1
|
Yu M, Du H, Zhang C, Shi Y. miR-192 family in breast cancer: Regulatory mechanisms and diagnostic value. Biomed Pharmacother 2024; 175:116620. [PMID: 38653113 DOI: 10.1016/j.biopha.2024.116620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
There is a growing interest in the role of the miRNA family in human cancer. The miRNA-192 family is a group of conserved small RNAs, including miR-192, miR-194, and miR-215. Recent studies have shown that the incidence and mortality of breast cancer have been increasing epidemiologically year by year, and it is urgent to clarify the pathogenesis of breast cancer and seek new diagnostic and therapeutic methods. There is increasing evidence that miR-192 family members may be involved in the occurrence and development of breast cancer. This review describes the regulatory mechanism of the miRNA-192 family affecting the malignant behavior of breast cancer cells and evaluates the value of the miRNA-192 family as a diagnostic and prognostic biomarker for breast cancer. It is expected that summarizing and discussing the relationship between miRNA-192 family members and breast cancer, it will provide a new direction for the clinical diagnosis and treatment of breast cancer and basic medical research.
Collapse
Affiliation(s)
- Mingxuan Yu
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Hua Du
- College of Basic Medicine, Inner Mongolia Medical University, PR China; Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Caihong Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| | - Yingxu Shi
- Department of Laboratory Medicine, Affiliated Hospital of Inner Mongolia Medical University, PR China.
| |
Collapse
|
2
|
Li Y, Zu L, Wu H, Zhang F, Fan Y, Pan H, Du X, Guo F, Zhou Q. MiR-192/NKRF axis confers lung cancer cell chemoresistance to cisplatin via the NF-κB pathway. Thorac Cancer 2021; 13:430-441. [PMID: 34953057 PMCID: PMC8807278 DOI: 10.1111/1759-7714.14278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023] Open
Abstract
Background Chemoresistance influences the therapeutic effect of cisplatin and remains a major obstacle to its clinical use. MicroRNAs are associated with drug resistance of various tumors. However, the association between microRNAs and cisplatin in lung cancer remains largely unclear. Methods MicroRNA expression profile was identified by microRNA microarray between the lung cancer cisplatin‐sensitive cell line A549 (A549) and cisplatin‐resistant cell line A549/DDP (A549/DDP) and confirmed by quantitative real‐time‐PCR (qRT‐PCR). In vitro loss‐ and gain‐of‐function studies were performed to reveal the biological function of miR‐192 and related mechanism of the microRNA‐192/NKRF axis in lung cancer cell cisplatin resistance. Results Increased miR‐192 expression was detected in A549/DDP cells compared to A549. High miR‐192 expression significantly suppressed apoptosis, enhanced proliferation, and conferred resistance to cisplatin in lung cancer cells. NF‐κB repressing factor (NKRF), which is involved in the regulation of the NF‐κB signaling pathway, was identified as a direct target of miR‐192. Overexpression of miR‐192 significantly increased the nuclear protein amount and transcriptional activation of NF‐κB and expression of cIAP1, cIAP2, Bcl‐xl and XIAP, whereas decreased miR‐192 expression did the opposite. Inhibition of the NF‐κB signal pathway by curcumin reversed the effect of upregulation of miR‐192 on proliferation, apoptosis and cisplatin‐resistance in lung cancer cells. These results indicated that miR‐192/ NKRF axis enhances the cisplatin resistance of lung cancer cells through activating the NF‐κB pathway in vitro. Conclusions MiR‐192 plays a crucial role in cisplatin‐resistance of lung cancer cells. Thus, MiR‐192 may represent a therapeutic target for overcoming resistance to cisplatin‐based chemotherapy in lung cancer.
Collapse
Affiliation(s)
- Yang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Heng Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fang Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yaguang Fan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongli Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinxin Du
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fengjie Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinghua Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Sichuan Lung Cancer Institute, Sichuan Lung Cancer Center, West China Hospital, Chengdu, Sichuan University, China
| |
Collapse
|
3
|
Vajen B, Greiwe L, Schäffer V, Eilers M, Huge N, Stalke A, Schlegelberger B, Illig T, Skawran B. MicroRNA-192-5p inhibits migration of triple negative breast cancer cells and directly regulates Rho GTPase activating protein 19. Genes Chromosomes Cancer 2021; 60:733-742. [PMID: 34296808 DOI: 10.1002/gcc.22982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/10/2023] Open
Abstract
Among the different breast cancer subtypes, triple-negative breast cancer (TNBC) is associated with a poor prognosis, low survival rates, and high expression of histone deacetylases. Treatment with histone deacetylase inhibitor trichostatin A (TSA) leads to an increased expression of potential tumor-suppressive miRNAs. Characterization of these miRNAs can help to find new molecular targets for treatment of TNBC. We identified differentially expressed miRNAs by microarray analyses after treatment with TSA in the TNBC cell lines HCC38, HCC1395, and HCC1935. The gene locus of hsa-miRNA-192-5p (miR-192) and hsa-miR-194-2 (miR-194-2) with its host gene, long noncoding RNA miR-194-2HG, has been linked to inhibition of migration in different tumor types. Therefore, we examined tumor-relevant functional effects using WST-1-based proliferation, capsase-3/7-based apoptosis, and trans-well migration assays after transfection with miRNA mimics or specific siRNAs. We demonstrated the tumor-suppressive capacity of miR-192 in TNBC cells, which was exerted through inhibition of proliferation, induction of apoptosis, and reduction of migration. Gene expression and bioinformatics analyses of TNBC cell lines transfected with miR-192 mimics, identified a number of genes involved in migration including the Rho GTPase Activating Protein ARHGAP19. Through RNA immunoprecipitation we demonstrated the direct binding of miR-192 and ARHGAP19. Downregulation of ARHGAP19 expression by either miR-192 or siRNA inhibited migration of TNBC cells significantly. Our findings demonstrate that overexpression of epigenetically deregulated miR-192 decreases proliferation, promotes apoptosis, and inhibits migration of TNBC cell lines.
Collapse
Affiliation(s)
- Beate Vajen
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Luisa Greiwe
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Vera Schäffer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Marlies Eilers
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Nicole Huge
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Amelie Stalke
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Britta Skawran
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Veerappa AM. Cascade of interactions between candidate genes reveals convergent mechanisms in keratoconus disease pathogenesis. Ophthalmic Genet 2021; 42:114-131. [PMID: 33554698 DOI: 10.1080/13816810.2020.1868013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Keratoconus is a progressive thinning, steepening and distortion of the cornea which can lead to loss of vision if left untreated. Keratoconus has a complex multifactorial etiology, with genetic and environmental components contributing to the disease pathophysiology. Studies have observed high concordance between monozygotic twins, discordance between dizygotic twins, and high familial segregation indicating the presence of a very strong genetic component in the pathogenesis of keratoconus. The use of genome-wide linkage studies on families and twins, genome-wide association studies (GWAS) on case-controls, next-generation sequencing (NGS)-based genomic screens on both familial and non-familial cohorts have led to the identification of keratoconus candidate genes with much greater success and increased resproducibility of genetic findings. This review focuses on candidate genes identified till date and attempts to understand their role in biological processes underlying keratoconus pathogenesis. In addition, using these genes I propose molecular pathways that could contribute to keratoconus pathogenesis. The pathways identified the presence of direct cross-talk between known candidate genes of keratoconus and remarkably, 28 known candidate genes have a direct relationship among themselves that involves direct protein-protein binding, regulatory activities such as activation and inhibition, chaperone, transcriptional activation/co-activation, and enzyme catalysis. This review attempts to describe these relationships and cross-talks in the context of keratoconus pathogenesis.
Collapse
Affiliation(s)
- Avinash M Veerappa
- Department of Ophthalmology, NYU Langone Medical Center, New York, New York, USA
| |
Collapse
|
5
|
Zabkiewicz C, Resaul J, Hargest R, Jiang WG, Ye L. Bone morphogenetic proteins, breast cancer, and bone metastases: striking the right balance. Endocr Relat Cancer 2017; 24:R349-R366. [PMID: 28733469 PMCID: PMC5574206 DOI: 10.1530/erc-17-0139] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022]
Abstract
Bone morphogenetic proteins (BMPs) belong to the TGF-β super family, and are essential for the regulation of foetal development, tissue differentiation and homeostasis and a multitude of cellular functions. Naturally, this has led to the exploration of aberrance in this highly regulated system as a key factor in tumourigenesis. Originally identified for their role in osteogenesis and bone turnover, attention has been turned to the potential role of BMPs in tumour metastases to, and progression within, the bone niche. This is particularly pertinent to breast cancer, which commonly metastasises to bone, and in which studies have revealed aberrations of both BMP expression and signalling, which correlate clinically with breast cancer progression. Ultimately a BMP profile could provide new prognostic disease markers. As the evidence suggests a role for BMPs in regulating breast tumour cellular function, in particular interactions with tumour stroma and the bone metastatic microenvironment, there may be novel therapeutic potential in targeting BMP signalling in breast cancer. This review provides an update on the current knowledge of BMP abnormalities and their implication in the development and progression of breast cancer, particularly in the disease-specific bone metastasis.
Collapse
Affiliation(s)
- Catherine Zabkiewicz
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Jeyna Resaul
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Rachel Hargest
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Wen Guo Jiang
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| | - Lin Ye
- Cardiff China Medical Research CollaborativeCardiff University School of Medicine, Cardiff, UK
| |
Collapse
|
6
|
He SJ, Xiang CQ, Zhang Y, Lu XT, Chen HW, Xiong LX. Recent progress on the effects of microRNAs and natural products on tumor epithelial-mesenchymal transition. Onco Targets Ther 2017; 10:3435-3451. [PMID: 28744148 PMCID: PMC5513877 DOI: 10.2147/ott.s139546] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a biological process of phenotypic transition of epithelial cells that can promote physiological development as well as tissue healing and repair. In recent years, cancer researchers have noted that EMT is closely related to the occurrence and development of tumors. When tumor cells undergo EMT, they can develop enhanced migration and local tissue invasion abilities, which can lead to metastatic growth. Nevertheless, two researches in NATURE deny its necessity in specific tumors and that is discussed in this review. The degree of EMT and the detection of EMT-associated marker molecules can also be used to judge the risk of metastasis and to evaluate patients’ prognosis. MicroRNAs (miRNAs) are noncoding small RNAs, which can inhibit gene expression and protein translation through specific binding with the 3′ untranslated region of mRNA. In this review, we summarize the miRNAs that are reported to influence EMT through transcription factors such as ZEB, SNAIL, and TWIST, as well as some natural products that regulate EMT in tumors. Moreover, mutual inhibition occurs between some transcription factors and miRNAs, and these effects appear to occur in a complex regulatory network. Thus, understanding the role of miRNAs in EMT and tumor growth may lead to new treatments for malignancies. Natural products can also be combined with conventional chemotherapy to enhance curative effects.
Collapse
Affiliation(s)
- Shu-Jin He
- Department of Pathophysiology, Medical College, Nanchang University.,Second Clinical Medical College, Nanchang University
| | - Chu-Qi Xiang
- Department of Pathophysiology, Medical College, Nanchang University.,First Clinical Medical College, Nanchang University
| | - Yu Zhang
- First Clinical Medical College, Nanchang University
| | - Xiang-Tong Lu
- Department of Pathophysiology, Medical College, Nanchang University
| | - Hou-Wen Chen
- Department of Pathophysiology, Medical College, Nanchang University.,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, People's Republic of China
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University.,Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang, People's Republic of China
| |
Collapse
|
7
|
Hu F, Zhang Y, Li M, Zhao L, Chen J, Yang S, Zhang X. BMP-6 inhibits the metastasis of MDA-MB-231 breast cancer cells by regulating MMP-1 expression. Oncol Rep 2016; 35:1823-30. [PMID: 26751737 DOI: 10.3892/or.2015.4540] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/07/2015] [Indexed: 11/05/2022] Open
Abstract
Bone morphogenetic protein-6 (BMP-6) is a multifunctional molecule with distinct abilities in embryogenesis and organogenesis. In the present study, our results showed that the rate of BMP-6-negative expression was 30.56% in breast cancer tissues, but was 9.58% in normal tissues by immunohistochemical staining. This implied that BMP-6 expression is absent in breast cancer tissues and may suppress breast cancer metastasis. In addition, stable overexpression of BMP-6 in MDA-MB‑231 cells was established to analyze the metastatic ability. The Boyden chamber assay showed that BMP-6 inhibited the migration and invasion of MDA-MB-231 cells. Moreover, real-time PCR analysis showed that BMP-6 markedly downregulated matrix metalloproteinase-1 (MMP-1) expression at both the mRNA and protein levels in the MDA-MB‑231 cells. Importantly, the results of luciferase and CHIP assays revealed that BMP-6 inhibited MMP-1 promoter activity through the AP-1 response element. In MDA-MB-231 cells treated with BMP-6, a significant decrease in the recruitment of AP-1 components, c-Jun/c-Fos, to the endogenous MMP-1 promoter was noted. We also demonstrated that BMP-6 inhibited the invasion of MDA-MB-231 cells, and this effect was significantly attenuated by overexpression of MMP-1. In contrast, MMP-1 knockdown by RNA interference or MMP-1 inhibitor exhibited an opposite effect. These observations suggest a novel role of BMP-6 in the inhibition of breast cancer metastasis by regulating secretion of MMPs in the tumor microenvironment.
Collapse
Affiliation(s)
- Fen Hu
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Yunfeng Zhang
- Department of Life Sciences, Tangshan Normal University, Tangshan, Hebei 063000, P.R. China
| | - Mi Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Lina Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jing Chen
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Shuang Yang
- Medical College of Nankai University, Tianjin 300071, P.R. China
| | - Xiujun Zhang
- College of Psychology, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
8
|
The integrative epigenomic-transcriptomic landscape of ER positive breast cancer. Clin Epigenetics 2015; 7:126. [PMID: 26664652 PMCID: PMC4673726 DOI: 10.1186/s13148-015-0159-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/01/2015] [Indexed: 12/31/2022] Open
Abstract
Background While recent integrative analyses of copy number and gene expression data in breast cancer have revealed a complex molecular landscape with multiple subtypes and many oncogenic/tumour suppressor driver events, much less is known about the role of DNA methylation in shaping breast cancer taxonomy and defining driver events. Results Here, we applied a powerful integrative network algorithm to matched DNA methylation and RNA-Seq data for 724 estrogen receptor (ER)-positive (ER+) breast cancers and 111 normal adjacent tissue specimens from The Cancer Genome Atlas (TCGA) project, in order to identify putative epigenetic driver events and to explore the resulting molecular taxonomy. This revealed the existence of nine functionally deregulated epigenetic hotspots encompassing a total of 146 genes, which we were able to validate in independent data sets encompassing over 1000 ER+ breast cancers. Integrative clustering of the matched messenger RNA (mRNA) and DNA methylation data over these genes resulted in only two clusters, which correlated very strongly with the luminal-A and luminal B subtypes. Overall, luminal-A and luminal-B breast cancers shared the same epigenetically deregulated hotspots but with luminal-B cancers exhibiting increased aberrant DNA methylation patterns relative to normal tissue. We show that increased levels of DNA methylation and mRNA expression deviation from the normal state define a marker of poor prognosis. Our data further implicates epigenetic silencing of WNT signalling antagonists and bone morphogenetic proteins (BMP) as key events underlying both luminal subtypes but specially of luminal-B breast cancer. Finally, we show that DNA methylation changes within the identified epigenetic interactome hotspots do not exhibit mutually exclusive patterns within the same cancer sample, instead exhibiting coordinated changes within the sample. Conclusions Our results indicate that the integrative DNA methylation and transcriptomic landscape of ER+ breast cancer is surprisingly homogeneous, defining two main subtypes which strongly correlate with luminal-A/B subtype status. In particular, we identify WNT and BMP signalling as key epigenetically deregulated tumour suppressor pathways in luminal ER+ breast cancer, with increased deregulation seen in luminal-B breast cancer. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0159-0) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Fra-1/AP-1 induces EMT in mammary epithelial cells by modulating Zeb1/2 and TGFβ expression. Cell Death Differ 2014; 22:336-50. [PMID: 25301070 DOI: 10.1038/cdd.2014.157] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/31/2014] [Accepted: 08/29/2014] [Indexed: 02/08/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is essential for embryonic morphogenesis and wound healing and critical for tumour cell invasion and dissemination. The AP-1 transcription factor Fra-1 has been implicated in tumorigenesis and in tumour-associated EMT in human breast cancer. We observed a significant inverse correlation between Fra-1 mRNA expression and distant-metastasis-free survival in a large cohort of breast cancer patients derived from multiple array data sets. This unique correlation among Fos genes prompted us to assess the evolutionary conservation between Fra-1 functions in EMT of human and mouse cells. Ectopic expression of Fra-1 in fully polarized, non-tumourigenic, mouse mammary epithelial EpH4 cells induced a mesenchymal phenotype, characterized by a loss of epithelial and gain of mesenchymal markers. Proliferation, motility and invasiveness were also increased in the resulting EpFra1 cells, and the cells were tumourigenic and efficiently colonized the lung upon transplantation. Molecular analyses revealed increased expression of Tgfβ1 and the EMT-inducing transcription factors Zeb1, Zeb2 and Slug. Mechanistically, Fra-1 binds to the tgfb1 and zeb2 promoters and to an evolutionarily conserved region in the first intron of zeb1. Furthermore, increased activity of a zeb2 promoter reporter was detected in EpFra1 cells and shown to depend on AP-1-binding sites. Inhibiting TGFβ signalling in EpFra1 cells moderately increased the expression of epithelial markers, whereas silencing of zeb1 or zeb2 restored the epithelial phenotype and decreased migration in vitro and tumorigenesis in vivo. Thus Fra-1 induces changes in the expression of genes encoding EMT-related transcription factors leading to the acquisition of mesenchymal, invasive and tumorigenic capacities by epithelial cells. This study defines a novel function of Fra-1/AP-1 in modulating tgfb1, zeb1 and zeb2 expression through direct binding to genomic regulatory regions, which establishes a basis for future in vivo genetic manipulations and preclinical studies using mouse models.
Collapse
|
10
|
MicroRNAs in kidney fibrosis and diabetic nephropathy: roles on EMT and EndMT. BIOMED RESEARCH INTERNATIONAL 2013; 2013:125469. [PMID: 24089659 PMCID: PMC3780472 DOI: 10.1155/2013/125469] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/12/2013] [Accepted: 08/02/2013] [Indexed: 01/06/2023]
Abstract
MicroRNAs (miRNAs) are a family of small, noncoding RNAs that regulate gene expression in diverse biological and pathological processes, including cell proliferation, differentiation, apoptosis, and carcinogenesis. As a result, miRNAs emerged as major area of biomedical research with relevance to kidney fibrosis. Fibrosis is characterized by the excess deposition of extracellular matrix (ECM) components, which is the end result of an imbalance of metabolism of the ECM molecule. Recent evidence suggests that miRNAs participate in the fibrotic process in a number of organs including the heart, kidney, liver, and lung. Epithelial mesenchymal transition (EMT) and endothelial mesenchymal transition (EndMT) programs play vital roles in the development of fibrosis in the kidney. A growing number of the extracellular and intracellular molecules that control EMT and EndMT have been identified and could be exploited in developing therapeutics for fibrosis. This review highlights recent advances on the role of miRNAs in the kidney diseases; diabetic nephropathy especially focused on EMT and EndMT program responsible for the development of kidney fibrosis. These miRNAs can be utilized as a potential novel drug target for the studying of underlying mechanism and treatment of kidney fibrosis.
Collapse
|
11
|
Hu F, Meng X, Tong Q, Liang L, Xiang R, Zhu T, Yang S. BMP-6 inhibits cell proliferation by targeting microRNA-192 in breast cancer. Biochim Biophys Acta Mol Basis Dis 2013; 1832:2379-90. [PMID: 24012720 DOI: 10.1016/j.bbadis.2013.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 08/19/2013] [Accepted: 08/28/2013] [Indexed: 01/21/2023]
Abstract
Although bone morphogenetic protein-6 (BMP-6) has been identified as a tumor suppressor associated with breast cancer differentiation and metastasis, the potential roles of BMP-6 in regulating cell cycle progression have not been fully examined. In the present study, we provide the novel finding that induction of BMP-6 in MDA-MB-231 breast cancer cells significantly inhibits cell proliferation by decreasing the number of cells in S phase of the cell cycle, resulting in inhibition of tumorigenesis in a nude mouse xenograft model. Further investigation indicated that BMP-6 up-regulates the expression of microRNA-192 (miR-192) in MDA-MB-231 cells. Elevated expression of miR-192 caused cell growth arrest, which is similar to the effect of BMP-6 induction. Importantly, depletion of endogenous miR-192 by miRNA inhibition significantly attenuated BMP-6-mediated repression of cell cycle progression. In breast cancer tissue, miR-192 expression is significantly down-regulated in tumor samples and positively correlates with the expression of BMP-6, demonstrating the inhibitory effect of BMP-6 on cell proliferation through miR-192 regulation. Additionally, using the RT(2) Profiler PCR Array, retinoblastoma 1 (RB1) was identified as a direct target of the BMP-6/miR-192 pathway in regulating cell proliferation in breast cancer. In conclusion, we have identified an important role for BMP-6/miR-192 signaling in the regulation of cell cycle progression in breast cancer. Furthermore, BMP-6/miR-192 was expressed at low levels in breast cancer specimens, indicating that this pathway might represent a promising therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Fen Hu
- Medical College of Nankai University, Tianjin, China; College of Life Sciences, Hebei United University, Tangshan, Hebei, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Calura E, Fruscio R, Paracchini L, Bignotti E, Ravaggi A, Martini P, Sales G, Beltrame L, Clivio L, Ceppi L, Di Marino M, Fuso Nerini I, Zanotti L, Cavalieri D, Cattoretti G, Perego P, Milani R, Katsaros D, Tognon G, Sartori E, Pecorelli S, Mangioni C, D'Incalci M, Romualdi C, Marchini S. MiRNA landscape in stage I epithelial ovarian cancer defines the histotype specificities. Clin Cancer Res 2013; 19:4114-23. [PMID: 23766361 DOI: 10.1158/1078-0432.ccr-13-0360] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Epithelial ovarian cancer (EOC) is one of the most lethal gynecologic diseases, with survival rate virtually unchanged for the past 30 years. EOC comprises different histotypes with molecular and clinical heterogeneity, but up till now the present gold standard platinum-based treatment has been conducted without any patient stratification. The aim of the present study is to generate microRNA (miRNA) profiles characteristic of each stage I EOC histotype, to identify subtype-specific biomarkers to improve our understanding underlying the tumor mechanisms. EXPERIMENTAL DESIGN A collection of 257 snap-frozen stage I EOC tumor biopsies was gathered together from three tumor tissue collections and stratified into independent training (n = 183) and validation sets (n = 74). Microarray and quantitative real-time PCR (qRT-PCR) were used to generate and validate the histotype-specific markers. A novel dedicated resampling inferential strategy was developed and applied to identify the highest reproducible results. mRNA and miRNA profiles were integrated to identify novel regulatory circuits. RESULTS Robust miRNA markers for clear cell and mucinous histotypes were found. Specifically, the clear cell histotype is characterized by a five-fold (log scale) higher expression of miR-30a and miR-30a*, whereas mucinous histotype has five-fold (log scale) higher levels of miR-192/194. Furthermore, a mucinous-specific regulatory loop involving miR-192/194 cluster and a differential regulation of E2F3 in clear cell histotype were identified. CONCLUSIONS Our findings showed that stage I EOC histotypes have their own characteristic miRNA expression and specific regulatory circuits.
Collapse
Affiliation(s)
- Enrica Calura
- Department of Biology, University of Padova, Via U.Bassi, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lian WJ, Liu G, Liu YJ, Zhao ZW, Yi T, Zhou HY. Downregulation of BMP6 enhances cell proliferation and chemoresistance via activation of the ERK signaling pathway in breast cancer. Oncol Rep 2013; 30:193-200. [PMID: 23674072 DOI: 10.3892/or.2013.2462] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/08/2013] [Indexed: 11/06/2022] Open
Abstract
Previous studies indicate that bone morphogenetic protein (BMP) 6 is involved in breast cancer development and progression. However, the mechanism underlying the role of BMP6 in breast cancer cell proliferation, differentiation and chemoresistance remains unknown. In this study, we confirmed that BMP6 expression was downregulated in breast cancer tissues compared with the adjacent normal breast tissues. We further demonstrated that the downregulation of BMP6 was correlated with the estrogen receptor (ER) and progesterone receptor (PR) status, tumor grade and enhanced proliferation (Ki67 proliferation index). In vitro functional experiments showed that the suppression of BMP6 expression by a specific small hairpin (sh)RNA vector led to increased proliferation in the MCF7 breast cancer cell line. Furthermore, knockdown of BMP6 in MCF7 cells enhanced the chemoresistance to doxorubicin by upregulation of mdr-1/P-gp expression and activation of the ERK signaling pathway. Taken together, our data suggest that BMP6 plays a critical role in breast cancer cell aberrant proliferation and chemoresistance and may serve as a novel diagnostic biomarker or therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Wen-Jing Lian
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | | | | | | | | | | |
Collapse
|
14
|
Iizuka D, Imaoka T, Nishimura M, Kawai H, Suzuki F, Shimada Y. Aberrant microRNA expression in radiation-induced rat mammary cancer: the potential role of miR-194 overexpression in cancer cell proliferation. Radiat Res 2012; 179:151-9. [PMID: 23273170 DOI: 10.1667/rr2927.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aberrant expression of microRNAs (miRNAs) is frequently associated with a variety of cancers, including breast cancer. We and others have demonstrated that radiation-induced rat mammary cancer exhibits a characteristic gene expression profile and a random increase in aberrant DNA copy number; however, the role of aberrant miRNA expression is unclear. We performed a microarray analysis of frozen samples of eight mammary cancers induced by γ irradiation (2 Gy), eight spontaneous mammary cancers and seven normal mammary samples. We found that a small set of miRNAs was characteristically overexpressed in radiation-induced cancer. Quantitative RT-PCR analysis confirmed that miR-135b, miR-192, miR-194 and miR-211 were significantly up-regulated in radiation-induced mammary cancer compared with spontaneous cancer and normal mammary tissue. The expression of miR-192 and miR-194 also was up-regulated in human breast cancer cell lines compared with noncancer cells. Manipulation of the miR-194 expression level using a synthetic inhibiting RNA produced a small but significant suppression of cell proliferation and upregulation in the expression of several genes that are thought to act as tumor suppressors in MCF-7 and T47D breast cancer cells. Our data suggest that the induction of rat mammary cancer by radiation involves aberrant expression of miRNAs, which may facilitate cell proliferation.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | | | | | | | | | | |
Collapse
|
15
|
The emerging important role of microRNAs in the pathogenesis, diagnosis and treatment of human cancers. Pathology 2012; 43:657-71. [PMID: 21876471 DOI: 10.1097/pat.0b013e32834a7358] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs are small non-protein-coding RNAs which repress gene expression, through base pair matching with messenger RNA (mRNA). A single microRNA is capable of regulating hundreds of mRNA sequences. Only a small fraction of the over 1000 discovered microRNAs have currently known functions; many are crucial in the regulation of genetic signalling, including cellular processes such as cellular differentiation, growth, proliferation and death. Dysfunction in microRNA signalling is present in all cancers studied thus far, leading to overactive oncogenic and underactive tumour suppressor gene signalling. Current research is actively pursuing the potential to use microRNAs as diagnostic tools and novel therapies in a variety of diseases. This review summarises normal and abnormal maturation and function of microRNAs and their role in the pathogenesis of various human tumours and highlights how microRNAs may be used as diagnostic and treatment tools in human cancers in the future.
Collapse
|
16
|
Guo D, Huang J, Gong J. Bone morphogenetic protein 4 (BMP4) is required for migration and invasion of breast cancer. Mol Cell Biochem 2011; 363:179-90. [PMID: 22167620 DOI: 10.1007/s11010-011-1170-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/23/2011] [Indexed: 01/20/2023]
Abstract
Bone-morphogenetic proteins (BMPs) play an important role in development and many cellular processes. However, their functional role in the development and progression of breast cancer is not clearly understood. In the present study, we performed a systematic expression analysis of the 14 types of BMPs in 10 human breast cancer cell lines. We found that bone morphogenetic protein 4 (BMP4) was one of the most frequently expressed BMPs. Furthermore, the expression level of BMP4 was maybe correlated with the metastatic potential of the cancer lines. Accordingly, overexpression of BMP4 in the breast cancer cell lines MCF-7 and MBA-MD-231 promoted the migration and invasion phenotypes of the cancer cells, whereas RNAi-mediated knockdown of BMP4 expression inhibited the migration and invasion activities of the cancer cells. To identify the important factors that may mediate the BMP4 functions in breast cancer cells, we analyzed a panel of cancer-related genes, and found that the expression of matrix metalloproteinase-1 (MMP-1) and C-X-C chemokine receptor type 4 (CXCR4) sharply increased at both the mRNA and protein levels in the breast cancer cells overexpressing BMP4. Interestingly, when breast cancer cells MDA-MB-231 or MCF-7 were co-cultured with the osteoblast-like cells MG63 to mimic a bone metastasis microenvironment, BMP4 did not exhibit any significant effect on the expression of OPG or RANKL, two important factors in bone remodeling. BMPs antagonists, Noggin, parallel inhibited breast cancer cell migration and invasion and induced bone remodeling. Taken together, our results strongly suggest that BMP4 may promote the migration and invasion of breast cancer cells, at least in part by up-regulating the expressions of MMP-1 and CXCR4. It is conceivable that novel therapeutics for breast cancer may be developed by targeting BMP4 signaling pathway and/or its important downstream mediators in breast cancer cells.
Collapse
Affiliation(s)
- Dan Guo
- Department of Surgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | |
Collapse
|
17
|
Wang C, Hu F, Guo S, Mi D, Shen W, Zhang J, Qiao Y, Zhu T, Yang S. BMP-6 inhibits MMP-9 expression by regulating heme oxygenase-1 in MCF-7 breast cancer cells. J Cancer Res Clin Oncol 2011; 137:985-95. [PMID: 21136273 DOI: 10.1007/s00432-010-0963-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE BMP-6, which belongs to the TGF-β superfamily, is a multifunctional molecule with distinct abilities in embryogenesis and organogenesis. Our recent research has implied that BMP-6 may suppress breast cancer metastasis. In the present study, we extended to elucidate the molecular mechanism by which BMP-6 exerts its anti-tumorigenic effect. METHODS The Boyden chamber assay was used to examine the ability of BMP-6 and HO-1 in MCF-7 malignant progress. RT-PCR, western blot, luciferase assay, and quantitative CHIP were used to determine the potential mechanism and signaling pathways by which BMP-6 and HO-1 function as anti-metastatic factors in MCF-7 cells. RESULTS The Boyden chamber assay showed that BMP-6 inhibited the migration and invasion of MCF-7 cells, which effect was significantly deprived by knockdown of HO-1. We further demonstrated that BMP-6 treatment resulted in an activation of HO-1 transcription through the recruitment of Smad1/5 to the Smad-responsive element on its promoter. In addition, BMP-6-induced up-regulation of HO-1 exhibited an inhibitory effect on MMP-9 secretion in a paracrine action in MCF-7 cells. Overexpression of BMP-6 and HO-1 synergistically suppressed MMP-9 transcription, which effect was specifically mediated via the MAPK/p38/AP-1 signaling. However, blockade of HO-1 using ZnPPIX totally abolished BMP-6-regulated MMP-9 activation in MCF-7 cells. CONCLUSIONS These observations suggest a novel role of BMP-6/HO-1 cascade to relieve breast cancer metastasis by regulating the secretion of growth factors in tumor microenvironment.
Collapse
Affiliation(s)
- Chuan Wang
- Medical College of Nankai University, 94 Weijin Road, Tianjin 300071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Feng S, Cong S, Zhang X, Bao X, Wang W, Li H, Wang Z, Wang G, Xu J, Du B, Qu D, Xiong W, Yin M, Ren X, Wang F, He J, Zhang B. MicroRNA-192 targeting retinoblastoma 1 inhibits cell proliferation and induces cell apoptosis in lung cancer cells. Nucleic Acids Res 2011; 39:6669-78. [PMID: 21511813 PMCID: PMC3159440 DOI: 10.1093/nar/gkr232] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
microRNAs play an important roles in cell growth, differentiation, proliferation and apoptosis. They can function either as tumor suppressors or oncogenes. We found that the overexpression of miR-192 inhibited cell proliferation in A549, H460 and 95D cells, and inhibited tumorigenesis in a nude mouse model. Both caspase-7 and the PARP protein were activated by the overexpression of miR-192, thus suggesting that miR-192 induces cell apoptosis through the caspase pathway. Further studies showed that retinoblastoma 1 (RB1) is a direct target of miR-192. Over-expression of miR-192 decreased RB1 mRNA and protein levels and repressed RB1-3′-UTR reporter activity. Knockdown of RB1 using siRNA resulted in a similar cell morphology as that observed for overexpression of miR-192. Additionally, RB1-siRNA treatment inhibited cell proliferation and induced cell apoptosis in lung cancer cells. Analysis of miRNA expression in clinical samples showed that miR-192 is significantly downregulated in lung cancer tissues compared to adjacent non-cancerous lung tissues. In conclusion, our results demonstrate that miR-192 is a tumor suppressor that can target the RB1 gene to inhibit cell proliferation and induce cell apoptosis in lung cancer cells. Furthermore, miR-192 was expressed at low levels in lung cancer samples, indicating that it might be a promising therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Shipeng Feng
- Lab for RNA Chemical Biology at Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Science, Guangzhou 510530, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kato M, Arce L, Wang M, Putta S, Lanting L, Natarajan R. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int 2011; 80:358-68. [PMID: 21389977 DOI: 10.1038/ki.2011.43] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enhanced transforming growth factor-β1 (TGF-β1) expression in renal cells promotes fibrosis and hypertrophy during the progression of diabetic nephropathy. The TGF-β1 promoter is positively controlled by the E-box regulators, upstream stimulatory factors (USFs), in response to diabetic (high glucose) conditions; however, it is not clear whether TGF-β1 is autoregulated by itself. As changes in microRNAs (miRNAs) have been implicated in kidney disease, we tested their involvement in this process. TGF-β1 levels were found to be upregulated by microRNA-192 (miR-192) or miR-200b/c in mouse mesangial cells. Amounts of miR-200b/c were increased in glomeruli from type 1 (streptozotocin) and type 2 (db/db) diabetic mice, and in mouse mesangial cells treated with TGF-β1 in vitro. Levels of miR-200b/c were also upregulated by miR-192 in the mesangial cells, suggesting that miR-200b/c are downstream of miR-192. Activity of the TGF-β1 promoter was upregulated by TGF-β1 or miR-192, demonstrating that the miR-192-miR-200 cascade induces TGF-β1 expression. TGF-β1 increased the occupancy of activators USF1 and Tfe3, and decreased that of the repressor Zeb1 on the TGF-β1 promoter E-box binding sites. Inhibitors of miR-192 decreased the expression of miR-200b/c, Col1a2, Col4a1, and TGF-β1 in mouse mesangial cells, and in mouse kidney cortex. Thus, miRNA-regulated circuits may amplify TGF-β1 signaling, accelerating chronic fibrotic diseases such as diabetic nephropathy.
Collapse
Affiliation(s)
- Mitsuo Kato
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Hu F, Wang C, Guo S, Sun W, Mi D, Gao Y, Zhang J, Zhu T, Yang S. δEF1 promotes osteolytic metastasis of MDA-MB-231 breast cancer cells by regulating MMP-1 expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:200-10. [DOI: 10.1016/j.bbagrm.2011.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 01/07/2011] [Accepted: 01/11/2011] [Indexed: 11/16/2022]
|
21
|
Wright JA, Richer JK, Goodall GJ. microRNAs and EMT in mammary cells and breast cancer. J Mammary Gland Biol Neoplasia 2010; 15:213-23. [PMID: 20499142 DOI: 10.1007/s10911-010-9183-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 05/12/2010] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are master regulators of gene expression in many biological and pathological processes, including mammary gland development and breast cancer. The differentiation program termed the epithelial to mesenchymal transition (EMT) involves changes in a number of microRNAs. Some of these microRNAs have been shown to control cellular plasticity through the suppression of EMT-inducers or to influence cellular phenotype through the suppression of genes involved in defining the epithelial and mesenchymal cell states. This has led to the suggestion that microRNAs maybe a novel therapeutic target for the treatment of breast cancer. In this review, we will discuss microRNAs that are involved in EMT in mammary cells and breast cancer.
Collapse
Affiliation(s)
- Josephine A Wright
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, SA 5000, Australia.
| | | | | |
Collapse
|
22
|
Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol 2010; 21:438-47. [PMID: 20056746 DOI: 10.1681/asn.2009050530] [Citation(s) in RCA: 285] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The role of microRNAs (miRs), which are endogenous RNA oligonucleotides that regulate gene expression, in diabetic nephropathy is unknown. Here, we performed expression profiling of cultured proximal tubular cells (PTCs) under high-glucose and control conditions. We identified expression of 103 of 328 microRNAs but did not observe glucose-induced changes in expression. Next, we performed miR expression profiling in pooled RNA from formalin-fixed, paraffin-embedded tissue from renal biopsies. We studied three groups of patients with established diabetic nephropathy and detected 103 of 365 miRs. Two miRs differed by more than two-fold between progressors and nonprogressors, and 12 miRs differed between late presenters and other biopsies. We noted the greatest change in miR-192 expression, which was significantly lower in late presenters. Furthermore, in individual biopsies, low expression of miR-192 correlated with tubulointerstitial fibrosis and low estimated GFR. In vitro, treatment of PTCs with TGF-beta1 decreased miR-192 expression. Overexpression of miR-192 suppressed expression of the E-Box repressors ZEB1 and ZEB2, thereby opposing TGF-beta-mediated downregulation of E-cadherin. In summary, loss of miR-192 expression associates with increased fibrosis and decreased estimated GFR in diabetic nephropathy in vivo, perhaps by enhancing TGF-beta-mediated downregulation of E-cadherin in PTCs.
Collapse
Affiliation(s)
- Aleksandra Krupa
- Institute of Nephrology, Cardiff University, Heath Park Campus, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
23
|
Hu F, Wang C, Du J, Sun W, Yan J, Mi D, Zhang J, Qiao Y, Zhu T, Yang S. DeltaEF1 promotes breast cancer cell proliferation through down-regulating p21 expression. Biochim Biophys Acta Mol Basis Dis 2009; 1802:301-12. [PMID: 20006705 DOI: 10.1016/j.bbadis.2009.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 11/20/2009] [Accepted: 12/03/2009] [Indexed: 01/20/2023]
Abstract
Although the zinc finger-homeodomain transcription factor deltaEF1 is implied as a regulatory factor at the crossroad between proliferation and differentiation in carcinogenesis, its potential effect in the regulation of cell cycle progression has not been well elucidated. In our present study, we provide novel finding that, in breast cancer, the ectopic expression of deltaEF1 in MDA-MB-231 cells significantly promoted cell proliferation by increasing the cell number in S phase of the cell cycle. In contrast, deltaEF1 knockdown by RNA interference exhibited an opposite effect, highlighting a potent role of deltaEF1 to promote G1-S transition of breast cancer cells. Moreover, we demonstrated that deltaEF1 down-regulated p21 and concurrently up-regulated the expressions of CDK2 and CDK4 during this process. Further, deltaEF1 inhibited p21 transcription by recruiting to the E(2) box element on the p21 promoter. Depletion of endogenous deltaEF1 in MDA-MB-231 cells was sufficient to allow an inherent release of p21 expression, thus resulting in the cell cycle arrest. In addition, the stimulatory effect of deltaEF1 on cell proliferation through p21 regulation was supported by an inverse correlation of deltaEF1 and p21 expressions observed in both breast cancer cell lines and clinical tumor specimens. Taken together, these observations suggest a dual effect of deltaEF1 in promoting breast cancer cell proliferation, by differentially regulating the cell cycle regulatory proteins.
Collapse
Affiliation(s)
- Fen Hu
- Medical College of Nankai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol 2009; 4:1255-66. [PMID: 19581401 DOI: 10.2215/cjn.00520109] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRs) are a family of short non-coding RNAs. These endogenously produced factors have been shown to play important roles in gene regulation. The discovery of miRs has greatly expanded our knowledge of gene regulation at the posttranscriptional level. miRs inhibit target gene expression by blocking protein translation or by inducing mRNA degradation and therefore have the potential to modulate physiologic and pathologic processes. The imperative need to determine their cellular targets and disease relevance has sparked an unprecedented explosion of research in the miR field. Recent findings have revealed critical functions for specific miRs in cellular events such as proliferation, differentiation, development, and immune responses and in the regulation of genes relevant to human diseases. Of particular interest to renal researchers are recent reports that key miRs are highly expressed in the kidney and can act as effectors of TGF-beta actions and high glucose in diabetic kidney disease. Moreover, podocyte-specific deletion of Dicer, a key enzyme involved in miR biogenesis, led to proteinuria and severe renal dysfunction in mice. Hence, studies aimed at determining the in vitro and in vivo functions of miRs in the kidney could determine their value as therapeutic targets for progressive renal glomerular and tubular diseases. Translational approaches could be facilitated by the development of effective inhibitors of specific miRs and methods for optimal delivery of anti-miRs to the kidney. The major goal of this review is to highlight key functions of these miRs and their relationships to human diseases, with special emphasis on diabetic kidney disease.
Collapse
Affiliation(s)
- Mitsuo Kato
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | |
Collapse
|