1
|
Zhao C. Exploring cell death pathways in oral cancer: mechanisms, therapeutic strategies, and future perspectives. Discov Oncol 2025; 16:395. [PMID: 40133563 PMCID: PMC11936869 DOI: 10.1007/s12672-025-02022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/03/2025] [Indexed: 03/27/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents a significant global health challenge, characterized by aggressive progression and poor therapeutic response despite advances in treatment modalities. This review provides a comprehensive analysis of diverse cell death mechanisms in OSCC, encompassing traditional pathways (apoptosis, autophagy, and necrosis), newly characterized mechanisms (ferroptosis, pyroptosis, and necroptosis), and emerging pathways (cuproptosis, anoikis, parthanatos, and entosis). By examining the molecular basis of these pathways, particularly the crucial roles of p53 signaling and miRNA regulation, we highlight how their dysregulation contributes to treatment resistance and tumor progression. The review synthesizes recent evidence demonstrating the complex interplay between these ten distinct cell death mechanisms and their impact on the tumor microenvironment and immune response. We evaluate innovative therapeutic approaches that target these pathways, including novel small molecules, combination strategies, and immunomodulatory treatments that exploit specific cell death mechanisms to enhance therapeutic efficacy. Special attention is given to emerging personalized medicine strategies that consider individual tumor characteristics and cell death pathway profiles. By integrating current challenges with future research directions, this review provides a framework for developing more effective treatments that can leverage multiple cell death pathways to overcome therapy resistance and improve outcomes for oral cancer patients.
Collapse
Affiliation(s)
- Chenyi Zhao
- The Second School of Clinical Medicine, Guangdong Medical University, Dongguan, No.1 Xincheng Blvd, Songshan Lake National High-tech Industrial Development Zone, 523808, Guangdong Province, China.
| |
Collapse
|
2
|
Feng X, Wu W, Liu F. AH-6809 mediated regulation of lung adenocarcinoma metastasis through NLRP7 and prognostic analysis of key metastasis-related genes. Front Pharmacol 2024; 15:1486265. [PMID: 39697539 PMCID: PMC11652142 DOI: 10.3389/fphar.2024.1486265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction Lung adenocarcinoma (LUAD) has become one of the leading causes of cancer-related deaths globally, with metastasis representing the most lethal stage of the disease. Despite significant advances in diagnostic and therapeutic strategies for LUAD, the mechanisms enabling cancer cells to breach the blood-brain barrier remain poorly understood. While genomic profiling has shed light on the nature of primary tumors, the genetic drivers and clinical relevance of LUAD metastasis are still largely unexplored. Objectives This study aims to investigate the genomic differences between brain-metastatic and non-brain-metastatic LUAD, identify potential prognostic biomarkers, and evaluate the efficacy of AH-6809 in modulating key molecular pathways involved in LUAD metastasis, with a focus on post-translational modifications (PTMs). Methods Genomic analyses were performed using data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) between brain-metastatic and non-metastatic LUAD samples were identified. Key gene modules were determined using Weighted Gene Co-expression Network Analysis (WGCNA), and their prognostic significance was assessed through Kaplan-Meier analysis. Cellular experiments, including CCK8 and qRT-PCR assays, were conducted to evaluate the anti-cancer effects of AH-6809 in LUAD cells. Apoptosis and inflammatory marker expression were assessed using immunofluorescence. Results Genomic analysis differentiated brain-metastatic from non-brain-metastatic LUAD and identified NLRP7, FIBCD1, and ELF5 as prognostic markers. AH-6809 significantly suppressed LUAD cell proliferation, promoted apoptosis, and modulated epithelial-mesenchymal transition (EMT) markers. These effects were reversed upon NLRP7 knockdown, highlighting its role in metastasis. Literature analysis further supported AH-6809's tumor-suppressive activity, particularly in NLRP7 knockdown cells, where it inhibited cell growth and facilitated apoptosis. AH-6809 was also found to affect SUMO1-mediated PTMs and downregulate EMT markers, including VIM and CDH2. NLRP7 knockdown partially reversed these effects. Immunofluorescence revealed enhanced apoptosis and inflammation in lung cancer cells, especially in NLRP7 knockdown cells treated with AH-6809. The regulatory mechanisms involve SUMO1-mediated post-translational modifications and NQO1. Further studies are required to elucidate the molecular mechanisms and assess the clinical potential of these findings. Conclusion These findings demonstrate the critical role of NLRP7 and associated genes in LUAD metastasis and suggest that AH-6809 holds promise as a potential therapeutic agent for brain-metastatic LUAD.
Collapse
Affiliation(s)
- Xu Feng
- Department of Neurointerventional, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Wei Wu
- Department of Acupuncture, Jin Zhou Hospital of Traditional Chinese Medicine, Jinzhou, China
| | - Feifei Liu
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou MedicalUniversity, Jinzhou, China
| |
Collapse
|
3
|
Zhihao L, Jingyu N, Lan L, Michael S, Rui G, Xiyun B, Xiaozhi L, Guanwei F. SERCA2a: a key protein in the Ca 2+ cycle of the heart failure. Heart Fail Rev 2021; 25:523-535. [PMID: 31701344 DOI: 10.1007/s10741-019-09873-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Calcium ion (Ca2+) cycle plays a crucial role in the contraction and relaxation of cardiomyocytes. The sarcoplasmic reticulum (SR) acts as an organelle for storing Ca2+, which mediated the release and re-uptake of Ca2+ during contraction and relaxation. Disorders of SR function lead to the dysfunction of Ca2+ cycle and myocardial cell function. The sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) acts as a subtype of SERCA expressed in the heart, which mediates the contraction of cardiomyocytes and Ca2+ in the cytoplasm to re-enter into the SR. The rate of uptake of Ca2+ by the SR determines the rate of myocardial relaxation. The regulation of SERCA2a activity controls the contractility and relaxation of the heart, affecting cardiac function. The expression and activity of SERCA2a are reduced in failing hearts. Gene therapy by increasing the expression of SERCA2a in the heart has been proven effective. In addition, SERCA2a is regulated by a variety of factors, including transmembrane micropeptides, protein kinases, and post-translational modifications (PTMs). In this review, we discuss the regulatory factors of SERCA2a and provide new insights into future treatments and the direction of heart failure research. In addition, gene therapy for SERCA2a has recently emerged as therapeutic option and hence will be discussed in this review.
Collapse
Affiliation(s)
- Liu Zhihao
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Ni Jingyu
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Li Lan
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Sarhene Michael
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Guo Rui
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Bian Xiyun
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, 300450, People's Republic of China
| | - Liu Xiaozhi
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin, 300450, People's Republic of China
| | - Fan Guanwei
- Tianjin Laboratory of Translational Research of TCM Prescription and Syndrome, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Number 314 Anshanxi Road, Nankai District, Tianjin, 300193, People's Republic of China. .,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
4
|
Xu J, Tan P, Li H, Cui Y, Qiu Y, Wang H, Zhang X, Li J, Zhu L, Zhou W, Chen H. Direct SUMOylation of M1 muscarinic acetylcholine receptor increases its ligand-binding affinity and signal transduction. FASEB J 2018; 33:3237-3251. [PMID: 30407877 DOI: 10.1096/fj.201800936r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SUMOylation is a significant post-translational modification (PTM) by the small ubiquitin-related modifier (SUMO). Increasing evidence shows SUMOylation regulates GPCR signaling; however, very few GPCRs have been shown to be SUMOylation targets to date. In this study, we identified M1 muscarinic acetylcholine receptor (M1 mAChR), a member of the GPCRs, as a new SUMO substrate. When the mAChR was activated by the agonist carbachol, the colocalization of the M1 mAChR and SUMO-1 protein markedly decreased in immunoprecipitation and immunofluorescence assays. SUMOylation of the M1 mAChR played an important role in increasing the ligand-binding affinity to M1 mAChR, signaling efficiencies, and receptor endocytosis. Through the site-directed mutagenesis approach, K327 was identified as the SUMOylation site of the M1 mAChR. Mutation of the consensus SUMOylation site of the M1 mAChR reduces not only the colocalization of SUMO-1, but also the ligand-binding affinity and signal transduction. The function of M1 mAChR was regulated by SUMOylation through the stabilization of active-state conformation revealed by molecular dynamics simulations. Our results provide evidence that M1 SUMOylation is an important PTM involved in regulation of the affinity for agonists and for activation of signaling pathways.-Xu, J., Tan, P., Li, H., Cui, Y., Qiu, Y., Wang, H., Zhang, X., Li, J., Zhu, L., Zhou, W., Chen, H. Direct SUMOylation of M1 muscarinic acetylcholine receptor increases its ligand-binding affinity and signal transduction.
Collapse
Affiliation(s)
- Jianrong Xu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Panpan Tan
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongyao Cui
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Zhang
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Li
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Oral Microbiota and Systemic Disease, Shanghai Ninth People's Hospital, Shanghai, China.,College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai, China.,Shanghai Research Institute of Stomatology, Shanghai, China; and
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Zhang D, Yu K, Yang Z, Li Y, Ma X, Bian X, Liu F, Li L, Liu X, Wu W. Silencing Ubc9 expression suppresses osteosarcoma tumorigenesis and enhances chemosensitivity to HSV-TK/GCV by regulating connexin 43 SUMOylation. Int J Oncol 2018; 53:1323-1331. [PMID: 29956745 DOI: 10.3892/ijo.2018.4448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/22/2018] [Indexed: 11/06/2022] Open
Abstract
The ability of herpes simplex virus thymidine kinase/ganciclovir (HSV-TK/GCV) systems to kill tumor cells is partially dependent on the integrity of gap junction intercellular communication (GJIC) of targeted tumor cells. Recent studies have suggested that connexin 43 (Cx43), which serves a role in gap junction-mediated intercellular communication, is regulated by small ubiquitin-like modifiers (SUMOs). However, the roles of these post-translational modifications remain to be elucidated. The present study demonstrated overexpression of SUMO‑conjugating enzyme Ubc9 (Ubc9) protein in osteosarcoma. Silencing Ubc9 by siRNA inhibited osteosarcoma cell proliferation and migration, and significantly increased the sensitivity of cells to HSV-TK/GCV systems both in vitro and in vivo. Further experimentation demonstrated that silencing Ubc9 induced decoupling of SUMO1 from Cx43, generating increased free Cx43 levels, which is important for reconstructing GJIC and recovering cellular functions. In conclusion, the present study revealed a novel method for the effective restoration of GJIC in osteosarcoma cells, which may increase their sensitivity to conventional chemotherapy.
Collapse
Affiliation(s)
- Dianying Zhang
- Department of Trauma and Orthopedics, Beijing University People's Hospital, Beijing 100044, P.R. China
| | - Kai Yu
- Department of Orthopedics, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Zhong Yang
- Department of Orthopedics, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yanxia Li
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaofang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiyun Bian
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Fengting Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Lili Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Wenhan Wu
- Department of General Surgery, Beijing University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
6
|
Depletion of UBC9 Causes Nuclear Defects during the Vegetative and Sexual Life Cycles in Tetrahymena thermophila. EUKARYOTIC CELL 2015; 14:1240-52. [PMID: 26453653 DOI: 10.1128/ec.00115-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/03/2015] [Indexed: 11/20/2022]
Abstract
Ubc9p is the sole E2-conjugating enzyme for SUMOylation, and its proper function is required for regulating key nuclear events such as transcription, DNA repair, and mitosis. In Tetrahymena thermophila, the genome is separated into a diploid germ line micronucleus (MIC) that divides by mitosis and a polyploid somatic macronucleus (MAC) that divides amitotically. This unusual nuclear organization provides novel opportunities for the study of SUMOylation and Ubc9p function. We identified the UBC9 gene and demonstrated that its complete deletion from both MIC and MAC genomes is lethal. Rescue of the lethal phenotype with a GFP-UBC9 fusion gene driven by a metallothionein promoter generated a cell line with CdCl2-dependent expression of green fluorescent protein (GFP)-Ubc9p. Depletion of Ubc9p in vegetative cells resulted in the loss of MICs, but MACs continued to divide. In contrast, expression of catalytically inactive Ubc9p resulted in the accumulation of multiple MICs. Critical roles for Ubc9p were also identified during the sexual life cycle of Tetrahymena. Cell lines that were depleted for Ubc9p did not form mating pairs and therefore could not complete any of the subsequent stages of conjugation, including meiosis and macronuclear development. Mating between cells expressing catalytically inactive Ubc9p resulted in arrest during macronuclear development, consistent with our observation that Ubc9p accumulates in the developing macronucleus.
Collapse
|
7
|
Hannan A, Abraham NM, Goyal S, Jamir I, Priyakumar UD, Mishra K. Sumoylation of Sir2 differentially regulates transcriptional silencing in yeast. Nucleic Acids Res 2015; 43:10213-26. [PMID: 26319015 PMCID: PMC4666389 DOI: 10.1093/nar/gkv842] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/07/2015] [Indexed: 12/12/2022] Open
Abstract
Silent information regulator 2 (Sir2), the founding member of the conserved sirtuin family of NAD+-dependent histone deacetylase, regulates several physiological processes including genome stability, gene silencing, metabolism and life span in yeast. Within the nucleus, Sir2 is associated with telomere clusters in the nuclear periphery and rDNA in the nucleolus and regulates gene silencing at these genomic sites. How distribution of Sir2 between telomere and rDNA is regulated is not known. Here we show that Sir2 is sumoylated and this modification modulates the intra-nuclear distribution of Sir2. We identify Siz2 as the key SUMO ligase and show that multiple lysines in Sir2 are subject to this sumoylation activity. Mutating K215 alone counteracts the inhibitory effect of Siz2 on telomeric silencing. SUMO modification of Sir2 impairs interaction with Sir4 but not Net1 and, furthermore, SUMO modified Sir2 shows predominant nucleolar localization. Our findings demonstrate that sumoylation of Sir2 modulates distribution between telomeres and rDNA and this is likely to have implications for Sir2 function in other loci as well.
Collapse
Affiliation(s)
- Abdul Hannan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Neethu Maria Abraham
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Siddharth Goyal
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Imlitoshi Jamir
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
8
|
Screen for multi-SUMO-binding proteins reveals a multi-SIM-binding mechanism for recruitment of the transcriptional regulator ZMYM2 to chromatin. Proc Natl Acad Sci U S A 2015; 112:E4854-63. [PMID: 26283374 DOI: 10.1073/pnas.1509716112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein SUMOylation has emerged as an important regulatory event, particularly in nuclear processes such as transcriptional control and DNA repair. In this context, small ubiquitin-like modifier (SUMO) often provides a binding platform for the recruitment of proteins via their SUMO-interacting motifs (SIMs). Recent discoveries point to an important role for multivalent SUMO binding through multiple SIMs in the binding partner as exemplified by poly-SUMOylation acting as a binding platform for ubiquitin E3 ligases such as ring finger protein 4. Here, we have investigated whether other types of protein are recruited through multivalent SUMO interactions. We have identified dozens of proteins that bind to multi-SUMO platforms, thereby uncovering a complex potential regulatory network. Multi-SUMO binding is mediated through multi-SIM modules, and the functional importance of these interactions is demonstrated for the transcriptional corepressor ZMYM2/ZNF198 where its multi-SUMO-binding activity is required for its recruitment to chromatin.
Collapse
|
9
|
Stastna M, Van Eyk JE. Posttranslational modifications of lysine and evolving role in heart pathologies-recent developments. Proteomics 2015; 15:1164-80. [PMID: 25430483 DOI: 10.1002/pmic.201400312] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/29/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Abstract
The alteration in proteome composition induced by environmental changes and various pathologies is accompanied by the modifications of proteins by specific cotranslational and PTMs. The type and site stoichiometry of PTMs can affect protein functions, alter cell signaling, and can have acute and chronic effects. The particular interest is drawn to those amino acid residues that can undergo several different PTMs. We hypothesize that these selected amino acid residues are biologically rare and act within the cell as molecular switches. There are, at least, 12 various lysine modifications currently known, several of them have been shown to be competitive and they influence the ability of a particular lysine to be modified by a different PTM. In this review, we discuss the PTMs that occur on lysine, specifically neddylation and sumoylation, and the proteomic approaches that can be applied for the identification and quantification of these PTMs. Of interest are the emerging roles for these modifications in heart disease and what can be inferred from work in other cell types and organs.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic, v. v. i, Brno, Czech Republic
| | | |
Collapse
|
10
|
Li XL, Zhou J, Chen ZR, Chng WJ. P53 mutations in colorectal cancer - molecular pathogenesis and pharmacological reactivation. World J Gastroenterol 2015; 21:84-93. [PMID: 25574081 PMCID: PMC4284363 DOI: 10.3748/wjg.v21.i1.84] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/20/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies with high prevalence and low 5-year survival. CRC is a heterogeneous disease with a complex, genetic and biochemical background. It is now generally accepted that a few important intracellular signaling pathways, including Wnt/β-catenin signaling, Ras signaling, and p53 signaling are frequently dysregulated in CRC. Patients with mutant p53 gene are often resistant to current therapies, conferring poor prognosis. Tumor suppressor p53 protein is a transcription factor inducing cell cycle arrest, senescence, and apoptosis under cellular stress. Emerging evidence from laboratories and clinical trials shows that some small molecule inhibitors exert anti-cancer effect via reactivation and restoration of p53 function. In this review, we summarize the p53 function and characterize its mutations in CRC. The involvement of p53 mutations in pathogenesis of CRC and their clinical impacts will be highlighted. Moreover, we also describe the current achievements of using p53 modulators to reactivate this pathway in CRC, which may have great potential as novel anti-cancer therapy.
Collapse
|
11
|
Tilemann L, Lee A, Ishikawa K, Aguero J, Rapti K, Santos-Gallego C, Kohlbrenner E, Fish KM, Kho C, Hajjar RJ. SUMO-1 gene transfer improves cardiac function in a large-animal model of heart failure. Sci Transl Med 2014; 5:211ra159. [PMID: 24225946 DOI: 10.1126/scitranslmed.3006487] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, the impact of small ubiquitin-related modifier 1 (SUMO-1) on the regulation and preservation of sarcoplasmic reticulum calcium adenosine triphosphatase (SERCA2a) function was discovered. The amount of myocardial SUMO-1 is decreased in failing hearts, and its knockdown results in severe heart failure (HF) in mice. In a previous study, we showed that SUMO-1 gene transfer substantially improved cardiac function in a murine model of pressure overload-induced HF. Toward clinical translation, we evaluated in this study the effects of SUMO-1 gene transfer in a swine model of ischemic HF. One month after balloon occlusion of the proximal left anterior descending artery followed by reperfusion, the animals were randomized to receive either SUMO-1 at two doses, SERCA2a, or both by adeno-associated vector type 1 (AAV1) gene transfer via antegrade coronary infusion. Control animals received saline infusions. After gene delivery, there was a significant increase in the maximum rate of pressure rise [dP/dt(max)] that was most pronounced in the group that received both SUMO-1 and SERCA2a. The left ventricular ejection fraction (LVEF) improved after high-dose SUMO-1 with or without SERCA2a gene delivery, whereas there was a decline in LVEF in the animals receiving saline. Furthermore, the dilatation of LV volumes was prevented in the treatment groups. SUMO-1 gene transfer therefore improved cardiac function and stabilized LV volumes in a large-animal model of HF. These results support the critical role of SUMO-1 in SERCA2a function and underline the therapeutic potential of SUMO-1 for HF patients.
Collapse
Affiliation(s)
- Lisa Tilemann
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tempé D, Vives E, Brockly F, Brooks H, De Rossi S, Piechaczyk M, Bossis G. SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation. Oncogene 2013; 33:921-7. [DOI: 10.1038/onc.2013.4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 12/15/2022]
|