1
|
Morimoto A, Hosokawa Y, Miyamoto H, Verma RK, Iwai S, Sato R, Yamamoto J. Key interactions with deazariboflavin cofactor for light-driven energy transfer in Xenopus (6-4) photolyase. Photochem Photobiol Sci 2021; 20:875-887. [PMID: 34120300 DOI: 10.1007/s43630-021-00065-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/03/2021] [Indexed: 10/21/2022]
Abstract
Photolyases are flavoenzymes responsible for light-driven repair of carcinogenic crosslinks formed in DNA by UV exposure. They possess two non-covalently bound chromophores: flavin adenine dinucleotide (FAD) as a catalytic center and an auxiliary antenna chromophore that harvests photons and transfers solar energy to the catalytic center. Although the energy transfer reaction has been characterized by time-resolved spectroscopy, it is strikingly important to understand how well natural biological systems organize the chromophores for the efficient energy transfer. Here, we comprehensively characterized the binding of 8-hydroxy-7,8-didemethyl-5-deazariboflavin (8-HDF) to Xenopus (6-4) photolyase. In silico simulations indicated that a hydrophobic amino acid residue located at the entrance of the binding site dominates translocation of a loop upon binding of 8-HDF, and a mutation of this residue caused dysfunction of the efficient energy transfer in the DNA repair reaction. Mutational analyses of the protein combined with modification of the chromophore suggested that Coulombic interactions between positively charged residues in the protein and the phenoxide moiety in 8-HDF play a key role in accommodation of 8-HDF in the proper direction. This study provides a clear evidence that Xenopus (6-4) photolyase can utilize 8-HDF as the light-harvesting chromophore. The obtained new insights into binding of the natural antenna molecule will be helpful for the development of artificial light-harvesting chromophores and future characterization of the energy transfer in (6-4) photolyase by spectroscopic studies.
Collapse
Affiliation(s)
- Ayaka Morimoto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Yuhei Hosokawa
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hiromu Miyamoto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Rajiv Kumar Verma
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.,Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Ryuma Sato
- Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.,Cellular and Molecular Biotechnology Research and Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-3-26 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan.
| |
Collapse
|
2
|
The Topology Prediction of Membrane Proteins: A Web-Based Tutorial. Interdiscip Sci 2016; 10:291-296. [PMID: 27718149 DOI: 10.1007/s12539-016-0190-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 01/15/2023]
Abstract
There is a great need for development of educational materials on the transfer of current bioinformatics knowledge to undergraduate students in bioscience departments. In this study, it is aimed to prepare an example in silico laboratory tutorial on the topology prediction of membrane proteins by bioinformatics tools. This laboratory tutorial is prepared for biochemistry lessons at bioscience departments (biology, chemistry, biochemistry, molecular biology and genetics, and faculty of medicine). The tutorial is intended for students who have not taken a bioinformatics course yet or already have taken a course as an introduction to bioinformatics. The tutorial is based on step-by-step explanations with illustrations. It can be applied under supervision of an instructor in the lessons, or it can be used as a self-study guide by students. In the tutorial, membrane-spanning regions and α-helices of membrane proteins were predicted by internet-based bioinformatics tools. According to the results achieved from internet-based bioinformatics tools, the algorithms and parameters used were effective on the accuracy of prediction. The importance of this laboratory tutorial lies on the facts that it provides an introduction to the bioinformatics and that it also demonstrates an in silico laboratory application to the students at natural sciences. The presented example education material is applicable easily at all departments that have internet connection. This study presents an alternative education material to the students in biochemistry laboratories in addition to classical laboratory experiments.
Collapse
|
3
|
Guzman-Aranguez A, Loma P, Pintor J. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy. Br J Pharmacol 2014; 170:730-47. [PMID: 23937539 DOI: 10.1111/bph.12330] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/23/2013] [Accepted: 08/04/2013] [Indexed: 12/26/2022] Open
Abstract
RNA interference (RNAi) can be used to inhibit the expression of specific genes in vitro and in vivo, thereby providing an extremely useful tool for investigating gene function. Progress in the understanding of RNAi-based mechanisms has opened up new perspectives in therapeutics for the treatment of several diseases including ocular disorders. The eye is currently considered a good target for RNAi therapy mainly because it is a confined compartment and, therefore, enables local delivery of small-interfering RNAs (siRNAs) by topical instillation or direct injection. However, delivery strategies that protect the siRNAs from degradation and are suitable for long-term treatment would be help to improve the efficacy of RNAi-based therapies for ocular pathologies. siRNAs targeting critical molecules involved in the pathogenesis of glaucoma, retinitis pigmentosa and neovascular eye diseases (age-related macular degeneration, diabetic retinopathy and corneal neovascularization) have been tested in experimental animal models, and clinical trials have been conducted with some of them. This review provides an update on the progress of RNAi in ocular therapeutics, discussing the advantages and drawbacks of RNAi-based therapeutics compared to previous treatments.
Collapse
Affiliation(s)
- A Guzman-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | | | | |
Collapse
|
4
|
Schott RK, Refvik SP, Hauser FE, López-Fernández H, Chang BSW. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes. Mol Biol Evol 2014; 31:1149-65. [PMID: 24509690 DOI: 10.1093/molbev/msu064] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Studies of cichlid evolution have highlighted the importance of visual pigment genes in the spectacular radiation of the African rift lake cichlids. Recent work, however, has also provided strong evidence for adaptive diversification of riverine cichlids in the Neotropics, which inhabit environments of markedly different spectral properties from the African rift lakes. These ecological and/or biogeographic differences may have imposed divergent selective pressures on the evolution of the cichlid visual system. To test these hypotheses, we investigated the molecular evolution of the dim-light visual pigment, rhodopsin. We sequenced rhodopsin from Neotropical and African riverine cichlids and combined these data with published sequences from African cichlids. We found significant evidence for positive selection using random sites codon models in all cichlid groups, with the highest levels in African lake cichlids. Tests using branch-site and clade models that partitioned the data along ecological (lake, river) and/or biogeographic (African, Neotropical) boundaries found significant evidence of divergent selective pressures among cichlid groups. However, statistical comparisons among these models suggest that ecological, rather than biogeographic, factors may be responsible for divergent selective pressures that have shaped the evolution of the visual system in cichlids. We found that branch-site models did not perform as well as clade models for our data set, in which there was evidence for positive selection in the background. One of our most intriguing results is that the amino acid sites found to be under positive selection in Neotropical and African lake cichlids were largely nonoverlapping, despite falling into the same three functional categories: spectral tuning, retinal uptake/release, and rhodopsin dimerization. Taken together, these results would imply divergent selection across cichlid clades, but targeting similar functions. This study highlights the importance of molecular investigations of ecologically important groups and the flexibility of clade models in explicitly testing ecological hypotheses.
Collapse
Affiliation(s)
- Ryan K Schott
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
5
|
Mao H, Gorbatyuk MS, Rossmiller B, Hauswirth WW, Lewin AS. Long-term rescue of retinal structure and function by rhodopsin RNA replacement with a single adeno-associated viral vector in P23H RHO transgenic mice. Hum Gene Ther 2012; 23:356-66. [PMID: 22289036 DOI: 10.1089/hum.2011.213] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many mutations in the human rhodopsin gene (RHO) cause autosomal dominant retinitis pigmentosa (ADRP). Our previous studies with a P23H (proline-23 substituted by histidine) RHO transgenic mouse model of ADRP demonstrated significant improvement of retinal function and preservation of retinal structure after transfer of wild-type rhodopsin by AAV. In this study we demonstrate long-term rescue of retinal structure and function by a single virus expressing both RHO replacement cDNA and small interfering RNA (siRNA) to digest mouse Rho and human P23H RHO mRNA. This combination should prevent overexpression of rhodopsin, which can be deleterious to photoreceptors. On the basis of the electroretinogram (ERG) response, degeneration of retinal function was arrested at 2 months postinjection, and the response was maintained at this level until termination at 9 months. Preservation of the ERG response in P23H RHO mice reflected survival of photoreceptors: both the outer nuclear layer (ONL) and outer segments of photoreceptor cells maintained the same thickness as in nontransgenic mice, whereas the control injected P23H eyes exhibited severe thinning of the ONL and outer segments. These findings suggest that delivery of both a modified cDNA and an siRNA by a single adeno-associated viral vector provided long-term rescue of ADRP in this model. Because the siRNA targets human as well as mouse rhodopsin mRNAs, the combination vector may be useful for the treatment of human disease.
Collapse
Affiliation(s)
- Haoyu Mao
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
6
|
Badisco L, Huybrechts J, Simonet G, Verlinden H, Marchal E, Huybrechts R, Schoofs L, De Loof A, Vanden Broeck J. Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database. PLoS One 2011; 6:e17274. [PMID: 21445293 PMCID: PMC3061863 DOI: 10.1371/journal.pone.0017274] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/28/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The desert locust (Schistocerca gregaria) displays a fascinating type of phenotypic plasticity, designated as 'phase polyphenism'. Depending on environmental conditions, one genome can be translated into two highly divergent phenotypes, termed the solitarious and gregarious (swarming) phase. Although many of the underlying molecular events remain elusive, the central nervous system (CNS) is expected to play a crucial role in the phase transition process. Locusts have also proven to be interesting model organisms in a physiological and neurobiological research context. However, molecular studies in locusts are hampered by the fact that genome/transcriptome sequence information available for this branch of insects is still limited. METHODOLOGY We have generated 34,672 raw expressed sequence tags (EST) from the CNS of desert locusts in both phases. These ESTs were assembled in 12,709 unique transcript sequences and nearly 4,000 sequences were functionally annotated. Moreover, the obtained S. gregaria EST information is highly complementary to the existing orthopteran transcriptomic data. Since many novel transcripts encode neuronal signaling and signal transduction components, this paper includes an overview of these sequences. Furthermore, several transcripts being differentially represented in solitarious and gregarious locusts were retrieved from this EST database. The findings highlight the involvement of the CNS in the phase transition process and indicate that this novel annotated database may also add to the emerging knowledge of concomitant neuronal signaling and neuroplasticity events. CONCLUSIONS In summary, we met the need for novel sequence data from desert locust CNS. To our knowledge, we hereby also present the first insect EST database that is derived from the complete CNS. The obtained S. gregaria EST data constitute an important new source of information that will be instrumental in further unraveling the molecular principles of phase polyphenism, in further establishing locusts as valuable research model organisms and in molecular evolutionary and comparative entomology.
Collapse
Affiliation(s)
- Liesbeth Badisco
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jurgen Huybrechts
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gert Simonet
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Elisabeth Marchal
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Roger Huybrechts
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Liliane Schoofs
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Arnold De Loof
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Rakoczy EP, Kiel C, McKeone R, Stricher F, Serrano L. Analysis of disease-linked rhodopsin mutations based on structure, function, and protein stability calculations. J Mol Biol 2010; 405:584-606. [PMID: 21094163 DOI: 10.1016/j.jmb.2010.11.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/28/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
Abstract
Retinitis pigmentosa (RP) refers to a heterogeneous group of inherited diseases that result in progressive retinal degeneration, characterized by visual field constriction and night blindness. A total of 103 mutations in rhodopsin are linked to RP to date, and the phenotypes range from severe to asymptomatic. To study the relation between phenotype and rhodopsin stability in disease mutants, we used a structure-based approach. For 12 of the mutants located at the protein-lipid interphase, we used the von Heijne water-membrane transfer scale, and we find that 9 of the mutations could affect membrane insertion. For 91 mutants, we used the protein design algorithm FoldX. The 3 asymptomatic mutations had no significant reduced stability, 2 were unsuitable for FoldX analysis since the structure was incorrect in this region, 63 mutations had a significant change in protein stability (>1.6 kcal/mol), and 23 mutations had energy change values under the prediction error threshold (<1.6 kcal/mol). Out of these 23, the disease-causing effect could be explained by the involvement in other functions (e.g., glycosylation motifs, the interface with arrestin and transducin, and the cilia-binding motif) for 19 mutants. The remaining 4 mutants were probably incorrectly associated with RP or have functionalities not discovered yet. For destabilizing mutations where clinical data were available, we found a highly significant correlation between FoldX energy changes and the average age of night blindness and between FoldX energy changes and daytime vision loss onset. Our detailed structural, functional, and energetic analysis provides a complete picture of the rhodopsin mutations and can guide mutation-specific therapies.
Collapse
|
8
|
Shukolyukov SA. Proof of oligomeric state of frog rhodopsin: visualization of dimer and oligomers on gels after BN- and HRCN-PAGE using antibodies to rhodopsin and by retinylopsin fluorescence. BIOCHEMISTRY (MOSCOW) 2010; 75:1045-51. [PMID: 21073427 DOI: 10.1134/s0006297910080146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Staining by antibodies to rhodopsin (Rh) and fluorescence of N-retinylopsin (RO) have shown that digitonin (DIG)- , dodecyl-β-D-maltoside (DM)- , and sodium dodecyl sulfate (SDS)-solubilized frog Rh after BN- and HRCN-PAGE is situated in the gradient gel in the state of dimer with a slight content of higher oligomers (trimer, tetramer, etc.). With increasing detergent harshness (DIG < DM < SDS), the proportion of higher oligomers in extracts becomes more prominent. Formation of RO in rod outer segments (ROS) in the presence of 0.7 M NaBH(3)CN at pH 5.0 occurs only when Rh is simultaneously photolyzed during reduction. Dithiothreitol at the concentration of 0.005 M failed to induce RO production. Formation of a stable C-N bond between all-trans-retinal and opsin in RO is accompanied by decrease in the dimer share and increase in the share of the higher oligomers due to secondary dissociation-aggregation of solubilized opsin. The position of the Rh dimer in relation to the anode during both native electrophoreses is determined not only by its molecular mass, but probably also depends on unfolding degree (or form): the harsher the detergent, the closer to the anode the dimer is located. Treatment of ROS by agents modifying the cholesterol component of lipid membrane (MβCD, filipin III, nystatin, saponin) did not change the character of Rh oligomerization, thus showing that integrity of the cholesterol component of photoreceptor membrane is not a crucial factor for oligomerization of opsin. It is supposed that the dimer-oligomer "portrait" of frog Rh, which has been found by two methods of native electrophoresis in three detergents with different degree of harshness, corresponds to a physiological state of this protein in native photoreceptor membrane.
Collapse
Affiliation(s)
- S A Shukolyukov
- Sechenov Institute for Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia.
| |
Collapse
|