1
|
Verdugo E, Puerto I, Medina MÁ. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1083-1111. [PMID: 36129048 DOI: 10.1002/cac2.12361] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common malignant primary brain tumor. Patients with GBM often have poor prognoses, with a median survival of ∼15 months. Enhanced understanding of the molecular biology of central nervous system tumors has led to modifications in their classifications, the most recent of which classified these tumors into new categories and made some changes in their nomenclature and grading system. This review aims to give a panoramic view of the last 3 years' findings in glioblastoma characterization, its heterogeneity, and current advances in its treatment. Several molecular parameters have been used to achieve an accurate and personalized characterization of glioblastoma in patients, including epigenetic, genetic, transcriptomic and metabolic features, as well as age- and sex-related patterns and the involvement of several noncoding RNAs in glioblastoma progression. Astrocyte-like neural stem cells and outer radial glial-like cells from the subventricular zone have been proposed as agents involved in GBM of IDH-wildtype origin, but this remains controversial. Glioblastoma metabolism is characterized by upregulation of the PI3K/Akt/mTOR signaling pathway, promotion of the glycolytic flux, maintenance of lipid storage, and other features. This metabolism also contributes to glioblastoma's resistance to conventional therapies. Tumor heterogeneity, a hallmark of GBM, has been shown to affect the genetic expression, modulation of metabolic pathways, and immune system evasion. GBM's aggressive invasion potential is modulated by cell-to-cell crosstalk within the tumor microenvironment and altered expressions of specific genes, such as ANXA2, GBP2, FN1, PHIP, and GLUT3. Nevertheless, the rising number of active clinical trials illustrates the efforts to identify new targets and drugs to treat this malignancy. Immunotherapy is still relevant for research purposes, given the amount of ongoing clinical trials based on this strategy to treat GBM, and neoantigen and nucleic acid-based vaccines are gaining importance due to their antitumoral activity by inducing the immune response. Furthermore, there are clinical trials focused on the PI3K/Akt/mTOR axis, angiogenesis, and tumor heterogeneity for developing molecular-targeted therapies against GBM. Other strategies, such as nanodelivery and computational models, may improve the drug pharmacokinetics and the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Elena Verdugo
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Iker Puerto
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain.,Biomedical Research Institute of Málaga (IBIMA-Plataforma Bionand), Málaga, Málaga, E-29071, Spain.,Spanish Biomedical Research Network Center for Rare Diseases (CIBERER), Spanish Health Institute Carlos III (ISCIII), Málaga, Málaga, E-29071, Spain
| |
Collapse
|
2
|
Cui K, Chen JH, Zou YF, Zhang SY, Wu B, Jing K, Li LW, Xia L, Sun C, Dong YL. Hub biomarkers for the diagnosis and treatment of glioblastoma based on microarray technology. Technol Cancer Res Treat 2021; 20:1533033821990368. [PMID: 34018447 PMCID: PMC8142016 DOI: 10.1177/1533033821990368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common clinical intracranial malignancy worldwide, and the most common supratentorial tumor in adults. GBM mainly causes damage to the brain tissue, which can be fatal. This research explored potential gene targets for the diagnosis and treatment of GBM using bioinformatic technology. METHODS Public data from patients with GBM and controls were downloaded from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) were identified by Gene Expression Profiling Interactive Analysis (GEPIA) and Gene Expression Omnibus 2R (GEO2R). Construction of the protein-protein interaction network and the identification of a significant module were performed. Subsequently, hub genes were identified, and their expression was examined and compared by real-time quantitative (RT-q)PCR between patients with GBM and controls. RESULTS GSE122498 (GPL570 platform), GSE104291 (GPL570 platform), GSE78703_DMSO (GPL15207 platform), and GSE78703_LXR (GPL15207 platform) datasets were obtained from the GEO. A total of 130 DEGs and 10 hub genes were identified by GEPIA and GEO2R between patients with GBM and controls. Of these, strong connections were identified in correlation analysis between CCNB1, CDC6, KIF23, and KIF20A. RT-qPCR showed that all 4 of these genes were expressed at significantly higher levels in patients with GBM compared with controls. CONCLUSIONS The hub genes CCNB1, CDC6, KIF23, and KIF20A are potential biomarkers for the diagnosis and treatment of GBM.
Collapse
Affiliation(s)
- Kai Cui
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Jin-Hui Chen
- Department of Neurosurgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, People's Republic of China
| | - Yang-Fan Zou
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Shu-Yuan Zhang
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Bing Wu
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Kai Jing
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Li-Weng Li
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Liang Xia
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Caixing Sun
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, People's Republic of China.,Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou 310022, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou 310022, People's Republic of China
| | - Ya-Lan Dong
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| |
Collapse
|
3
|
Fedak EA, Adler FR, Abegglen LM, Schiffman JD. ATM and ATR Activation Through Crosstalk Between DNA Damage Response Pathways. Bull Math Biol 2021; 83:38. [PMID: 33704589 DOI: 10.1007/s11538-021-00868-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
Cells losing the ability to self-regulate in response to damage are a hallmark of cancer. When a cell encounters damage, regulatory pathways estimate the severity of damage and promote repair, cell cycle arrest, or apoptosis. This decision-making process would be remarkable if it were based on the total amount of damage in the cell, but because damage detection pathways vary in the rate and intensity with which they promote pro-apoptotic factors, the cell's real challenge is to reconcile dissimilar signals. Crosstalk between repair pathways, crosstalk between pro-apoptotic signaling kinases, and signals induced by damage by-products complicate the process further. The cell's response to [Formula: see text] and UV radiation neatly illustrates this concept. While these forms of radiation produce lesions associated with two different pro-apoptotic signaling kinases, ATM and ATR, recent experiments show that ATM and ATR react to both forms of radiation. To simulate the pro-apoptotic signal induced by [Formula: see text] and UV radiation, we construct a mathematical model that includes three modes of crosstalk between ATM and ATR signaling pathways: positive feedback between ATM/ATR and repair proteins, ATM and ATR mutual upregulation, and changes in lesion topology induced by replication stress or repair. We calibrate the model to agree with 21 experimental claims about ATM and ATR crosstalk. We alter the model by adding or removing specific processes and then examine the effects of each process on ATM/ATR crosstalk by recording which claims the altered model violates. Not only is this the first mathematical model of ATM/ATR crosstalk, it provides a strong argument for treating pro-apoptotic signaling as a holistic effort rather than attributing it to a single dominant kinase.
Collapse
Affiliation(s)
- Elizabeth A Fedak
- Department of Mathematics, The University of Utah, 155 Presidents Circle, Salt Lake City, UT, 84112, USA. .,Department of Oncological Sciences, Huntsman Cancer Institute, The University of Utah, 2000 Cir of Hope Dr, Salt Lake City, UT, 84112, USA.
| | - Frederick R Adler
- Department of Mathematics, The University of Utah, 155 Presidents Circle, Salt Lake City, UT, 84112, USA.,Department of Biology, The University of Utah, 257 Presidents Circle, Salt Lake City, UT, 84112, USA
| | - Lisa M Abegglen
- Department of Oncological Sciences, Huntsman Cancer Institute, The University of Utah, 2000 Cir of Hope Dr, Salt Lake City, UT, 84112, USA.,Department of Pediatrics, The University of Utah, 295 Chipeta Way, Salt Lake City, UT, 84108, USA.,PEEL Therapeutics, Inc., Salt Lake City, UT, 84108, USA
| | - Joshua D Schiffman
- Department of Oncological Sciences, Huntsman Cancer Institute, The University of Utah, 2000 Cir of Hope Dr, Salt Lake City, UT, 84112, USA.,Department of Pediatrics, The University of Utah, 295 Chipeta Way, Salt Lake City, UT, 84108, USA.,PEEL Therapeutics, Inc., Salt Lake City, UT, 84108, USA
| |
Collapse
|
4
|
Wang Y, Chen S, Sun S, Liu G, Chen L, Xia Y, Cui J, Wang W, Jiang X, Zhang L, Zhu Y, Zou Y, Shi B. Wogonin Induces Apoptosis and Reverses Sunitinib Resistance of Renal Cell Carcinoma Cells via Inhibiting CDK4-RB Pathway. Front Pharmacol 2020; 11:1152. [PMID: 32792963 PMCID: PMC7394056 DOI: 10.3389/fphar.2020.01152] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/15/2020] [Indexed: 01/18/2023] Open
Abstract
Wogonin, an active component derived from Scutellaria baicalensis, has shown anti-tumor activities in several malignancies. However, the roles of wogonin in RCC cells remain elusive. Here, we explored the effects of wogonin on RCC cells and the underlying mechanisms. We found that wogonin showed significant cytotoxic effects against RCC cell lines 786-O and OS-RC-2, with much lower cytotoxic effects on human normal embryonic kidney cell line HEK-293 cells. Wogonin treatment dramatically inhibited the proliferation, migration, and invasion of RCC cells. We further showed that by inhibiting CDK4-RB pathway, wogonin transcriptionally down-regulated CDC6, disturbed DNA replication, induced DNA damage and apoptosis in RCC cells. Moreover, we found that the levels of p-RB, CDK4, and Cyclin D1 were up-regulated in sunitinib resistant 786-O, OS-RC-2, and TK-10 cells, and inhibition of CDK4 by palbociclib or wogonin effectively reversed the sunitinib resistance, indicating that the hyperactivation of CDK4-RB pathway may at least partially contribute to the resistance of RCC to sunitinib. Together, our findings demonstrate that wogonin could induce apoptosis and reverse sunitinib resistance of RCC cells via inhibiting CDK4-RB pathway, thus suggesting a potential therapeutic implication in the future management of RCC patients.
Collapse
Affiliation(s)
- Yong Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, China
| | - Guangyi Liu
- Department of Nephrology, Qilu Hospital, Shandong University, Jinan, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Wenfu Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| | - Lei Zhang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology of Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, China
| |
Collapse
|
5
|
Chang WL, Yu CC, Chen CS, Guh JH. Tubulin-binding agents down-regulate matrix metalloproteinase-2 and -9 in human hormone-refractory prostate cancer cells – a critical role of Cdk1 in mitotic entry. Biochem Pharmacol 2015; 94:12-21. [PMID: 25615907 DOI: 10.1016/j.bcp.2015.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/10/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
Tubulin is an important target for anticancer therapy. Taxanes and vinca alkaloids are two groups of tubulin-binding agents in cancer chemotherapy. Besides tubulin binding, these groups of agents can also down-regulate protein levels of matrix metalloproteinase (MMP)-2 and -9, two important cancer-associated zinc-dependent endopeptidases in invasion and metastasis. However, the mechanism of action waits to be explored. In this study, protein levels but not mRNA expressions of MMP-2 and -9 were down-regulated by paclitaxel (a microtubule-stabilization agent), vincristine and evodiamine (two tubulin-depolymerization agents). These agents induced an increase of protein expression of cyclin B1, MPM2 (mitosis-specific phosphoprotein) and polo-like kinase (PLK) 1 phosphorylation. The data showed a negative relationship between the levels of mitotic proteins and MMP-2 and -9 expressions. MG132 (a specific cell-permeable proteasome inhibitor) blocked mitotic entry and arrested cell cycle at G2 phase, preventing down-regulation of MMP-2 and -9. Cell cycle synchronization experiments by thymidine block or nocodazole treatment showed that mitotic exit inhibited the down-regulation of MMP-2 and -9, confirming negative relationship between cell mitosis and protein levels of MMP-2 and -9 expressions. Cyclin-dependent kinase (Cdk) 1 is a key kinase in mitotic entry. Knockdown of Cdk1 almost completely inhibited the down-regulation of MMP-2 and -9 induced by tubulin-binding agents. In conclusion, the data suggest that mitotic entry and Cdk1 plays a central role in down-regulation of MMP-2 and -9 protein expressions. Tubulin-binding agents cause mitotic arrest and Cdk1 activation, which may contribute largely to the down-regulation of both MMP-2 and -9 expressions.
Collapse
Affiliation(s)
- Wei-Ling Chang
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Rd, Taipei 100, Taiwan; The Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Chia-Chun Yu
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Rd, Taipei 100, Taiwan
| | - Ching-Shih Chen
- The Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Rd, Taipei 100, Taiwan.
| |
Collapse
|
6
|
Yu CC, Pan SL, Chao SW, Liu SP, Hsu JL, Yang YC, Li TK, Huang WJ, Guh JH. A novel small molecule hybrid of vorinostat and DACA displays anticancer activity against human hormone-refractory metastatic prostate cancer through dual inhibition of histone deacetylase and topoisomerase I. Biochem Pharmacol 2014; 90:320-30. [DOI: 10.1016/j.bcp.2014.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 11/15/2022]
|
7
|
Hwang IS, Woo SU, Park JW, Lee SK, Yim H. Two nuclear export signals of Cdc6 are differentially associated with CDK-mediated phosphorylation residues for cytoplasmic translocation. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:223-33. [PMID: 24216307 DOI: 10.1016/j.bbamcr.2013.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 10/25/2013] [Accepted: 10/31/2013] [Indexed: 11/16/2022]
Abstract
Cdc6 is cleaved at residues 442 and 290 by caspase-3 during apoptosis producing p49-tCdc6 and p32-tCdc6, respectively. While p32-tCdc6 is unable to translocate into the cytoplasm, p49-tCdc6 retains cytoplasmic translocation activity, but it has a lower efficiency than wild-type Cdc6. We hypothesized that a novel nuclear export signal (NES) sequence exists between amino acids 290 and 442. Cdc6 contains a novel NES in the region of amino acids 300-315 (NES2) that shares sequence similarity with NES1 at residues 462-476. In mutant versions of Cdc6, we replaced leucine with alanine in NES1 and NES2 and co-expressed the mutant constructs with cyclin A. We observed that the cytoplasmic translocation of these mutants was reduced in comparison to wild-type Cdc6. Moreover, the cytoplasmic translocation of a mutant in which all four leucine residues were mutated to alanine was significantly inhibited in comparison to the translocation of wild-type Cdc6. The Crm1 binding activities of Cdc6 NES mutants were consistent with the efficiency of its cytoplasmic translocation. Further studies have revealed that L468 and L470 of NES1 are required for cytoplasmic translocation of Cdc6 phosphorylated at S74, while L311 and L313 of NES2 accelerate the cytoplasmic translocation of Cdc6 phosphorylated at S54. These results suggest that the two NESs of Cdc6 work cooperatively and distinctly for the cytoplasmic translocation of Cdc6 phosphorylated at S74 and S54 by cyclin A/Cdk2.
Collapse
Affiliation(s)
- In Sun Hwang
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Uk Woo
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea
| | - Ji-Woong Park
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seung Ki Lee
- Division of Pharmaceutical Biosciences, Research Institute for Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyungshin Yim
- Department of Pharmacy, College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do 426-791, Republic of Korea.
| |
Collapse
|
8
|
Interplay between the cell cycle and double-strand break response in mammalian cells. Methods Mol Biol 2014; 1170:41-59. [PMID: 24906308 DOI: 10.1007/978-1-4939-0888-2_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cell cycle is intimately associated with the ability of cells to sense and respond to and repair DNA damage. Understanding how cell cycle progression, particularly DNA replication and cell division, are regulated and how DNA damage can affect these processes has been the subject of intense research. Recent evidence suggests that the repair of DNA damage is regulated by the cell cycle, and that cell cycle factors are closely associated with repair factors and participate in cellular decisions regarding how to respond to and repair damage. Precise regulation of cell cycle progression in the presence of DNA damage is essential to maintain genomic stability and avoid the accumulation of chromosomal aberrations that can promote tumor formation. In this review, we discuss the current understanding of how mammalian cells induce cell cycle checkpoints in response to DNA double-strand breaks. In addition, we discuss how cell cycle factors modulate DNA repair pathways to facilitate proper repair of DNA lesions.
Collapse
|
9
|
Liu Y, Gao F, Jiang H, Niu L, Bi Y, Young CY, Yuan H, Lou H. Induction of DNA damage and ATF3 by retigeric acid B, a novel topoisomerase II inhibitor, promotes apoptosis in prostate cancer cells. Cancer Lett 2013; 337:66-76. [DOI: 10.1016/j.canlet.2013.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 01/26/2023]
|
10
|
LEE EUNJUNG, LEE SEUNGJIN. Etoposide increases equilibrative nucleoside transporter 1 activity and fluorothymidine uptake: Screening of 60 cytotoxic agents. Oncol Rep 2012; 29:763-70. [DOI: 10.3892/or.2012.2172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/17/2012] [Indexed: 11/06/2022] Open
|
11
|
Persimmon leaf extract inhibits the ATM activity during DNA damage response induced by Doxorubicin in A549 lung adenocarcinoma cells. Biosci Biotechnol Biochem 2011; 75:650-5. [PMID: 21512242 DOI: 10.1271/bbb.100738] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Persimmon leaf (PL) has been commonly recognized for its wide variety of health benefits. A previous study has reported that persimmon leaf extract (PLE) contained flavonols with the 2″-galloly moiety (PLEg). Galloylated homologues generically show stronger activity in their biological function, so enhanced functions can be expected for PLEg. We investigated in this present study the effect of PLEg on the cellular DNA damage checkpoint signaling to sensitize cancer chemotherapy. Treatment with PLE and PLEg significantly increased the cytotoxicity of doxorubicin (DOX) in A549 adenocarcinoma cells. PLE and PLEg reduced the phosphorylation of checkpoint proteins such as structural maintenance of chromosomes 1 (SMC1), checkpoint kinase 1 (Chk1), and p53 in DOX-treated cells. Moreover, PLE decreased the phosphorylation of ATM (ataxia telangiectasia mutated) in a dose-dependent manner. PLE, and especially PLEg, abrogated the G2/M checkpoint during DOX-induced DNA damage. These results suggest that PLEg specifically inhibited ATM-dependent checkpoint activation by DOX, and that PLEg might be a useful sensitizer in cancer chemotherapy.
Collapse
|
12
|
Kim YM, Lee YM, Park SY, Pyo H. Ataxia Telangiectasia and Rad3-Related Overexpressing Cancer Cells Induce Prolonged G2 Arrest and Develop Resistance to Ionizing Radiation. DNA Cell Biol 2011; 30:219-27. [DOI: 10.1089/dna.2010.1141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Young-Mee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | - Yeo Myoung Lee
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | - Soo-Yeon Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| | - Hongryull Pyo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Republic of Korea
| |
Collapse
|
13
|
Yim H, Erikson RL. Cell division cycle 6, a mitotic substrate of polo-like kinase 1, regulates chromosomal segregation mediated by cyclin-dependent kinase 1 and separase. Proc Natl Acad Sci U S A 2010; 107:19742-7. [PMID: 21041660 PMCID: PMC2993418 DOI: 10.1073/pnas.1013557107] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Defining the links between cell division and DNA replication is essential for understanding normal cell cycle progression and tumorigenesis. In this report we explore the effect of phosphorylation of cell division cycle 6 (Cdc6), a DNA replication initiation factor, by polo-like kinase 1 (Plk1) on the regulation of chromosomal segregation. In mitosis, the phosphorylation of Cdc6 was highly increased, in correlation with the level of Plk1, and conversely, Cdc6 is hypophosphorylated in Plk1-depleted cells, although cyclin A- and cyclin B1-dependent kinases are active. Binding between Cdc6 and Plk1 occurs through the polo-box domain of Plk1, and Cdc6 is phosphorylated by Plk1 on T37. Immunohistochemistry studies reveal that Cdc6 and Plk1 colocalize to the central spindle in anaphase. Expression of T37V mutant of Cdc6 (Cdc6-TV) induces binucleated cells and incompletely separated nuclei. Wild-type Cdc6 but not Cdc6-TV binds cyclin-dependent kinase 1 (Cdk1). Expression of wild-type Plk1 but not kinase-defective mutant promotes the binding of Cdc6 to Cdk1. Cells expressing wild-type Cdc6 display lower Cdk1 activity and higher separase activity than cells expressing Cdc6-TV. These results suggest that Plk1-mediated phosphorylation of Cdc6 promotes the interaction of Cdc6 and Cdk1, leading to the attenuation of Cdk1 activity, release of separase, and subsequent anaphase progression.
Collapse
Affiliation(s)
- Hyungshin Yim
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Raymond L. Erikson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
14
|
Chan JYH, Li L, Miao J, Cai DQ, Lee KKH, Chui YL. Differential expression of a novel gene BRE (TNFRSF1A modulator/BRCC45) in response to stress and biological signals. Mol Biol Rep 2010; 37:363-8. [PMID: 19757177 DOI: 10.1007/s11033-009-9796-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 09/02/2009] [Indexed: 01/09/2023]
Abstract
Stress-responsive genes play critical roles in many biological functions that includes apoptosis, survival, differentiation and regeneration. We have identified a novel stress-responsive gene called BRE which interacts with TNF-receptor-1 and blocks the apoptotic effect of TNF-alpha. BRE enhances tumor growth in vivo and is up-regulated in hepatocellular and esophageal carcinomas. BRE also regulates the ubiquitination of the DNA repair complex BRCC, and the synthesis of steroid hormones. Here, we examined BRE-mRNA in cells after treatments with UV and ionizing radiation (IR). UV and IR treatment alone suppressed BRE-mRNA levels by more than 90% at 24 h, while hydroxyurea, fluorodeoxyuridine, aphidicolin, known inhibitors of S-phase DNA synthesis, had no significant effect. BRE protein expression was unaltered in cells treated with TNF-alpha, Interleukin-1 and Dexamethasone, while a threefold increase was observed following chorionic gonadotropin exposure. Although BRE plays a regulatory role in many different pathways, yet its expression is apparently under very stringent control.
Collapse
Affiliation(s)
- John Yeuk-Hon Chan
- Key Joint CUHK-JiNan University Laboratories for Regenerative Medicine, Ministry of Education, JiNan University, Guang Zhou, Guang Dong, China.
| | | | | | | | | | | |
Collapse
|
15
|
Chung JH, Bunz F. Cdk2 is required for p53-independent G2/M checkpoint control. PLoS Genet 2010; 6:e1000863. [PMID: 20195506 PMCID: PMC2829054 DOI: 10.1371/journal.pgen.1000863] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 01/28/2010] [Indexed: 01/03/2023] Open
Abstract
The activation of phase-specific cyclin-dependent kinases (Cdks) is associated with ordered cell cycle transitions. Among the mammalian Cdks, only Cdk1 is essential for somatic cell proliferation. Cdk1 can apparently substitute for Cdk2, Cdk4, and Cdk6, which are individually dispensable in mice. It is unclear if all functions of non-essential Cdks are fully redundant with Cdk1. Using a genetic approach, we show that Cdk2, the S-phase Cdk, uniquely controls the G2/M checkpoint that prevents cells with damaged DNA from initiating mitosis. CDK2-nullizygous human cells exposed to ionizing radiation failed to exclude Cdk1 from the nucleus and exhibited a marked defect in G2/M arrest that was unmasked by the disruption of P53. The DNA replication licensing protein Cdc6, which is normally stabilized by Cdk2, was physically associated with the checkpoint regulator ATR and was required for efficient ATR-Chk1-Cdc25A signaling. These findings demonstrate that Cdk2 maintains a balance of S-phase regulatory proteins and thereby coordinates subsequent p53-independent G2/M checkpoint activation. Metazoan cells contain multiple Cdks that regulate cell cycle progression. Recent studies have shown that mouse cells can grow normally with just Cdk1. The roles of the non-essential Cdks remain a fundamental question. In this study, we describe the generation and detailed characterization of CDK2-knockout human somatic cells. Our study demonstrates that Cdk2 is required for robust DNA damage checkpoint signaling. Loss of Cdk2 caused a marked deficiency in the G2/M arrest—a basic response to DNA damage—in cells that were also nullizygous for P53. We propose that the multiple Cdks present in metazoan cells provide a mechanism by which the cell cycle can be efficiently halted after DNA damage. Significantly, this study reveals a heretofore unrecognized dependence for Cdk2 in p53-deficient cancer cells.
Collapse
Affiliation(s)
- Jon H. Chung
- Department of Radiation Oncology and Molecular Radiation Sciences and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
16
|
Lu X, Liu J, Legerski RJ. Cyclin E is stabilized in response to replication fork barriers leading to prolonged S phase arrest. J Biol Chem 2010; 284:35325-37. [PMID: 19812034 DOI: 10.1074/jbc.m109.035949] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin E is a regulator of cyclin-dependent protein kinases (Cdks) and is involved in mediating the cell cycle transition from G(1) to S phase. Here, we describe a novel function for cyclin E in the long term maintenance of checkpoint arrest in response to replication barriers. Exposure of cells to mitomycin C or UV irradiation, but not ionizing radiation, induces stabilization of cyclin E. Stabilization of cyclin E reduces the activity of Cdk2-cyclin A, resulting in a slowing of S phase progression and arrest. In addition, cyclin E is shown to be required for stabilization of Cdc6, which is required for activation of Chk1 and the replication checkpoint pathway. Furthermore, the stabilization of cyclin E in response to replication fork barriers depends on ATR, but not Nbs1 or Chk1. These results indicate that in addition to its well studied role in promoting cell cycle progression, cyclin E also has a role in regulating cell cycle arrest in response to DNA damage.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Department of Genetics, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
17
|
Tissue-spanning redox gradient-dependent assembly of native human papillomavirus type 16 virions. J Virol 2009; 83:10515-26. [PMID: 19656879 DOI: 10.1128/jvi.00731-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Papillomavirus capsids are composed of 72 pentamers reinforced through inter- and intrapentameric disulfide bonds. Recent research suggests that virus-like particles and pseudovirions (PsV) can undergo a redox-dependent conformational change involving disulfide interactions. We present here evidence that native virions exploit a tissue-spanning redox gradient that facilitates assembly events in the context of the complete papillomavirus life cycle. DNA encapsidation and infectivity titers are redox dependent in that they can be temporally modulated via treatment of organotypic cultures with oxidized glutathione. These data provide evidence that papillomavirus assembly and maturation is redox-dependent, utilizing multiple steps within both suprabasal and cornified layers.
Collapse
|