 Canada
| | - John P Cant
- Department of Animal BioSciences, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| |
Collapse
|
9
|
Doelman J, Curtis R, Carson M, Kim J, Metcalf J, Cant J. Essential amino acid infusions stimulate mammary expression of eukaryotic initiation factor 2Bε but milk protein yield is not increased during an imbalance. J Dairy Sci 2015; 98:4499-508. [DOI: 10.3168/jds.2014-9051] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/16/2015] [Indexed: 01/08/2023]
|
10
|
Jhanwar-Uniyal M, Gillick JL, Neil J, Tobias M, Thwing ZE, Murali R. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes. Adv Biol Regul 2014; 57:64-74. [PMID: 25442674 DOI: 10.1016/j.jbior.2014.09.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 02/07/2023]
Abstract
Mechanistic target of rapamycin (mTOR) is a serine-threonine kinase that functions via two multiprotein complexes, namely mTORC1 and mTORC2, each characterized by different binding partners that confer separate functions. mTORC1 function is tightly regulated by PI3-K/Akt and is sensitive to rapamycin. mTORC2 is sensitive to growth factors, not nutrients, and is associated with rapamycin-insensitivity. mTORC1 regulates protein synthesis and cell growth through downstream molecules: 4E-BP1 (also called EIF4E-BP1) and S6K. Also, mTORC2 is thought to modulate growth factor signaling by phosphorylating the C-terminal hydrophobic motif of some AGC kinases such as Akt and SGK. Recent evidence has suggested that mTORC2 may play an important role in maintenance of normal as well as cancer cells by virtue of its association with ribosomes, which may be involved in metabolic regulation of the cell. Rapamycin (sirolimus) and its analogs known as rapalogues, such as RAD001 (everolimus) and CCI-779 (temsirolimus), suppress mTOR activity through an allosteric mechanism that acts at a distance from the ATP-catalytic binding site, and are considered incomplete inhibitors. Moreover, these compounds suppress mTORC1-mediated S6K activation, thereby blocking a negative feedback loop, leading to activation of mitogenic pathways promoting cell survival and growth. Consequently, mTOR is a suitable target of therapy in cancer treatments. However, neither of these complexes is fully inhibited by the allosteric inhibitor rapamycin or its analogs. In recent years, new pharmacologic agents have been developed which can inhibit these complexes via ATP-binding mechanism, or dual inhibition of the canonical PI3-K/Akt/mTOR signaling pathway. These compounds include WYE-354, KU-003679, PI-103, Torin1, and Torin2, which can target both complexes or serve as a dual inhibitor for PI3-K/mTOR. This investigation describes the mechanism of action of pharmacological agents that effectively target mTORC1 and mTORC2 resulting in suppression of growth, proliferation, and migration of tumor and cancer stem cells.
Collapse
Affiliation(s)
| | - John L Gillick
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | - Jayson Neil
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | - Michael Tobias
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | - Zachary E Thwing
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| | - Raj Murali
- Department of Neurosurgery, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
11
|
Fort PE, Losiewicz MK, Pennathur S, Jefferson LS, Kimball SR, Abcouwer SF, Gardner TW. mTORC1-independent reduction of retinal protein synthesis in type 1 diabetes. Diabetes 2014; 63:3077-90. [PMID: 24740573 PMCID: PMC4141367 DOI: 10.2337/db14-0235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Poorly controlled diabetes has long been known as a catabolic disorder with profound loss of muscle and fat body mass resulting from a simultaneous reduction in protein synthesis and enhanced protein degradation. By contrast, retinal structure is largely maintained during diabetes despite reduced Akt activity and increased rate of cell death. Therefore, we hypothesized that retinal protein turnover is regulated differently than in other insulin-sensitive tissues, such as skeletal muscle. Ins2(Akita) diabetic mice and streptozotocin-induced diabetic rats exhibited marked reductions in retinal protein synthesis matched by a concomitant reduction in retinal protein degradation associated with preserved retinal mass and protein content. The reduction in protein synthesis depended on both hyperglycemia and insulin deficiency, but protein degradation was only reversed by normalization of hyperglycemia. The reduction in protein synthesis was associated with diminished protein translation efficiency but, surprisingly, not with reduced activity of the mTORC1/S6K1/4E-BP1 pathway. Instead, diabetes induced a specific reduction of mTORC2 complex activity. These findings reveal distinctive responses of diabetes-induced retinal protein turnover compared with muscle and liver that may provide a new means to ameliorate diabetic retinopathy.
Collapse
Affiliation(s)
- Patrice E Fort
- Kellogg Eye Center, Departments of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Mandy K Losiewicz
- Kellogg Eye Center, Departments of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Leonard S Jefferson
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA
| | - Steven F Abcouwer
- Kellogg Eye Center, Departments of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI
| | - Thomas W Gardner
- Kellogg Eye Center, Departments of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
12
|
Poulsen RC, Watts AC, Murphy RJ, Snelling SJ, Carr AJ, Hulley PA. Glucocorticoids induce senescence in primary human tenocytes by inhibition of sirtuin 1 and activation of the p53/p21 pathway: in vivo and in vitro evidence. Ann Rheum Dis 2014; 73:1405-13. [PMID: 23727633 PMCID: PMC4078757 DOI: 10.1136/annrheumdis-2012-203146] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2013] [Indexed: 01/26/2023]
Abstract
UNLABELLED Cellular senescence is an irreversible side effect of some pharmaceuticals which can contribute to tissue degeneration. OBJECTIVE To determine whether pharmaceutical glucocorticoids induce senescence in tenocytes. METHODS Features of senescence (β-galactosidase activity at pH 6 (SA-β-gal) and active mammalian/mechanistic target of rapamycin (mTOR) in cell cycle arrest) as well as the activity of the two main pathways leading to cell senescence were examined in glucocorticoid-treated primary human tenocytes. Evidence of senescence-inducing pathway induction in vivo was obtained using immunohistochemistry on tendon biopsy specimens taken before and 7 weeks after subacromial Depo-Medrone injection. RESULTS Dexamethasone treatment of tenocytes resulted in an increased percentage of SA-βgal-positive cells. Levels of phosphorylated p70S6K did not decrease with glucocorticoid treatment indicating mTOR remained active. Increased levels of acetylated p53 as well as increased RNA levels of its pro-senescence effector p21 were evident in dexamethasone-treated tenocytes. Levels of the p53 deacetylase sirtuin 1 were lower in dexamethasone-treated cells compared with controls. Knockdown of p53 or inhibition of p53 activity prevented dexamethasone-induced senescence. Activation of sirtuin 1 either by exogenous overexpression or by treatment with resveratrol or low glucose prevented dexamethasone-induced senescence. Immunohistochemical analysis of tendon biopsies taken before and after glucocorticoid injection revealed a significant increase in the percentage of p53-positive cells (p=0.03). The percentage of p21-positive cells also tended to be higher post-injection (p=0.06) suggesting glucocorticoids activate the p53/p21 senescence-inducing pathway in vivo as well as in vitro. CONCLUSION As cell senescence is irreversible in vivo, glucocorticoid-induced senescence may result in long-term degenerative changes in tendon tissue.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Anna C Watts
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Richard J Murphy
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Sarah J Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | - Philippa A Hulley
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Baehr LM, Tunzi M, Bodine SC. Muscle hypertrophy is associated with increases in proteasome activity that is independent of MuRF1 and MAFbx expression. Front Physiol 2014; 5:69. [PMID: 24600408 PMCID: PMC3930915 DOI: 10.3389/fphys.2014.00069] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 02/04/2014] [Indexed: 12/02/2022] Open
Abstract
The regulation of skeletal muscle mass depends on the balance between protein synthesis and degradation. The role of protein degradation and in particular, the ubiquitin proteasome system, and increased expression of the E3 ubiquitin ligases, MuRF1 and MAFbx/atrogin-1, in the regulation of muscle size in response to growth stimuli is unclear. Thus, the aim of this study was to measure both proteasome activity and protein synthesis in mice over a 14-day period of chronic loading using the functional overload (FO) model. Further, the importance of MuRF1 and MAFbx expression in regulating muscle hypertrophy was examined by measuring muscle growth in response to FO in mice with a null deletion (KO) of either MuRF1 or MAFbx. In wild type (WT) mice, the increase in muscle mass correlated with significant increases (2-fold) in protein synthesis at 7 and 14 days. Interestingly, proteasome activity significantly increased in WT mice after one day, and continued to increase, peaking at 7 days following FO. The increase in proteasome activity was correlated with increases in the expression of the Forkhead transcription factors, FOXO1 and FOXO3a, which increased after both MuRF1 and MAFbx increased and returned to baseline. As in WT mice, hypertrophy in the MuRF1 and MAFbx KO mice was associated with significant increases in proteasome activity after 14 days of FO. The increase in plantaris mass was similar between the WT and MuRF1 KO mice following FO, however, muscle growth was significantly reduced in female MAFbx KO mice. Collectively, these results indicate that muscle hypertrophy is associated with increases in both protein synthesis and degradation. Further, MuRF1 or MAFbx expression is not required to increase proteasome activity following increased loading, however, MAFbx expression may be required for proper growth/remodeling of muscle in response to increase loading.
Collapse
Affiliation(s)
- Leslie M Baehr
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Matthew Tunzi
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA, USA
| | - Sue C Bodine
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA ; Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA, USA
| |
Collapse
|
14
|
Tuckow AP, Kazi AA, Kimball SR, Jefferson LS. Identification of ubiquitin-modified lysine residues and novel phosphorylation sites on eukaryotic initiation factor 2B epsilon. Biochem Biophys Res Commun 2013; 436:41-6. [PMID: 23707720 DOI: 10.1016/j.bbrc.2013.05.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/13/2013] [Indexed: 11/16/2022]
Abstract
Eukaryotic initiation factor 2Bε (eIF2Bε) plays a critical role in the initiation of mRNA translation and its expression and guanine nucleotide exchange activity are major determinants of the rate of protein synthesis. In this work we provide evidence that the catalytic epsilon subunit of eIF2B is subject to ubiquitination and proteasome-mediated degradation. Lysates of C2C12 myoblasts treated with proteasome inhibitor were subjected to sequential immunoprecipitations for eIF2Bε followed by ubiquitin. Tandem mass spectrometry (LC-MS/MS) analysis of immunoprecipitated proteins resulted in the identification of five peptides containing ubiquitin (diglycine) modifications on eIF2Bε. The specific lysine residues containing the ubiquitin modifications were localized as Lys-56, Lys-98, Lys-136, Lys-212 and Lys-500 (corresponding to the rat protein sequence). In addition three novel phosphorylation sites were identified including Ser-22, Ser-125, and Thr-317. Moreover, peptides corresponding to the amino acid sequence of the E3 ligase NEDD4 were also detected in the LC-MS/MS analysis, and an interaction between endogenous eIF2Bε with NEDD4 was confirmed by co-immunoprecipitation.
Collapse
Affiliation(s)
- Alexander P Tuckow
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
15
|
Jhanwar-Uniyal M, Jeevan D, Neil J, Shannon C, Albert L, Murali R. Deconstructing mTOR complexes in regulation of Glioblastoma Multiforme and its stem cells. Adv Biol Regul 2013; 53:202-210. [PMID: 23231881 DOI: 10.1016/j.jbior.2012.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/03/2012] [Indexed: 06/01/2023]
Abstract
Atypical serine-threonine kinase, mTOR (mechanistic target of Rapamycin; originally coined "mammalian TOR"), exists in two distinct multi-protein complexes termed mTOR complex 1 (mTORC1) and 2 (mTORC2), that senses and integrates a variety of environmental signals to control organism growth and homeostasis via non-overlapping signaling pathways. mTOR belongs to the phosphoinositide 3-kinase (PI3-K)-related kinase family, and an aberrant activation of mTORC1 is a potential contributing factor in uncontrolled cell growth, proliferation, and survival of tumor cells via specific effects on cap-dependent translation initiation, as well as in a more sustained manner via advancing ribosome biogenesis. It is thereby shown to be deregulated in numerous pathological conditions including cancer, obesity, type 2 diabetes, and neurodegeneration. Notably, mTOR itself, or through its substrates, regulates stem cell differentiation and maintenance of plueropotency. mTORC2 has been linked to cytoskeletal reorganization and cell survival through Akt, and is crucial to many divergent physiological functions, which may include stem cell regulation.
Collapse
|
16
|
The role of mTORC1 in regulating protein synthesis and skeletal muscle mass in response to various mechanical stimuli. Rev Physiol Biochem Pharmacol 2013; 166:43-95. [PMID: 24442322 DOI: 10.1007/112_2013_17] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle plays a fundamental role in mobility, disease prevention, and quality of life. Skeletal muscle mass is, in part, determined by the rates of protein synthesis, and mechanical loading is a major regulator of protein synthesis and skeletal muscle mass. The mammalian/mechanistic target of rapamycin (mTOR), found in the multi-protein complex, mTORC1, is proposed to play an essential role in the regulation of protein synthesis and skeletal muscle mass. The purpose of this review is to examine the function of mTORC1 in relation to protein synthesis and cell growth, the current evidence from rodent and human studies for the activation of mTORC1 signaling by different types of mechanical stimuli, whether mTORC1 signaling is necessary for changes in protein synthesis and skeletal muscle mass that occur in response to different types of mechanical stimuli, and the proposed molecular signaling mechanisms that may be responsible for the mechanical activation of mTORC1 signaling.
Collapse
|
17
|
Ren S, Zhang S, Li M, Huang C, Liang R, Jiang A, Guo Y, Pu Y, Huang N, Yang J, Li Z. NF-κB p65 and c-Rel subunits promote phagocytosis and cytokine secretion by splenic macrophages in cirrhotic patients with hypersplenism. Int J Biochem Cell Biol 2012. [PMID: 23195252 DOI: 10.1016/j.biocel.2012.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transcription factors of the nuclear factor-kappa B (NF-κB) family play a key role in various biological processes. In this study, we explored the role of NF-κB in the dysfunction of splenic macrophages in hypersplenism due to liver cirrhosis. By using confocal microscopic analysis, Western Blot, TransAM NF-κB ELISA, and chromatin immunoprecipitation (ChIP), we observed that NF-κB p65, p52, and c-Rel were activated in macrophages in patients with hypersplenism (hypersplenic macrophages). Transfection of hypersplenic macrophages with a κB/luciferase reporter plasmid showed that NF-κB complexes were functional. Using co-immunoprecipitation studies, we demonstrated that p65/c-Rel dimers were activated in hypersplenic macrophages. NF-κB activation inhibitor JSH-23 and the small interfering RNA (siRNA)-mediated p65, and c-Rel gene silencing significantly blocked phagocytosis and secretion in hypersplenic macrophages. Using promoter analysis and RNA interference, we found that many phagocytotic and hepatic fibrogenetic regulators, including interleukin (IL)-1α, IL-1β, interferon-γ (IFN-γ), transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α), were regulated by NF-κB p65 and c-Rel in hypersplenic macrophages. Our findings demonstrate that NF-κB p65 and c-Rel play an important role in phagocytosis and secretion in hypersplenic macrophages. Activation of NF-κB p65 and c-Rel may be considered an important regulator of hypersplenism and liver cirrhosis.
Collapse
Affiliation(s)
- Song Ren
- Department of General Surgery, The Second Affiliated Hospital, Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
MacLea KS, Abuhagr AM, Pitts NL, Covi JA, Bader BD, Chang ES, Mykles DL. Rheb, an activator of target of rapamycin, in the blackback land crab, Gecarcinus lateralis: cloning and effects of molting and unweighting on expression in skeletal muscle. ACTA ACUST UNITED AC 2012; 215:590-604. [PMID: 22279066 DOI: 10.1242/jeb.062869] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Molt-induced claw muscle atrophy in decapod crustaceans facilitates exuviation and is coordinated by ecdysteroid hormones. There is a 4-fold reduction in mass accompanied by remodeling of the contractile apparatus, which is associated with an 11-fold increase in myofibrillar protein synthesis by the end of the premolt period. Loss of a walking limb or claw causes a loss of mass in the associated thoracic musculature; this unweighting atrophy occurs in intermolt and is ecdysteroid independent. Myostatin (Mstn) is a negative regulator of muscle growth in mammals; it suppresses protein synthesis, in part, by inhibiting the insulin/metazoan target of rapamycin (mTOR) signaling pathway. Signaling via mTOR activates translation by phosphorylating ribosomal S6 kinase (s6k) and 4E-binding protein 1. Rheb (Ras homolog enriched in brain), a GTP-binding protein, is a key activator of mTOR and is inhibited by Rheb-GTPase-activating protein (GAP). Akt protein kinase inactivates Rheb-GAP, thus slowing Rheb-GTPase activity and maintaining mTOR in the active state. We hypothesized that the large increase in global protein synthesis in claw muscle was due to regulation of mTOR activity by ecdysteroids, caused either directly or indirectly via Mstn. In the blackback land crab, Gecarcinus lateralis, a Mstn-like gene (Gl-Mstn) is downregulated as much as 17-fold in claw muscle during premolt and upregulated 3-fold in unweighted thoracic muscle during intermolt. Gl-Mstn expression in claw muscle is negatively correlated with hemolymph ecdysteroid level. Full-length cDNAs encoding Rheb orthologs from three crustacean species (G. lateralis, Carcinus maenas and Homarus americanus), as well as partial cDNAs encoding Akt (Gl-Akt), mTOR (Gl-mTOR) and s6k (Gl-s6k) from G. lateralis, were cloned. The effects of molting on insulin/mTOR signaling components were quantified in claw closer, weighted thoracic and unweighted thoracic muscles using quantitative polymerase chain reaction. Gl-Rheb mRNA levels increased 3.4-fold and 3.9-fold during premolt in claw muscles from animals induced to molt by eyestalk ablation (ESA) and multiple leg autotomy (MLA), respectively, and mRNA levels were positively correlated with hemolymph ecdysteroids. There was little or no effect of molting on Gl-Rheb expression in weighted thoracic muscle and no correlation of Gl-Rheb mRNA with ecdysteroid titer. There were significant changes in Gl-Akt, Gl-mTOR and Gl-s6k expression with molt stage. These changes were transient and were not correlated with hemolymph ecdysteroids. The two muscles differed in terms of the relationship between Gl-Rheb and Gl-Mstn expression. In thoracic muscle, Gl-Rheb mRNA was positively correlated with Gl-Mstn mRNA in both ESA and MLA animals. By contrast, Gl-Rheb mRNA in claw muscle was negatively correlated with Gl-Mstn mRNA in ESA animals, and no correlation was observed in MLA animals. Unweighting increased Gl-Rheb expression in thoracic muscle at all molt stages; the greatest difference (2.2-fold) was observed in intermolt animals. There was also a 1.3-fold increase in Gl-s6k mRNA level in unweighted thoracic muscle. These data indicate that the mTOR pathway is upregulated in atrophic muscles. Gl-Rheb, in particular, appears to play a role in the molt-induced increase in protein synthesis in the claw muscle.
Collapse
Affiliation(s)
- Kyle S MacLea
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Goodman CA, Mayhew DL, Hornberger TA. Recent progress toward understanding the molecular mechanisms that regulate skeletal muscle mass. Cell Signal 2011; 23:1896-906. [PMID: 21821120 PMCID: PMC3744211 DOI: 10.1016/j.cellsig.2011.07.013] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/15/2011] [Indexed: 01/30/2023]
Abstract
The maintenance of muscle mass is critical for health and issues associated with the quality of life. Over the last decade, extensive progress has been made with regard to our understanding of the molecules that regulate skeletal muscle mass. Not surprisingly, many of these molecules are intimately involved in the regulation of protein synthesis and protein degradation [e.g. the mammalian target of rapamycin (mTOR), eukaryotic initiation factor 2B (eIF2B), eukaryotic initiation factor 3f (eIF3f) and the forkhead box O (FoxO) transcription factors]. It is also becoming apparent that molecules which sense, or control, the energetic status of the cell play a key role in the regulation of muscle mass [e.g. AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator-1 α (PGC1α)]. In this review we will attempt to summarize the current knowledge of how these molecules regulate skeletal muscle mass.
Collapse
Affiliation(s)
- Craig A Goodman
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
20
|
Abstract
Although anemia is common in Shwachman- Diamond syndrome (SDS), the underlying mechanism remains unclear. We asked whether SBDS, which is mutated in most SDS patients, is critical for erythroid development. We found that SBDS expression is high early during erythroid differentiation. Inhibition of SBDS in CD34(+) hematopoietic stem cells and early progenitors (HSC/Ps) and K562 cells led to slow cell expansion during erythroid differentiation. Induction of erythroid differentiation resulted in markedly accelerated apoptosis in the knockdown cells; however, proliferation was only mildly reduced. The percentage of cells entering differentiation was not reduced. Differentiation also increased the oxidative stress in SBDS-knockdown K562 cells, and antioxidants enhanced the expansion capability of differentiating SBDS-knockdown K562 cells and colony production of SDS patient HSC/Ps. Erythroid differentiation also resulted in reduction of all ribosomal subunits and global translation. Furthermore, stimulation of global translation with leucine improved the erythroid cell expansion of SBDS-knockdown cells and colony production of SDS patient HSC/Ps. Leucine did not reduce the oxidative stress in SBDS-deficient K562 cells. These results demonstrate that SBDS is critical for normal erythropoiesis. Erythropoietic failure caused by SBDS deficiency is at least in part related to elevated ROS levels and translation insufficiency because antioxidants and leucine improved cell expansion.
Collapse
|
21
|
Mayhew DL, Hornberger TA, Lincoln HC, Bamman MM. Eukaryotic initiation factor 2B epsilon induces cap-dependent translation and skeletal muscle hypertrophy. J Physiol 2011; 589:3023-37. [PMID: 21486778 DOI: 10.1113/jphysiol.2010.202432] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study was to identify signalling components known to control mRNA translation initiation in skeletal muscle that are responsive to mechanical load and may be partly responsible for myofibre hypertrophy. To accomplish this, we first utilized a human cluster model in which skeletalmuscle samples fromsubjects with widely divergent hypertrophic responses to resistance training were used for the identification of signalling proteins associated with the degree myofibre hypertrophy. We found that of 11 translational signalling molecules examined, the response of p(T421/S424)-p70S6K phosphorylation and total eukaryotic initiation factor 2Bε (eIF2Bε) protein abundance after a single bout of unaccustomed resistance exercise was associated with myofibre hypertrophy following 16 weeks of training. Follow up studies revealed that overexpression of eIF2Bε alone was sufficient to induce an 87% increase in cap-dependent translation in L6 myoblasts in vitro and 21% hypertrophy of myofibres in mouse skeletal muscle in vivo (P<0.05).However, genetically altering p70S6K activity had no impact on eIF2Bε protein abundance in mouse skeletal muscle in vivo or multiple cell lines in vitro (P >0.05), suggesting that the two phenomena were not directly related. These are the first data that mechanistically link eIF2Bε abundance to skeletal myofibre hypertrophy, and indicate that eIF2Bε abundance may at least partially underlie the widely divergent hypertrophic phenotypes in human skeletal muscle exposed to mechanical stimuli.
Collapse
Affiliation(s)
- David L Mayhew
- Medical Scientist Training Program and 2Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
22
|
Tuckow AP, Jefferson SJ, Kimball SR, Jefferson LS. Simvastatin represses protein synthesis in the muscle-derived C₂C₁₂ cell line with a concomitant reduction in eukaryotic initiation factor 2B expression. Am J Physiol Endocrinol Metab 2011; 300:E564-70. [PMID: 21224482 PMCID: PMC3064004 DOI: 10.1152/ajpendo.00383.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Statins are a widely prescribed class of cholesterol lowering drugs whose use is frequently associated with muscle-related ailments. A number of mechanisms have been implicated in statin-induced myotoxicity including alterations in both protein synthesis and protein degradation. The objective of the present study was to explore the mechanism(s) contributing to the statin-induced reduction in protein synthesis in the muscle-derived C₂C₁₂ cell line. Cells were treated with 10 μM simvastatin or vehicle alone for 24 h in 1% serum. Cells exposed to simvastatin exhibited reduced rates of protein synthesis, as evidenced by [(35)S]methionine and [(35)S]cysteine incorporation into protein. The reduction in protein synthesis occurred with a concomitant decrease in expression and activity of eukaryotic initiation factor 2B (eIF2B), a regulated and rate-controlling guanine nucleotide exchange factor known to affect global rates of protein synthesis. The reductions in protein synthesis and eIF2B expression were prevented by coincubation with mevalonate. Simvastatin treatment also resulted in a proteasome-sensitive reduction in the protein expression of all the subunits of the eIF2B heteropentameric complex. Finally, increased phosphorylation of the catalytic ε-subunit at Ser(535) was observed, an event consistent with an observed reduction in eIF2B activity. These results suggest that repression of eIF2B expression and activity may contribute, at least in part, to the statin-induced reduction in protein synthesis.
Collapse
Affiliation(s)
- Alexander P Tuckow
- Dept. of Cellular & Molecular Physiology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
23
|
Winter JN, Jefferson LS, Kimball SR. ERK and Akt signaling pathways function through parallel mechanisms to promote mTORC1 signaling. Am J Physiol Cell Physiol 2011; 300:C1172-80. [PMID: 21289294 DOI: 10.1152/ajpcell.00504.2010] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that, when present in a complex referred to as mTOR complex 1 (mTORC1), acts as an important regulator of growth and metabolism. The activity of the complex is regulated through multiple upstream signaling pathways, including those involving Akt and the extracellular-regulated kinase (ERK). Previous studies have shown that, in part, Akt and ERK promote mTORC1 signaling through phosphorylation of a GTPase activator protein (GAP), referred to as tuberous sclerosis complex 2 (TSC2), that acts as an upstream inhibitor of mTORC1. In the present study we extend the earlier studies to show that activation of the Akt and ERK pathways acts in a synergistic manner to promote mTORC1 signaling. Moreover, we provide evidence that the Akt and ERK signaling pathways converge on TSC2, and that Akt phosphorylates residues on TSC2 distinct from those phosphorylated by ERK. The results also suggest that leucine-induced stimulation of mTORC1 signaling occurs through a mechanism distinct from TSC2 and the Akt and ERK signaling pathways. Overall, the results are consistent with a model in which Akt and ERK phosphorylate distinct sites on TSC2, leading to greater repression of its GAP activity, and consequently a magnified stimulation of mTORC1 signaling, when compared with either input alone. The results further suggest that leucine acts through a mechanism distinct from TSC2 to stimulate mTORC1 signaling.
Collapse
Affiliation(s)
- Jeremiah N Winter
- Dept. of Cellular and Molecular Physiology, The Pennsylvania State University, College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | | | | |
Collapse
|
24
|
Kimball SR, Jefferson LS. Control of translation initiation through integration of signals generated by hormones, nutrients, and exercise. J Biol Chem 2010; 285:29027-32. [PMID: 20576612 PMCID: PMC2937931 DOI: 10.1074/jbc.r110.137208] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Control of translation initiation in a tissue of an intact mammalian organism is a highly complex process requiring the continuous integration of multiple positive and negative stimuli. For a tissue such as skeletal muscle, which has the capacity to undergo dramatic changes in size and protein content, translation initiation contributes importantly to the regulation of global rates of protein synthesis and is controlled by numerous stimuli, including those arising from nutrients and hormones in the circulating blood, as well as from contraction-induced signaling within the tissue. Many of the pathways conveying signals generated by these stimuli converge on mTORC1, a serine-threonine protein kinase that has been termed the nutrient and energy sensor of the cell and that plays a prominent role in the regulation of cell growth. Control of translation initiation by mTORC1 is mediated through phosphorylation of downstream targets that modulate the binding of mRNA to the 43 S preinitiation complex. Control of translation initiation is also mediated through modulation of binding of initiator methionyl-tRNA to the 40 S ribosomal subunit. Together, modulation of these two regulatory steps in translation initiation accounts in large part for changes in protein synthesis in skeletal muscle produced by the integration of inputs from hormones, nutrients, and exercise.
Collapse
Affiliation(s)
- Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | |
Collapse
|
25
|
Sitnick M, Bodine SC, Rutledge JC. Chronic high fat feeding attenuates load-induced hypertrophy in mice. J Physiol 2009; 587:5753-65. [PMID: 19822547 DOI: 10.1113/jphysiol.2009.180174] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incidence of obesity and obesity-related conditions, such as metabolic syndrome and insulin resistance, is on the increase. The effect of obesity on skeletal muscle function, especially the regulation of muscle mass, is poorly understood. In this study we investigated the effect of diet-induced obesity on the ability of skeletal muscle to respond to an imposed growth stimulus, such as increased load. Male C57BL/6 mice were randomized into two diet groups: a low fat, high carbohydrate diet (LFD) and a high fat, low carbohydrate diet (HFD) fed ad libitum for 14 weeks. Mice from each diet group were divided into two treatment groups: sedentary control or bilateral functional overload (FO) of the plantaris muscle. Mice were evaluated at 3, 7, 14 or 30 days following FO. By 14 days of FO, there was a 10% reduction (P < 0.05) in absolute growth of the plantaris in response to overload in HFD mice vs. LFD mice. By 30 days the attenuation in growth increased to 16% in HFD mice compared to LFD mice. Following FO, there was a reduction in the formation of polysomes in the HFD mice relative to the LFD mice, suggesting a decrease in protein translation. Further, activation of Akt and S6K1, in response to increased mechanical loading, was significantly attenuated in the HFD mice relative to the LFD mice. In conclusion, chronic high fat feeding impairs the ability of skeletal muscle to hypertrophy in response to increased mechanical load. This failure coincided with a failure to activate key members of the Akt/mTOR signalling pathway and increase protein translation.
Collapse
Affiliation(s)
- Mitchell Sitnick
- Department of Neurobiology, Physiology and Behavior, 196 Briggs Hall, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
26
|
Chalé-Rush A, Morris EP, Kendall TL, Brooks NE, Fielding RA. Effects of chronic overload on muscle hypertrophy and mTOR signaling in young adult and aged rats. J Gerontol A Biol Sci Med Sci 2009; 64:1232-9. [PMID: 19808838 DOI: 10.1093/gerona/glp146] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We examined the effect of 28 days of overload on mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK) signaling in young adult (Y; 6-month old) and aged (O; 30-month old) Fischer 344 x Brown Norway rats subjected to bilateral synergist ablation (SA) of two thirds of the gastrocnemius muscle or sham surgery (CON). Although plantaris (PLA) muscle hypertrophy was attenuated by aging, mTOR phosphorylation was 44% and 35% greater in Y SA and O SA compared with CON (p = .038). Ribosomal protein S6 phosphorylation was 114% and 24% higher in Y SA and O SA compared with CON (p = .009). Eukaryotic initiation factor 2Bepsilon phosphorylation was 33% and 9% higher in Y SA and O SA compared with CON (p = .04). Translational signaling in young adult and aged plantaris muscle is equally responsive to chronic overload.
Collapse
Affiliation(s)
- Angela Chalé-Rush
- Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington Street, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|